
Tigase Development Guide
Tigase Team

Tigase Development Guide
Tigase Team

iii

Table of Contents
1. Basic Information .. 1

Tigase Server Elements .. 1
Components ... 1
Plug-ins ... 2

Connector .. 2
Data, Stanzas, Packets - Data Flow and Processing ... 2

2. Hack Tigase XMPP Server in Eclipse ... 4
Requirements .. 4
Installation ... 4

Linux .. 4
Windows ... 4

Setup ... 10
API changes in the Tigase Server 5.x ... 15

3. Server Compilation .. 17
Tigase XMPP Server 5.2.0 and later - Compilation and Generating Distribution Packages 17

Distribution Packages ... 17
Building Server and Generating Packages .. 17
Running Server ... 18

Tigase Packages Dependency Change - Server Compilation Version 4.x or Later 18
4. Component Development .. 20

Component Implementation - Lesson 1 - Basics .. 20
Component Implementation - Lesson 2 - Configuration .. 23
Component Implementation - Lesson 3 - Multi-Threading .. 27
Component Implementation - Lesson 4 - Service Discovery .. 31
Component Implementation - Lesson 5 - Statistics .. 37
Component Implementation - Lesson 6 - Scripting Support ... 41
Component Implementation - Lesson 7 - Data Repository ... 47

ConfigRepository ... 47
RepositoryFactory .. 47

Component Implementation - Lesson 8 - Startup Time ... 47
Configuration API ... 48

Introduction .. 48
Component Startup Sequence .. 48
Configuration API ... 49
getDefaults() ... 49
setProperties() ... 50
Useful Presets ... 50
Global Configuration Settings .. 50

Packet Filtering in Components ... 51
The Packet Filter API .. 51
Configuration .. 52

EventBus API in Tigase ... 53
EventBus API ... 53
Distributed EventBus ... 53
Local EventBus ... 54

Cluster Map Interface ... 55
Requirements .. 55
Map creation .. 56
Map Changes .. 56
Map Destruction .. 57

5. Plugin Development ... 58

Tigase Development Guide

iv

Writing Plugin Code .. 58
Using annotation support .. 59
Using older non-annotation based implementation ... 60
Implementation of processing method ... 60

Plugin Configuration .. 62
How Packets are Processed by the SM and Plugins ... 63

Introduction .. 63
SASL Custom Mechanisms and Configuration ... 67

Basic SASL Configuration .. 67
Logging/Authentication .. 69
Built-in Mechanisms .. 69
Custom Mechanisms Development ... 69

6. Using Maven .. 71
Setting up Maven in Windows ... 71

Requirements .. 71
Setting up Environment Variables .. 71
Testing Maven .. 73

A Very Short Maven Guide .. 74
Snapshot Compilation and Snapshot Package Generation .. 74
Release Compilation, Generation .. 74
Generating tar.gz, tar.bz2 File With Sources Only ... 74

Maven 2.x Support .. 74
7. Tests .. 76

Tests ... 76
Functional Tests .. 76
Performance Tests ... 78
Stability Tests ... 80

Tigase Test Suite ... 80
Running Tigase Test Suite (TTS) ... 80

Test Suite Scripting Language ... 82
Writing Tests for Plugins .. 83
Test Case Parameters Description ... 85

Test Report Configuration ... 85
Basic Test Parameters .. 86
Test Case Parameters ... 87

8. Experimental ... 90
Dynamic Rosters ... 90

Problem Description .. 90
Syntax and Semantics .. 90
Retrieving Contact Data ... 90
Updating/Saving Extra Information About the Contact ... 91
Configuration .. 92

Mobile Optimizations ... 92
Problem Description .. 92
Solution ... 92
Queuing Algorithms ... 93
Configuration .. 93

Bosh Session Cache ... 93
Problem Description .. 93
Bosh Session Cache Description .. 94
Cache Protocol .. 94

9. Old Stuff .. 96
10. Tigase DB Schema Explained .. 97
11. Why the most recent JDK? .. 99

Tigase Development Guide

v

12. Generating Tigase Installer ... 100
13. API Description for Virtual Domains Management in the Tigase Server 101
14. Stanza Limitations .. 103

Escape Characters .. 103

1

Chapter 1. Basic Information
Tigase Server Elements

To make it easier to get into the code below are defined basic terms in the Tigase server world and there is
a brief explanation how the server is designed and implemented. This document also points you to basic
interfaces and implementations which can be used as example code reference.

Logically all server code can be divided into 3 kinds of modules: components, plug-ins and connectors.

1. Components are the main element of Tigase server. Components are a bigger piece of code which can
have separate address, receive and send stanzas, and be configured to respond to numerous events. Sam-
ple components implemented for Tigase server are: c2s connection manager, s2s connection manager,
session manager, XEP-0114 - external component connection manager, MUC - multi user char rooms.

2. Plug-ins are usually small pieces of code responsible for processing specific XMPP stanzas. They
don’t have thier own address. As a result of stanza processing they can produce new XMPP stanzas.
Plug-ins are loaded by session manager component or the c2s connection manager component. Sample
plug-ins are: vCard stanza processing, jabber:iq:register to register new user accounts, presence stanza
processing, and jabber:iq:auth for non-sasl authentication.

3. Connectors are modules responsible for access to data repositories like databases or LDAP to store and
retrieve user data. There are 2 kinds of connectors: authentication connectors and user data connectors.
Both of them are independent and can connect to different data sources. Sample connectors are: JDBC
database connector, XMLDB - embedded database connector, Drupal database connector, and the
LibreSource database connector.

There is an API defined for each kind of above modules and all you have to do is enable the implementation
of that specific interface. Then the module can be loaded to the server based on it’s configuration settings.
There is also abstract classes available, implementing these interfaces to make development easier.

Here is a brief list of all interfaces to look at and for more details you have to refer to the guide for specific
kind of module.

Components
This is list of interfaces to look at when you work on a new component:

1. tigase.server.ServerComponent - This is the very basic interface for component. All components must
implement it.

2. tigase.server.MessageReceiver - This interface extends ServerComponent and is required to im-
plement by components which want to receive data packets like session manager and c2s connection
manager.

3. tigase.conf.Configurable - Implementing this interface is required to make it configurable. For each
object of this type, configuration is pushed to it at any time at runtime. This is necessary to make it
possible to change configuration at runtime. Be careful to implement this properly as it can cause issues
for modules that cannot be configured.

4. tigase.disco.XMPPService - Objects using this interface can respond to "ServiceDiscovery" requests.

5. tigase.stats.StatisticsContainer - Objects using this interface can return runtime statistics. Any object
can collect job statistics and implementing this interface guarantees that statistics will be presented in
consisted way to user who wants to see them.

Basic Information

2

Instead of implementing above interfaces directly I would recommend to extend one of existing abstract
classes which take care of the most of "dirty and boring" stuff. Here is a list the most useful abstract classes:

• tigase.server.AbstractMessageReceiver - Implements 4 basic interfaces:

ServerComponent, MessageReceiver, Configurable and StatisticsContainer. Ab-
stractMessageReceiver also manages internal data queues using it’s own threads which prevents dead-
locks from resource starvation. It offers even-driven data processing which means whenever packet arrives
the abstract void processPacket(Packet packet); method is called to process it. You
have to implement this abstract method in your component, if your component wants to send a packet (in
response to data it received for example).

boolean addOutPacket(Packet packet)

• tigase.server.ConnectionManager - This is an extension of AbstractMessageReceiver ab-
stract class. As the name says this class takes care of all network connection management stuff. If your
component needs to send and receive data directly from the network (like c2s connection, s2s connection
or external component) you should use this implementation as a basic class. It takes care of all things
related to networking, I/O, reconnecting, listening on socket, connecting and so on. If you extend this
class you have to expect data coming from to sources: from the MessageRouter and this is when the

abstract void processPacket(Packet packet);

method is called and from network connection and then the

abstract Queue processSocketData(XMPPIOService serv);

method is called.

Plug-ins
All Tigase plugins currently implemented are located in package: tigase.xmpp.impl. You can use this
code as a sample code base. There are 3 types of plug-ins and they are defined in interfaces located in
tigase.xmpp package:

1. XMPPProcessorIfc - The most important and basic plug-in. This is the most common plug-in type
which just processes stanzas in normal mode. It receives packets, processes them on behalf of the user
and returns resulting stanzas.

2. XMPPPreprocessorIfc - This plugin performs pre-processing of the packet, intended for the pre-pro-
cessors to setup for packet blocking.

3. XMPPPostprocessorIfc - This plugin performs processing of packets for which there was no specific
processor.

Connector

Data, Stanzas, Packets - Data Flow and Processing
Data received from the network are read from the network sockets as bytes by code in the tigase.io
package. Bytes then are changed into characters in classes of tigase.net package and as characters
they are sent to the XML parser (tigase.xml) which turns them to XML DOM structures.

All data inside the server is exchanged in XML DOM form as this is the format used by XMPP protocol.
For basic XML data processing (parsing characters stream, building DOM, manipulate XML elements

Basic Information

3

and attributes) we use Tigase XML parser and DOM builder [https://projects.tigase.org/projects/tigase-
xmltools].

Each stanza is stored in the tigase.xml.Element object. Every Element can contain any number of
child Elements and any number of attributes. You can access all these data through the class API.

To simplify some, most common operations Element is wrapped in tigase.server.Packet class
which offers another level of API for the most common operations like preparation of response stanza
based on the element it contains (swap to/from values, put type=result attribute and others).

https://projects.tigase.org/projects/tigase-xmltools
https://projects.tigase.org/projects/tigase-xmltools
https://projects.tigase.org/projects/tigase-xmltools

4

Chapter 2. Hack Tigase XMPP Server in
Eclipse

If you want to write code for Tigase server we recommend using Eclipse IDE [//https://eclipse.org/down-
loads/]. Either the IDE for Java or Java EE developers will work.

Requirements
Eclipse IDE currently requires the use of Java Runtime Environment 7 [http://www.oracle.com/technet-
work/java/javase/downloads/jre7-downloads-1880261.html]. Although this is an outdated version of Java
(and Tigase requires JDK version 8) Eclipse has not yet moved to the latest Java Build so you will need
both versions installed.

You will also need the M2E plugin for Maven integration, however this can be done inside Elcipse now,
so refer to the Plugin Installation section for that.

Installation
Eclipse does not come as an installer, but rather an archive. Extract the directory to a working location
wherever you would like. Now install the JRE 7 software, location is not important as Eclipse will find
it autmoatically.

Before we begin, we will need to clone the repository from git.

Linux

For linux operating systems, navigate to a directory where you want the repository to be cloned to and
type the following into terminal.

git clone https://repository.tigase.org/git/tigase-server.git

Windows

Please see the Windows coding guide for instructions on how to obtain source code from git. If you don’t
want to install git software specifically, you can use Eclipse’s git plugin to obtain the repository without
any new software. First click on File, then Import… Next select from Git folder and the Projects from Git

//https://eclipse.org/downloads/
//https://eclipse.org/downloads/
//https://eclipse.org/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/jre7-downloads-1880261.html
http://www.oracle.com/technetwork/java/javase/downloads/jre7-downloads-1880261.html
http://www.oracle.com/technetwork/java/javase/downloads/jre7-downloads-1880261.html

Hack Tigase XMPP Server in Eclipse

5

Click next, and now select clone URI

Hack Tigase XMPP Server in Eclipse

6

Now click next, and in this window enter the following into the URI field

git://repository.tigase.org/git/tigase-server.git

The rest of the fields will populate automatically

Hack Tigase XMPP Server in Eclipse

7

Select the master branch, and any branches you wish to edit. The master branch should be the only one
you need, branches are used for specific code changes

Hack Tigase XMPP Server in Eclipse

8

Now select the directory where you wanted to clone the repository to. This was function as the project
root directory you will use later on in the setup.

Hack Tigase XMPP Server in Eclipse

9

Once you click next Eclipse will download the repository and any branches you selected to that directory.
Note you will be unable to import this git directory since there are no git a project specific files downloaded.
However, once downloading is complete you may click cancel, and the git repository will remain in the
directory you have chosen.

Hack Tigase XMPP Server in Eclipse

10

Setup
Once you have the main window open and have established a workspace (where most of your working
files will be stored), click on Help and then Install New Software…

Under the Work With field enter the following and press enter: http://download.eclipse.org/technolo-
gy/m2e/releases/

Note: You may wish to click the Add… button and add the above location as a permanent software
location to keep the location in memory

http://download.eclipse.org/technology/m2e/releases/
http://download.eclipse.org/technology/m2e/releases/

Hack Tigase XMPP Server in Eclipse

11

Hack Tigase XMPP Server in Eclipse

12

You should see the M2 Eclipse software packages show in the main window. Click the check-box and
click Next. Once the installer is finished it will need to restart Eclipse.

Once that is done, lets connect Eclipse to the cloned repository.

Click File and Import… to bring up the import dialog window. Select Maven and then Existing Maven
Project.

Hack Tigase XMPP Server in Eclipse

13

Now click Next and point the root directory to where you cloned the git repository, Eclipse should auto-
matically see the pom.xml file and show up in the next window.

Hack Tigase XMPP Server in Eclipse

14

Hack Tigase XMPP Server in Eclipse

15

Once the import is finished, you are able to now begin working with Tigase’s code inside Eclipse! Happy
coding!

API changes in the Tigase Server 5.x
The API changes can effect you only if you develop own code to run inside Tigase server. The changes
are not extensive but in some circumstances may require many simple changes in a few files.

All the changes are related to introducing tigase.xmpp.JID and tigase.xmpp.BareJID classes. It is recom-
mended to use them for all operations performed on the user JID instead of the String class which was
used before changes.

There are a few advantages to using the new classes. First of all they do all the user JID checking and
parsing, they also perform stringprep processing. Therefore if you use data kept by instance of the JID or
BareJID you can be sure they are valid and correct.

These are not all advantages however. JID parsing code appears to use a lot of CPU power to conduct it’s
operations. JIDs and parts of the JIDs are used in many places of the stanza processing and the parsing
is performed over and over again in all these places, wasting CPU cycles, memory and time. Therefore,
great performance benefits can be gained from these new class are in if, once parsed, JIDs are reused in
all further stanza processing.

This is where the tigase.server.Packet class comes in handy. Instances of the Packet class encloses XML
stanza and pre-parses some, the most commonly used elements of the stanza, stanza source and destination
addresses among them. As an effect there are all new methods available in the class:

JID getStanzaFrom();
JID getStanzaTo();
JID getFrom();
JID getTo();
JID getPacketFrom();
JID getPacketTo();

Whereas following methods are still available but have been deprecated:

String getElemFrom();
String getElemTo();

Please refer to the JavaDoc documentation for the Packet [http://docs.tigase.org/tigase-server/snap-
shot/javadoc/tigase/server/Packet.html] class and methods to learn all the details of these methods and
difference between them.

Another difference is that you can no longer create the Packet instance using a constructor. Instead there
are a few factory methods available:

static Packet packetInstance(Element elem);
static Packet packetInstance(Element elem,
 JID stanzaFrom, JID stanzaTo);

Again, please refer to the JavaDoc documentation for all the details. The main point of using these methods
is that they actually return an instance of one of the following classes instead of the Packet class: Iq,
Presence or Message.

There is also a number of utility methods helping with creating a copy of the Packet instance preserving
as much pre-parsed data as possible:

http://docs.tigase.org/tigase-server/snapshot/javadoc/tigase/server/Packet.html
http://docs.tigase.org/tigase-server/snapshot/javadoc/tigase/server/Packet.html
http://docs.tigase.org/tigase-server/snapshot/javadoc/tigase/server/Packet.html

Hack Tigase XMPP Server in Eclipse

16

Packet copyElementOnly();
Packet errorResult(...);
Packet okResult(...);
Packet swapFromTo();
Packet swapStanzaFromTo();

We try to keep the JavaDoc [http://docs.tigase.org/tigase-server/snapshot/javadoc/] documentation as
complete as possible. Please contact us if you find missing or incorrect information.

The main point is to reuse JID or BareJID instances in your code as much as possible. You never know,
your code may run in highly loaded systems with throughput of 100k XMPP packets per second.

Another change. This one a bit risky as it is very difficult to find all places where this could be used. There
are several utility classes and methods which accept source and destination address of a stanza and produce
something. There was a great confusion with them, as in some of them the first was the source address and
in others the destination address. All the code has been re-factored to keep the parameter order the same in
all places. Right now the policy is: source address first. Therefore in all places where there was a method:

Packet method(String to, String from);

it has been changed to:

Packet method(JID from, JID to);

As far as I know most of these method were used only by myself so I do not expect much trouble for
other developers.

http://docs.tigase.org/tigase-server/snapshot/javadoc/
http://docs.tigase.org/tigase-server/snapshot/javadoc/

17

Chapter 3. Server Compilation
List of documents describing how to work with sources and how to compile them.

• Tigase XMPP Server 5.2.0 and Later - Compilation and Generating Distribution Packages

• Tigase Packages Dependency Change - Server Compilation Version 4.x or Later

• Server Compilation - Version 2.x and 3.x

Tigase XMPP Server 5.2.0 and later - Compila-
tion and Generating Distribution Packages

Starting with version 5.2.0 Tigase Server package distribution generation has switched from Ant to Maven.
This will allow better dependency management as well as build repeatability.

For details on Maven and it’s use, please see the Maven Guide.

Distribution Packages
Starting from version 5.2.0 there will be two separate distribution archives:

• -dist is a minimal version containing only tigase-server, tigase-xmltools and tigase-utils

• -dist-max is a version containing all additional tigase components (MUC, PubSub, HTTP API, OSGi
support, etc.) as well as dependencies required by those components.

They will be available as both zip and tarball.

Building Server and Generating Packages
After cloning tigase-server repository:

git clone https://repository.tigase.org/git/tigase-server.git
cd tigase-server

You compile server with maven using project distribution profile (dist):

mvn --Pdist --f modules/master/pom.xml clean install

This will:

• compile server binaries

• generate javadoc documentation

• grab all latest versions of all declared dependencies and put them in jars/ directory

• create both types of distribution packages (-dist and -dist-max) and place them in pack/ directory

In order to create installer packages you have to execute two shell scripts:

./scripts/installer-prepare.sh

Server Compilation

18

./scripts/installer-generate.sh

However, in order for them to succeed you have to build the server first using maven as described earli-
er. You should also have git, python2, docutils and LaTeX distributions installed (please see src/main/
izpack/README.txt for details).

Running Server
Afterwards you can run the server with the regular shell script:

./scripts/tigase.sh start etc/tigase.conf

Please bear in mind, that you need to provide correct setup in etc/init.properties configuration files for the
server to work correctly.

Tigase Packages Dependency Change - Server
Compilation Version 4.x or Later

The dependency for Tigase Utils Package [https://projects.tigase.org/projects/tigase-utils] has changed.
This is important for everybody who builds the Tigase server manually from sources using Ant [http://
ant.apache.org/] tool. The Maven [http://maven.apache.org/] handles all the dependencies automatically
and scripts have been updated.

Please keep reading for more details how to compile the server from sources in current repositories.

If you have an old Tigase MUC or Tigase Extras package lying in the server/libs/ directory please remove
it now. You have to update it too and copy it over to the server/jars/ directory after you completed steps
below.

For all those who build the server from sources manually using Ant [http://ant.apache.org/] here is a short
guide:

1. Checkout all the sources first:

• https://projects.tigase.org/projects/tigase-xmltools/repository

• https://projects.tigase.org/projects/tigase-utils/repository

• https://projects.tigase.org/projects/tigase-server/repository

2. Build the Tigase XMLTools and copy the jar file over to the utils and*server* libs/ directory

• cd xmltools

• ant clean jar-dist

• cp jars/tigase-xmltools.jar ../utils/libs

• cp jars/tigase-xmltools.jar ../server/libs

3. Build the Tigase Utils and copy the jar file to the server libs/ directory

• cd ../utils

• ant clean jar-dist

https://projects.tigase.org/projects/tigase-utils
https://projects.tigase.org/projects/tigase-utils
http://ant.apache.org/
http://ant.apache.org/
http://ant.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://ant.apache.org/
http://ant.apache.org/
https://projects.tigase.org/projects/tigase-xmltools/repository
https://projects.tigase.org/projects/tigase-utils/repository
https://projects.tigase.org/projects/tigase-server/repository

Server Compilation

19

• cp jars/tigase-utils.jar ../server/libs

4. Build the Tigase Server binary

• cd ../server

• ant clean jar-dist

This is a very short guide but I hope it helps. If you have any problems, please let me know.

Addendum: starting with version 5.2.0 all libraries and jar files for the server are in jars/ directory; however
with that version we strongly encourage to switch to maven build system as we are phasing out Ant - please
follow guide Tigase XMPP Server 5.2.0 and Later - Compilation and Generating Distribution Packages

20

Chapter 4. Component Development
A component in the Tigase is an entity with its own JID address. It can receive packets, process them,
and can also generate packets.

An example of the best known components is MUC or PubSub. In Tigase however, almost everything is
actually a component: Session Manager, s2s connections manager, Message Router, etc… Components
are loaded based on the server configuration, new components can be loaded and activated at run-time.
You can easily replace a component implementation and the only change to make is a class name in the
configuration entry.

Creating components for Tigase server is an essential part of the server development hence there is a lot
of useful API and ready to use code available. This guide should help you to get familiar with the API and
how to quickly and efficiently create your own component implementations.

1. Component implementation - Lesson 1 - Basics

2. Component implementation - Lesson 2 - Configuration

3. Component implementation - Lesson 3 - Multi-Threading

4. Component implementation - Lesson 4 - Service Discovery

5. Component implementation - Lesson 5 - Statistics

6. Component implementation - Lesson 6 - Scripting Support

7. Component implementation - Lesson 7 - Data Repository

8. Component implementation - Lesson 8 - Startup Time

9. Configuration API

10.Packet Filtering in Component

Component Implementation - Lesson 1 - Basics
Creating a Tigase component is actually very simple and with broad API available you can create a pow-
erful component with just a few lines of code. You can find detailed API description elsewhere. This series
presents hands on lessons with code examples, teaching how to get desired results in the simplest possible
code using existing Tigase API.

Even though all Tigase components are just implementations of the ServerComponent interface I will
keep such a low level information to necessary minimum. Creating a new component based on just inter-
faces, while very possible, is not very effective. This guide intends to teach you how to make use of what
is already there, ready to use with a minimal coding effort.

This is just the first lesson of the series where I cover basics of the component implementation.

Let’s get started and create the Tigase component:

import java.util.logging.Logger;

Component Development

21

import tigase.server.AbstractMessageReceiver;
import tigase.server.Packet;

public class TestComponent extends AbstractMessageReceiver {

 private static final Logger log = Logger.getLogger(TestComponent.class.getName());

 @Override
 public void processPacket(Packet packet) {
 log.finest("My packet: -" + packet.toString());
 -}

}

The only element mandatory when you extend AbstractMessageReceiver is the implementation of void
processPacket(Packet packet) method. This is actually logical as the main task for your component is
processing packets. Class name for our new component is TestComponent and we have also initialized
a separated logger for this class. Doing This is very useful as it allows us to easily find log entries created
by our class.

With these a few lines of code you have a fully functional Tigase component which can be loaded to
the Tigase server; it can receive and process packets, shows as an element on service discovery list (for
administrators only), responds to administrator ad-hoc commands, supports scripting, generates statistics,
can be deployed as an external component, and a few other things.

Before we go any further with the implementation let’s configure the component in Tigase server so it is
loaded next time the server starts. Assuming our init.properties file looks like this one:

config-type = ---gen-config-def
--debug = server
--user-db = derby
--admins = admin@devel.tigase.org
--user-db-uri = jdbc:derby:/Tigase/tigasedb
--virt-hosts = devel.tigase.org
--comp-name-1 = muc
--comp-class-1 = tigase.muc.MUCComponent
--comp-name-2 = pubsub
--comp-class-2 = tigase.pubsub.PubSubComponent

We can see that it already is configured to load two other components: MUC and PubSub. Let’s add a
third - our new component to the configuration file by appending two following lines in the properties file:

--comp-name-3 = test
--comp-class-3 = TestComponent

Now we have to remove the etc/tigase.xml file and restart the server.

There are a few ways to check whether our component has been loaded to the server. Probably the easiest
is to connect to the server from an administrator account and look at the service discovery list.

Component Development

22

If everything goes well you should see an entry on the list similar to the highlighted one on the screenshot.
The component description is "Undefined description" which is a default description and we can change it
later on, the component default JID is: test@devel.tigase.org, where devel.tigase.org is the server domain
and test is the component name.

Another way to find out if the component has been loaded is by looking at the log files. Getting yourself
familiar with Tigase log files will be very useful thing if you plan on developing Tigase components. So
let’s look at the log file logs/tigase.log.0, if the component has been loaded you should find following
lines in the log:

MessageRouter.setProperties() FINER: Loading and registering message receiver: test
MessageRouter.addRouter() INFO: Adding receiver: TestComponent
MessageRouter.addComponent() INFO: Adding component: TestComponent
MessageRouter.addComponent() FINER: Adding: test component to basic-conf registrator.
Configurator.componentAdded() CONFIG: component: test

If your component did not load you should first check configuration files. Maybe you forgot to remove the
tigase.xml file before restarting the server or alternatively the Tigase could not find your class at startup
time. Make sure your class is in CLASSPATH or copy a JAR file with your class to Tigase libs/ directory.

Assuming everything went well and your component is loaded by the sever and it shows on the service
discovery list as on the screenshot above you can double click on it to get a window with a list of ad-
hoc commands - administrator scripts. A window on the screenshot shows only two basic commands for
adding and removing script which is a good start.

Component Development

23

Moreover, you can browse the server statistics in the service discovery window to find your new test
component on the list. If you click on the component it shows you a window with component statistics,
very basic packets counters.

As we can see with just a few lines of code our new component is quite mighty and can do a lot of things
without much effort from the developer side.

Now, the time has come to the most important question. Can our new component do something useful,
that is can it receive and process XMPP packets?

Let’s try it out. Using you favorite client send a message to JID: test@devel.tigase.org (assuming your
server is configured for devel.tigase.org domain). You can either use kind of XML console in your client
or just send a plain message to the component JID. According to our code in processPacket(…) method
it should log our message. For this test I have sent a message with subject: "test message" and body: "this
is a test". The log file should contain following entry:

TestComponent.processPacket() FINEST: My packet: to=null, from=null,
data=<message from="admin@devel.tigase.org/devel"
 to="test@devel.tigase.org" id="abcaa" xmlns="jabber:client">
 <subject>test message</subject>
 <body>this is a test</body>
</message>, XMLNS=jabber:client, priority=NORMAL

If this is a case we can be sure that everything works as expected and all we now have to do is to fill the
processPacket(…) method with some useful code.

Component Implementation - Lesson 2 - Con-
figuration

It might be hard to tell what the first important thing you should do with your new component implemen-
tation. Different developers may have a different view on this. It seems to me however that it is always a
good idea to give to your component a way to configure it and provide some runtime settings.

This guide describes how to add configuration handling to your component. There is detailed Configuration
API description available so again I am not getting deep into all details just the necessary code.

Component Development

24

To demonstrate how to implement component configuration let’s say we want to configure which types of
packets will be logged by the component. There are three possible packet types: message, presence and
iq and we want to be able to configure logging of any combination of the three. Furthermore we also want
to be able to configure the text which is prepended to the logged message and to optionally switch secure
login. (Secure logging replaces all packet CData with text: CData size: NN to protect user privacy.)

Let’s create the following private variables in our component:

private String[] packetTypes = {"message", -"presence", -"iq"};
private String prependText = -"My packet: -";
private boolean secureLogging = false;

As the component configuration is maintained in a form of a (key, value) map, we have to invent keys for
each of our configuration entry:

private static final String PACKET_TYPES_KEY = -"packet-types";
private static final String PREPEND_TEXT_KEY = -"log-prepend";
private static final String SECURE_LOGGING_KEY = -"secure-logging";

There are two methods used to maintain the component configuration: getDefaults(…) where the
component provides some configuration defaults and setProperties(…) which sets a working con-
figuration for the component:

@Override
public Map<String, Object> getDefaults(Map<String, Object> params) {
 Map<String, Object> defs = super.getDefaults(params);
 defs.put(PACKET_TYPES_KEY, packetTypes);
 defs.put(PREPEND_TEXT_KEY, prependText);
 defs.put(SECURE_LOGGING_KEY, secureLogging);
 return defs;
}

@Override
public void setProperties(Map<String, Object> props) {
 super.setProperties(props);
 if (props.get(PACKET_TYPES_KEY -) -!= null -) {
 packetTypes = (String[]) props.get(PACKET_TYPES_KEY -);
 -}
 if (props.get(PREPEND_TEXT_KEY -) -!= null -) {
 prependText = (String) props.get(PREPEND_TEXT_KEY -);
 -}
 if (props.get(SECURE_LOGGING_KEY -) -!= null -) {
 secureLogging = (Boolean) props.get(SECURE_LOGGING_KEY -);
 -}
}

You do not have to implement the getDefaults(…) method and provide default settings for your
configuration, but doing so gives you a few benefits.

The first from a developer point of view, you don’t have to check in the setProperties(…) whether
the value is of a correct type or convert it from String to the correct type as it always be either the default or
user provided. It will be of a correct type as the configuration framework takes care of the types comparing
between the user provided settings and default values. So this just makes your setProperties(…)
code much simpler and clearer.

Component Development

25

Please note that currently Tigase allows changing properties automatically. Hence you should check each
time if a given property was updated at the given call of setProperties().

Secondly this also makes the administrator’s life easier. As you can see on the screenshot, configuration
parameters provided with default values can be changed via configuration ad-hoc commands. So the ad-
ministrator can maintain your component durinmg run-time from his XMPP client.

Regardless, if you implemented the getDefaults(…) method or not you can always manually add
parameters to the init.properties file.

The syntax in init.properties file is very simple and is described in details in the Admin Guide. As
it shows on the screenshot the configuration parameter name consists of: component name, property key.
To set the configuration for your component in init.properties file you have to append following
lines to the file:

test/log-prepend="My packet: -"
test/packet-types[s]=message,presence,iq
test/secure-logging[B]=true

The square brackets denote the property type, have a look at the Admin Guide documentation for more
details.

And this is the complete code of the new component with a modified processPacket(…) method
taking advantage of configuration settings:

import java.util.Map;
import java.util.logging.Logger;
import tigase.server.AbstractMessageReceiver;
import tigase.server.Packet;

Component Development

26

public class TestComponent extends AbstractMessageReceiver {

 private static final Logger log =
 Logger.getLogger(TestComponent.class.getName());

 private static final String PACKET_TYPES_KEY = -"packet-types";
 private static final String PREPEND_TEXT_KEY = -"log-prepend";
 private static final String SECURE_LOGGING_KEY = -"secure-logging";

 private String[] packetTypes = {"message", -"presence", -"iq"};
 private String prependText = -"My packet: -";
 private boolean secureLogging = false;

 @Override
 public void processPacket(Packet packet) {
 for (String pType -: packetTypes) {
 if (pType == packet.getElemName()) {
 log.finest(prependText + packet.toString(secureLogging));
 -}
 -}
 -}

 @Override
 public Map<String, Object> getDefaults(Map<String, Object> params) {
 Map<String, Object> defs = super.getDefaults(params);
 defs.put(PACKET_TYPES_KEY, packetTypes);
 defs.put(PREPEND_TEXT_KEY, prependText);
 defs.put(SECURE_LOGGING_KEY, secureLogging);
 return defs;
 -}

 @Override
 public void setProperties(Map<String, Object> props) {
 super.setProperties(props);
 if (props.get(PACKET_TYPES_KEY -) -!= null -) {
 packetTypes = (String[]) props.get(PACKET_TYPES_KEY -);
 -}
 -// Make sure we can compare element names by reference
 -// instead of String content
 for (int i = 0; i < packetTypes.length; i++) {
 packetTypes[i] = packetTypes[i].intern();
 -}
 if (props.get(PREPEND_TEXT_KEY -) -!= null -) {
 prependText = (String) props.get(PREPEND_TEXT_KEY -);
 -}
 if (props.get(SECURE_LOGGING_KEY -) -!= null -) {
 secureLogging = (Boolean) props.get(SECURE_LOGGING_KEY -);
 -}
 -}

}

Of course we can do much more useful packet processing in the processPacket(…) method. This
is just an example code. Please note: comparing packet element name with our packet type by reference

Component Development

27

is intentional and allowed in this context. All Element names are processed with String.intern()
function to preserve memory and improve performance of string comparison.

Component Implementation - Lesson 3 - Mul-
ti-Threading

Multi core and multi CPU machines very common nowadays, especially for an application like the XMPP
server you most likely deployed your service on. Your new custom component however, processes all
packets in a single thread.

This is especially important if the packet processing is CPU expensive like, for example, SPAM checking.
In such a case you could experience single Core/CPU usage at 100% while other Cores/CPUs are idling.
Ideally, you want your component to use all available CPUs.

Tigase API offers a very simple way to execute component’s processPacket(Packet pack-
et) method in multiple threads. Methods int processingOutThreads() and int pro-
cessingInThreads() returns number of threads assigned to the component. By default it returns just
1 as not all component implementations are prepared to process packets concurrently. By overwriting the
method you can return any value you think is appropriate for the implementation. Please note, there are two
methods, one is for a number of threads for incoming packets to the component and another for outgoing
packets from the component. It used to be a single method but different components have different needs
and the best performance can be achieved when the outgoing queues have a separate threads pool from
incoming queues. Also some components only receive packets while other only send, therefore assigning
an equal number of threads for both that could be a waste of resources.

If the packet processing is CPU bound only, you normally want to have as many threads as there are CPUs
available:

@Override
public int processingInThreads() {
 return Runtime.getRuntime().availableProcessors();
}
@Override
public int processingOutThreads() {
 return Runtime.getRuntime().availableProcessors();
}

If the processing is I/O bound (network or database) you probably want to have more threads to process
requests. It is hard to guess the ideal number of threads right on the first try. Instead you should run a few
tests to see how many threads is best for implementation of the component.

Now you have many threads for processing your packets, but there is one slight problem with this. In many
cases packet order is essential. If our processPacket(…) method is executed concurrently by a few
threads it is quite possible that a message sent to user can takeover the message sent earlier. Especially
if the first message was large and the second was small. We can prevent this by adjusting the method
responsible for packet distribution among threads.

The algorithm for packets distribution among threads is very simple:

int thread_idx = hashCodeForPacket(packet) % threads_total;

So the key here is using the hashCodeForPacket(…) method. By overwriting it we can make sure
that all packets addressed to the same user will always be processed by the same thread:

Component Development

28

@Override
public int hashCodeForPacket(Packet packet) {
 if (packet.getElemTo() -!= null) {
 return packet.getElemTo().hashCode();
 -}
 -// This should not happen, every packet must have a destination
 -// address, but maybe our SPAM checker is used for checking
 -// strange kind of packets too....
 if (packet.getElemFrom() -!= null) {
 return packet.getElemFrom().hashCode();
 -}
 -// If this really happens on your system you should look
 -// carefully at packets arriving to your component and
 -// find a better way to calculate hashCode
 return 1;
}

The above two methods give control over the number of threads assigned to the packets processing in
your component and to the packet distribution among threads. This is not all Tigase API has to offer in
terms of multi-threading.

Sometimes you want to perform some periodic actions. You can of course create Timer instance and load
it with TimerTasks. As there might be a need for this, every level of the Class hierarchy could end-up with
multiple Timer (threads in fact) objects doing similar job and using resources. There are a few methods
which allow you to reuse common Timer object to perform all sorts of actions.

First, you have three methods allowing your to perform some periodic actions:

public synchronized void everySecond();
public synchronized void everyMinute();
public synchronized void everyHour();

An example implementation for periodic notifications sent to some address could look like this one:

@Override
public synchronized void everyMinute() {
 super.everyMinute();
 if ((++delayCounter) >= notificationFrequency) {
 addOutPacket(Packet.getMessage(abuseAddress, getComponentId(),
 StanzaType.chat, -"Detected spam messages: -" + spamCounter,
 -"Spam counter", null, newPacketId("spam-")));
 delayCounter = 0;
 spamCounter = 0;
 -}
}

This method sends every notificationFrequency minute a message to abuseAddress reporting
how many spam messages have been detected during last period. Please note, you have to call
super.everyMinute() to make sure other actions are executed as well and you have to also remem-
ber to keep processing in this method to minimum, especially if you overwrite everySecond() method.

There are also two methods which allow you to schedule tasks executed at certain time, they are very
similar to the java.util.Timer API with the only difference is that Timer is reused among all levels of
Class hierarchy. There is a separate Timer for each Class instance though, to avoid interferences between
separate components:

Component Development

29

addTimerTask(TimerTask task, long delay, TimeUnit unit);
addTimerTask(TimerTask task, long delay);

There is one more method which can be used which is not directly related to multi-threading, but might be
very helpful for executing some actions at a very specific point of time. This is the point of time when the
server has just been initialized, that is all components have been created and received their configuration
for the first time. When this happens Tigase calls void initializationCompleted() method for
each server component. You can overwrite this method to execute some actions at the time when you are
sure the Tigase has started and is fully functional.

Here is a code of an example component which uses all the API discussed in this article:

import java.util.Arrays;
import java.util.Map;
import java.util.logging.Logger;
import tigase.server.AbstractMessageReceiver;
import tigase.server.Packet;
import tigase.util.JIDUtils;
import tigase.xmpp.StanzaType;

public class TestComponent extends AbstractMessageReceiver {

 private static final Logger log =
 Logger.getLogger(TestComponent.class.getName());

 private static final String BAD_WORDS_KEY = -"bad-words";
 private static final String WHITELIST_KEY = -"white-list";
 private static final String PREPEND_TEXT_KEY = -"log-prepend";
 private static final String SECURE_LOGGING_KEY = -"secure-logging";
 private static final String ABUSE_ADDRESS_KEY = -"abuse-address";
 private static final String NOTIFICATION_FREQ_KEY = -"notification-freq";

 private String[] badWords = {"word1", -"word2", -"word3"};
 private String[] whiteList = {"admin@localhost"};
 private String prependText = -"Spam detected: -";
 private String abuseAddress = -"abuse@locahost";
 private int notificationFrequency = 10;
 private int delayCounter = 0;
 private boolean secureLogging = false;
 private long spamCounter = 0;

 @Override
 public void processPacket(Packet packet) {
 -// Is this packet a message?
 if ("message" == packet.getElemName()) {
 String from = JIDUtils.getNodeID(packet.getElemFrom());
 -// Is sender on the whitelist?
 if (Arrays.binarySearch(whiteList, from) < 0) {
 -// The sender is not on whitelist so let's check the content
 String body = packet.getElemCData("/message/body");
 if (body -!= null && -!body.isEmpty()) {
 body = body.toLowerCase();
 for (String word -: badWords) {
 if (body.contains(word)) {
 log.finest(prependText + packet.toString(secureLogging));

Component Development

30

 ++spamCounter;
 return;
 -}
 -}
 -}
 -}
 -}
 -// Not a SPAM, return it for further processing
 Packet result = packet.swapFromTo();
 addOutPacket(result);
 -}

 @Override
 public int processingInThreads() {
 return Runtime.getRuntime().availableProcessors();
 -}

 @Override
 public int processingOutThreads() {
 return Runtime.getRuntime().availableProcessors();
 -}

 @Override
 public int hashCodeForPacket(Packet packet) {
 if (packet.getElemTo() -!= null) {
 return packet.getElemTo().hashCode();
 -}
 -// This should not happen, every packet must have a destination
 -// address, but maybe our SPAM checker is used for checking
 -// strange kind of packets too....
 if (packet.getElemFrom() -!= null) {
 return packet.getElemFrom().hashCode();
 -}
 -// If this really happens on your system you should look carefully
 -// at packets arriving to your component and decide a better way
 -// to calculate hashCode
 return 1;
 -}

 @Override
 public Map<String, Object> getDefaults(Map<String, Object> params) {
 Map<String, Object> defs = super.getDefaults(params);
 defs.put(BAD_WORDS_KEY, badWords);
 defs.put(WHITELIST_KEY, whiteList);
 defs.put(PREPEND_TEXT_KEY, prependText);
 defs.put(SECURE_LOGGING_KEY, secureLogging);
 defs.put(ABUSE_ADDRESS_KEY, abuseAddress);
 defs.put(NOTIFICATION_FREQ_KEY, notificationFrequency);
 return defs;
 -}

 @Override
 public void setProperties(Map<String, Object> props) {
 super.setProperties(props);

Component Development

31

 badWords = (String[])props.get(BAD_WORDS_KEY);
 whiteList = (String[])props.get(WHITELIST_KEY);
 Arrays.sort(whiteList);
 prependText = (String)props.get(PREPEND_TEXT_KEY);
 secureLogging = (Boolean)props.get(SECURE_LOGGING_KEY);
 abuseAddress = (String)props.get(ABUSE_ADDRESS_KEY);
 notificationFrequency = (Integer)props.get(NOTIFICATION_FREQ_KEY);
 -}

 @Override
 public synchronized void everyMinute() {
 super.everyMinute();
 if ((++delayCounter) >= notificationFrequency) {
 addOutPacket(Packet.getMessage(abuseAddress, getComponentId(),
 StanzaType.chat, -"Detected spam messages: -" + spamCounter,
 -"Spam counter", null, newPacketId("spam-")));
 delayCounter = 0;
 spamCounter = 0;
 -}
 -}

}

Component Implementation - Lesson 4 - Ser-
vice Discovery

You component still shows in the service discovery list as an element with "Undefined description". It
also doesn’t provide any interesting features or sub-nodes.

In this article I will show how to, in a simple way, change the basic component information presented
on the service discovery list and how to add some service disco features. As a bit more advanced feature
the guide will teach you about adding/removing service discovery nodes at run-time and about updating
existing elements.

Component description and category type can be changed by overriding two following methods:

@Override
public String getDiscoDescription() {
 return -"Spam filtering";
}

@Override
public String getDiscoCategoryType() {
 return -"spam";
}

Please note, there is no such 'spam' category type defined in the Service Discovery Identities registry
[http://xmpp.org/registrar/disco-categories.html]. It has been used here as a demonstration only. Please
refer to the Service Discovery Identities registry document for a list of categories and types and pick the
one most suitable for you.

After you have added the two above methods and restarted the server with updated code, have a look at
the service discovery window. You should see something like on the screenshot.

http://xmpp.org/registrar/disco-categories.html
http://xmpp.org/registrar/disco-categories.html

Component Development

32

Although this was easy, this particular change doesn’t affect anything apart from just a visual appearance.
Let’s get then to more advanced and more useful changes.

One of the limitations of methods above is that you can not update or change component information at
run-time with these methods. They are called only once during setProperties(…) method call and
the component service discovery information is created and prepared for later use. Sometimes, however
it is useful to be able to change the service discovery during run-time.

In our simple spam filtering component let’s show how many messages have been checked out as part of
the service discovery description string. Every time we receive a message we can to call:

updateServiceDiscoveryItem(getName(), null,
 getDiscoDescription() + -": [" +
 (++messagesCounter) + -"]", true);

A small performance note, in some cases calling updateServiceDiscoveryItem(…) might be an
expensive operation so probably a better idea would be to call the method not every time we receive a
message but maybe every 100 times or so.

The first parameter is the component JID presented on the service discovery list. However, Tigase server
may work for many virtual hosts so the hostname part is added by the lower level functions and we only
provide the component name here. The second parameter is the service discovery node which is usually
null for top level disco elements. Third is the item description (which is actually called name in the disco
specification). The last parameter specifies if the element is visible to administrators only.

Component Development

33

The complete method code is presented below and the screenshot above shows how the element of the
service discovery for our component can change if we apply our code and send a few messages to the
component.

Using the method we can also add submodes to our component element. The XMPP service discovery
really is not for showing application counters, but this case it is good enough to demonstrate the API
available in Tigase so we continue with presenting our counters via service discovery. This time, instead
of using null as a node we put some meaningful texts as in example below:

// This is called whenever a message arrives
// to the component
updateServiceDiscoveryItem(getName(), -"messages",
 -"Messages processed: [" + (++messagesCounter) + -"]", true);
// This is called every time the component detects
// spam message
updateServiceDiscoveryItem(getName(), -"spam", -"Spam caught: [" +
 (++totalSpamCounter) + -"]", true);

Again, have a look at the full method body below for a complete code example. Now if we send a few
messages to the component and some of them are spam (contain words recognized as spam) we can browse
the service discovery of the server. Your service discovery should show a list similar to the one presented
on the screenshot on the left.

Of course depending on the implementation, initially there might be no sub-nodes under our component
element if we call the updateServiceDiscoveryItem(…) method only when a message is pro-
cessed. To make sure that sub-nodes of our component show from the very beginning you can call them
in setProperties(…) for the first time to populate the service discovery with initial sub-nodes.

Please note, the updateServiceDiscoveryItem(…) method is used for adding a new item and
updating existing one. There is a separate method though to remove the item:

void removeServiceDiscoveryItem(String jid,

Component Development

34

 String node, String description)

Actually only two first parameters are important: the jid and the node which must correspond to the
existing, previously created service discovery item.

There are two additional variants of the update method which give you more control over the service
discovery item created. Items can be of different categories and types and can also present a set of features.

The simpler is a variant which sets a set of features for the updated service discovery item. There is a
document [http://xmpp.org/registrar/disco-features.html] describing existing, registered features. We are
creating an example which is going to be a spam filter and there is no predefined feature for spam filtering
but for purpose of this guide we can invent two feature identification strings and set it for our component.
Let’s call update method with following parameters:

updateServiceDiscoveryItem(getName(), null, getDiscoDescription(),
 true, -"tigase:x:spam-filter", -"tigase:x:spam-reporting");

The best place to call this method is the setProperties(…) method so our component gets a proper
service discovery settings at startup time. We have set two features for the component disco: tigase:x:spam-
filter and tigase:x:spam-reporting. This method accepts a variable set of arguments so we can pass to it as
many features as we need or following Java spec we can just pass an array of Strings.

Update your code with call presented above, and restart the server. Have a look at the service discovery
for the component now.

The last functionality might be not very useful for our case of the spam filtering component, but it is for
many other cases like MUC or PubSub for which it is setting proper category and type for the service
discovery item. There is a document listing all currently registered service discovery identities (categories
and types). Again there is entry for spam filtering. Let’s use the automation category and spam-filter type
and set it for our component:

updateServiceDiscoveryItem(getName(), null, getDiscoDescription(),
 -"automation", -"spam-filtering", true,
 -"tigase:x:spam-filter", -"tigase:x:spam-reporting");

Of course all these setting can be applied to any service discovery create or update, including sub-nodes.
And here is a complete code of the component:

import java.util.Arrays;
import java.util.Map;
import java.util.logging.Logger;
import tigase.server.AbstractMessageReceiver;
import tigase.server.Packet;
import tigase.util.JIDUtils;
import tigase.xmpp.StanzaType;

public class TestComponent extends AbstractMessageReceiver {

 private static final Logger log =
 Logger.getLogger(TestComponent.class.getName());

 private static final String BAD_WORDS_KEY = -"bad-words";
 private static final String WHITELIST_KEY = -"white-list";
 private static final String PREPEND_TEXT_KEY = -"log-prepend";
 private static final String SECURE_LOGGING_KEY = -"secure-logging";
 private static final String ABUSE_ADDRESS_KEY = -"abuse-address";

http://xmpp.org/registrar/disco-features.html
http://xmpp.org/registrar/disco-features.html

Component Development

35

 private static final String NOTIFICATION_FREQ_KEY = -"notification-freq";

 private String[] badWords = {"word1", -"word2", -"word3"};
 private String[] whiteList = {"admin@localhost"};
 private String prependText = -"Spam detected: -";
 private String abuseAddress = -"abuse@locahost";
 private int notificationFrequency = 10;
 private int delayCounter = 0;
 private boolean secureLogging = false;
 private long spamCounter = 0;
 private long totalSpamCounter = 0;
 private long messagesCounter = 0;

 @Override
 public void processPacket(Packet packet) {
 -// Is this packet a message?
 if ("message" == packet.getElemName()) {
 updateServiceDiscoveryItem(getName(), -"messages",
 -"Messages processed: [" + (++messagesCounter) + -"]", true);
 String from = JIDUtils.getNodeID(packet.getElemFrom());
 -// Is sender on the whitelist?
 if (Arrays.binarySearch(whiteList, from) < 0) {
 -// The sender is not on whitelist so let's check the content
 String body = packet.getElemCData("/message/body");
 if (body -!= null && -!body.isEmpty()) {
 body = body.toLowerCase();
 for (String word -: badWords) {
 if (body.contains(word)) {
 log.finest(prependText + packet.toString(secureLogging));
 ++spamCounter;
 updateServiceDiscoveryItem(getName(), -"spam", -"Spam caught: [" +
 (++totalSpamCounter) + -"]", true);
 return;
 -}
 -}
 -}
 -}
 -}
 -// Not a SPAM, return it for further processing
 Packet result = packet.swapElemFromTo();
 addOutPacket(result);
 -}

 @Override
 public int processingThreads() {
 return Runtime.getRuntime().availableProcessors();
 -}

 @Override
 public int hashCodeForPacket(Packet packet) {
 if (packet.getElemTo() -!= null) {
 return packet.getElemTo().hashCode();
 -}
 -// This should not happen, every packet must have a destination

Component Development

36

 -// address, but maybe our SPAM checker is used for checking
 -// strange kind of packets too....
 if (packet.getElemFrom() -!= null) {
 return packet.getElemFrom().hashCode();
 -}
 -// If this really happens on your system you should look carefully
 -// at packets arriving to your component and decide a better way
 -// to calculate hashCode
 return 1;
 -}

 @Override
 public Map<String, Object> getDefaults(Map<String, Object> params) {
 Map<String, Object> defs = super.getDefaults(params);
 defs.put(BAD_WORDS_KEY, badWords);
 defs.put(WHITELIST_KEY, whiteList);
 defs.put(PREPEND_TEXT_KEY, prependText);
 defs.put(SECURE_LOGGING_KEY, secureLogging);
 defs.put(ABUSE_ADDRESS_KEY, abuseAddress);
 defs.put(NOTIFICATION_FREQ_KEY, notificationFrequency);
 return defs;
 -}

 @Override
 public void setProperties(Map<String, Object> props) {
 super.setProperties(props);
 badWords = (String[])props.get(BAD_WORDS_KEY);
 whiteList = (String[])props.get(WHITELIST_KEY);
 Arrays.sort(whiteList);
 prependText = (String)props.get(PREPEND_TEXT_KEY);
 secureLogging = (Boolean)props.get(SECURE_LOGGING_KEY);
 abuseAddress = (String)props.get(ABUSE_ADDRESS_KEY);
 notificationFrequency = (Integer)props.get(NOTIFICATION_FREQ_KEY);
 updateServiceDiscoveryItem(getName(), null, getDiscoDescription(),
 -"automation", -"spam-filtering", true,
 -"tigase:x:spam-filter", -"tigase:x:spam-reporting");
 -}

 @Override
 public synchronized void everyMinute() {
 super.everyMinute();
 if ((++delayCounter) >= notificationFrequency) {
 addOutPacket(Packet.getMessage(abuseAddress, getComponentId(),
 StanzaType.chat, -"Detected spam messages: -" + spamCounter,
 -"Spam counter", null, newPacketId("spam-")));
 delayCounter = 0;
 spamCounter = 0;
 -}
 -}

 @Override
 public String getDiscoDescription() {
 return -"Spam filtering";
 -}

Component Development

37

 @Override
 public String getDiscoCategoryType() {
 return -"spam";
 -}

}

Component Implementation - Lesson 5 - Statis-
tics

In most cases you’ll want to gather some run-time statistics from your component to see how it works,
detect possible performance issues or congestion problems. All server statistics are exposed and are ac-
cessible via XMPP with ad-hoc commands, HTTP, JMX and some selected statistics are also available
via SNMP. As a component developer you don’t have to do anything to expose your statistic via any of
those protocols, you just have to provide your statistics and the admin will be able to access them any
way he wants.

This lesson will teach you how to add your own statistics and how to make sure that the statistics generation
doesn’t affect application performance.

Your component from the very beginning generates some statistics by classes it inherits. Let’s add a few
statistics to our spam filtering component:

@Override
public void getStatistics(StatisticsList list) {
 super.getStatistics(list);
 list.add(getName(), -"Spam messages found", totalSpamCounter, Level.INFO);
 list.add(getName(), -"All messages processed", messagesCounter, Level.FINER);
 if (list.checkLevel(Level.FINEST)) {
 -// Some very expensive statistics generation code...
 -}
}

Component Development

38

I think the code should be pretty much self-explanatory.

You have to call super.getStatistics(…) to update stats of the parent class. StatisticsList
is a collection which keeps all the statistics in a way which is easy to update, search, and retrieve them.
You actually don’t need to know all the implementation details but if you are interested please refer to the
source code and JavaDoc documentation.

The first parameter of the add(…) method is the component name. All the statistics are grouped by the
component names to make it easier to look at particular component data. Next is a description of the
element. The third parameter is the element value which can be any number or string.

The last parameter is probably the most interesting. The idea has been borrowed from the logging frame-
work. Each statistic item has importance level. Levels are exactly the same as for logging methods with
SEVERE the most critical and FINEST the least important. This parameter has been added to improve
performance and statistics retrieval. When the StatisticsList object is created it gets assigned a level re-
quested by the user. If the add(…) method is called with lower priority level then the element is not even
added to the list. This saves network bandwidth, improves statistics retrieving speed and is also more clear
to present to the end-user.

One thing which may be a bit confusing at first is that, if there is a numerical element added to statistics with
0 value then the Level is always forced to FINEST. The assumption is that the administrator is normally
not interested zero-value statistics, therefore unless he intentionally request the lowest level statistics he
won’t see elements with zeros.

The if statement requires some explanation too. Normally adding a new statistics element is not a very ex-
pensive operation so passing it with add(…) method at an appropriate level is enough. Sometimes, how-
ever preparing statistics data may be quite expensive, like reading/counting some records from database.
Statistics can be collected quite frequently therefore it doesn’t make sense to collect the statistics at all if
there not going to be used as the current level is higher then the item we pass anyway. In such a case it
is recommended to test whether the element level will be accepted by the collection and if not skip the
whole processing altogether.

As you can see, the API for generating and presenting component statistics is very simple and straightfor-
ward. Just one method to overwrite and a simple way to pass your own counters. Below is the whole code
of the example component:

import java.util.Arrays;
import java.util.Map;
import java.util.logging.Level;
import java.util.logging.Logger;
import tigase.server.AbstractMessageReceiver;
import tigase.server.Packet;
import tigase.stats.StatisticsList;
import tigase.util.JIDUtils;
import tigase.xmpp.StanzaType;

public class TestComponent extends AbstractMessageReceiver {

 private static final Logger log =
 Logger.getLogger(TestComponent.class.getName());

 private static final String BAD_WORDS_KEY = -"bad-words";
 private static final String WHITELIST_KEY = -"white-list";
 private static final String PREPEND_TEXT_KEY = -"log-prepend";
 private static final String SECURE_LOGGING_KEY = -"secure-logging";

Component Development

39

 private static final String ABUSE_ADDRESS_KEY = -"abuse-address";
 private static final String NOTIFICATION_FREQ_KEY = -"notification-freq";

 private String[] badWords = {"word1", -"word2", -"word3"};
 private String[] whiteList = {"admin@localhost"};
 private String prependText = -"Spam detected: -";
 private String abuseAddress = -"abuse@locahost";
 private int notificationFrequency = 10;
 private int delayCounter = 0;
 private boolean secureLogging = false;
 private long spamCounter = 0;
 private long totalSpamCounter = 0;
 private long messagesCounter = 0;

 @Override
 public void processPacket(Packet packet) {
 -// Is this packet a message?
 if ("message" == packet.getElemName()) {
 updateServiceDiscoveryItem(getName(), -"messages",
 -"Messages processed: [" + (++messagesCounter) + -"]", true);
 String from = JIDUtils.getNodeID(packet.getElemFrom());
 -// Is sender on the whitelist?
 if (Arrays.binarySearch(whiteList, from) < 0) {
 -// The sender is not on whitelist so let's check the content
 Stringbody = packet.getElemCData("/message/body");
 if (body -!= null && -!body.isEmpty()) {
 body = body.toLowerCase();
 for (String word -: badWords) {
 if (body.contains(word)) {
 log.finest(prependText + packet.toString(secureLogging));
 ++spamCounter;
 updateServiceDiscoveryItem(getName(), -"spam", -"Spam caught: [" +
 (++totalSpamCounter) + -"]", true);
 return;
 -}
 -}
 -}
 -}
 -}
 -// Not a SPAM, return it for further processing
 Packet result = packet.swapElemFromTo();
 addOutPacket(result);
 -}

 @Override
 public int processingThreads() {
 return Runtime.getRuntime().availableProcessors();
 -}

 @Override
 public int hashCodeForPacket(Packet packet) {
 if (packet.getElemTo() -!= null) {
 return packet.getElemTo().hashCode();
 -}

Component Development

40

 -// This should not happen, every packet must have a destination
 -// address, but maybe our SPAM checker is used for checking
 -// strange kind of packets too....
 if (packet.getElemFrom() -!= null) {
 return packet.getElemFrom().hashCode();
 -}
 -// If this really happens on your system you should look carefully
 -// at packets arriving to your component and decide a better way
 -// to calculate hashCode
 return 1;
 -}

 @Override
 public Map<String, Object> getDefaults(Map<String, Object> params) {
 Map<String, Object> defs = super.getDefaults(params);
 defs.put(BAD_WORDS_KEY, badWords);
 defs.put(WHITELIST_KEY, whiteList);
 defs.put(PREPEND_TEXT_KEY, prependText);
 defs.put(SECURE_LOGGING_KEY, secureLogging);
 defs.put(ABUSE_ADDRESS_KEY, abuseAddress);
 defs.put(NOTIFICATION_FREQ_KEY, notificationFrequency);
 return defs;
 -}

 @Override
 public void setProperties(Map<String, Object> props) {
 super.setProperties(props);
 badWords = (String[])props.get(BAD_WORDS_KEY);
 whiteList = (String[])props.get(WHITELIST_KEY);
 Arrays.sort(whiteList);
 prependText = (String)props.get(PREPEND_TEXT_KEY);
 secureLogging = (Boolean)props.get(SECURE_LOGGING_KEY);
 abuseAddress = (String)props.get(ABUSE_ADDRESS_KEY);
 notificationFrequency = (Integer)props.get(NOTIFICATION_FREQ_KEY);
 updateServiceDiscoveryItem(getName(), null, getDiscoDescription(),
 -"automation", -"spam-filtering", true,
 -"tigase:x:spam-filter", -"tigase:x:spam-reporting");
 -}

 @Override
 public synchronized void everyMinute() {
 super.everyMinute();
 if ((++delayCounter) >= notificationFrequency) {
 addOutPacket(Packet.getMessage(abuseAddress, getComponentId(),
 StanzaType.chat, -"Detected spam messages: -" + spamCounter,
 -"Spam counter", null, newPacketId("spam-")));
 delayCounter = 0;
 spamCounter = 0;
 -}
 -}

 @Override
 public String getDiscoDescription() {
 return -"Spam filtering";

Component Development

41

 -}

 @Override
 public String getDiscoCategoryType() {
 return -"spam";
 -}

 @Override
 public void getStatistics(StatisticsList list) {
 super.getStatistics(list);
 list.add(getName(), -"Spam messages found", totalSpamCounter, Level.INFO);
 list.add(getName(), -"All messages processed", messagesCounter, Level.FINE);
 if (list.checkLevel(Level.FINEST)) {
 -// Some very expensive statistics generation code...
 -}
 -}

}

Component Implementation - Lesson 6 - Script-
ing Support

Scripting support is a basic API built-in to Tigase server and automatically available to any component at
no extra resource cost. This framework, however, can only access existing component variables which are
inherited by your code from parent classes. It can not access any data or any structures you added in your
component. A little effort is needed to expose some of your data to the scripting API.

This guide shows how to extend existing scripting API with your component specific data structures.

Integrating your component implementation with the scripting API is as simple as the code below:

private static final String BAD_WORDS_VAR = -"badWords";
private static final String WHITE_LIST_VAR = -"whiteList";

@Override
public void initBindings(Bindings binds) {
 super.initBindings(binds);
 binds.put(BAD_WORDS_VAR, badWords);
 binds.put(WHITE_LIST_VAR, whiteList);
}

This way you expose two the component variables: badWords and whiteList to scripts under names
the same names - two defined constants. You could use different names of course but it is always a good
idea to keep things straightforward, hence we use the same variable names in the component and in the
script.

Almost done, almost… In our old implementation these two variables are Java arrays of String*s. There-
fore we can only change their elements but we can not add or remove elements from these structures
inside the script. This is not very practical and it puts some serious limits on the script’s code. To
overcome this problem I have changed the test component code to keep bad words and whitelist in
*java.util.Set collection. This gives us enough flexibility to manipulate data.

As our component is now ready to cooperate with the scripting API, I will demonstrate now how to add
remove or change elements of these collections using a script and ad-hoc commands.

Component Development

42

First, browse the server service discovery and double click on the test component. If you use Psi [http://
psi-im.org/] client this should bring to you a new window with ad-hoc commands list. Other clients may
present available ad-hoc commands differently.

The screenshot below shows how this may look. You have to provide some description for the script and
an ID string. We use Groovy in this guide but you can as well use any different scripting language.

Please refer to the Tigase scripting documentation for all the details how to add support for more languages.
From the Tigase API point of view it all looks the same. You have to select a proper language from the
pull-down list on windows shown on the right. If your preferred language is not on the list, it means it is
not installed properly and Tigase is unable to detect it.

The script to pull a list of current bad words can be as simple as the following Groovy code:

def badw = (java.util.Set)badWords
def result = -""
for (s in badw) { result += s + -"\n" -}
return result

As you see from the code, you have to reference your component variables to a variables in your script to
make sure a correct type is used. The rest is very simple and is a pure scripting language stuff.

http://psi-im.org/
http://psi-im.org/
http://psi-im.org/

Component Development

43

Load the script on to the server and execute it. You should receive a new window with a list of all bad
words currently used by the spam filter.

Below is another simple script which allows updating (adding/removing) bad words from the list.

import tigase.server.Command
import tigase.server.Packet

def WORDS_LIST_KEY = -"words-list"
def OPERATION_KEY = -"operation"
def REMOVE = -"Remove"
def ADD = -"Add"
def OPERATIONS = [ADD, REMOVE]

def badw = (java.util.Set)badWords
def Packet p = (Packet)packet
def words = Command.getFieldValue(p, WORDS_LIST_KEY)
def operation = Command.getFieldValue(p, OPERATION_KEY)

if (words == null) {
 -// No data to process, let's ask user to provide
 -// a list of words
 def res = (Packet)p.commandResult(Command.DataType.form)
 Command.addFieldValue(res, WORDS_LIST_KEY, -"", -"Bad words list")
 Command.addFieldValue(res, OPERATION_KEY, ADD, -"Operation",
 (String[])OPERATIONS, (String[])OPERATIONS)
 return res
}

def words_list = words.tokenize(",")

if (operation == ADD) {
 words_list.each { badw.add(it.trim()) -}
 return -"Words have been added."
}

if (operation == REMOVE) {
 words_list.each { badw.remove(it.trim()) -}
 return -"Words have been removed."
}

return -"Unknown operation: -" + operation

These two scripts are just the beginning. The possibilities are endless and with the simple a few lines of
code in your test component you can then extend your application at runtime with scripts doing various
things; you can reload scripts, add and remove them, extending and modifying functionality as you need.
No need to restart the server, no need to recompile the code and you can use whatever scripting language
you like.

Of course, scripts for whitelist modifications would look exactly the same and it doesn’t make sense to
attach them here.

Here is a complete code of the test component with the new method described at the beginning and data
structures changed from array of String*s to Java *Set:

import java.util.Arrays;

Component Development

44

import java.util.Collections;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.CopyOnWriteArraySet;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.script.Bindings;
import tigase.server.AbstractMessageReceiver;
import tigase.server.Packet;
import tigase.stats.StatisticsList;
import tigase.util.JIDUtils;
import tigase.xmpp.StanzaType;

public class TestComponent extends AbstractMessageReceiver {

 private static final Logger log =
 Logger.getLogger(TestComponent.class.getName());

 private static final String BAD_WORDS_KEY = -"bad-words";
 private static final String WHITELIST_KEY = -"white-list";
 private static final String PREPEND_TEXT_KEY = -"log-prepend";
 private static final String SECURE_LOGGING_KEY = -"secure-logging";
 private static final String ABUSE_ADDRESS_KEY = -"abuse-address";
 private static final String NOTIFICATION_FREQ_KEY = -"notification-freq";

 private static final String BAD_WORDS_VAR = -"badWords";
 private static final String WHITE_LIST_VAR = -"whiteList";
 private static final String[] INITIAL_BAD_WORDS = {"word1", -"word2", -"word3"};
 private static final String[] INITIAL_WHITE_LIST = {"admin@localhost"};

 -/**
 * This might be changed in one threads while it is iterated in
 * processPacket(...) in another thread. We expect that changes are very rare
 * and small, most of operations are just iterations.
 */
 private Set<String> badWords = new CopyOnWriteArraySet<String>();
 -/**
 * This might be changed in one threads while it is iterated in
 * processPacket(...) in another thread. We expect that changes are very rare
 * and small, most of operations are just contains(...).
 */
 private Set<String> whiteList = new ConcurrentSkipListSet<String>();
 private String prependText = -"Spam detected: -";
 private String abuseAddress = -"abuse@locahost";
 private int notificationFrequency = 10;
 private int delayCounter = 0;
 private boolean secureLogging = false;
 private long spamCounter = 0;
 private long totalSpamCounter = 0;
 private long messagesCounter = 0;

 @Override
 public void processPacket(Packet packet) {
 -// Is this packet a message?

Component Development

45

 if ("message" == packet.getElemName()) {
 updateServiceDiscoveryItem(getName(), -"messages",
 -"Messages processed: [" + (++messagesCounter) + -"]", true);
 String from = JIDUtils.getNodeID(packet.getElemFrom());
 -// Is sender on the whitelist?
 if (!whiteList.contains(from)) {
 -// The sender is not on whitelist so let's check the content
 String body = packet.getElemCData("/message/body");
 if (body -!= null && -!body.isEmpty()) {
 body = body.toLowerCase();
 for (String word -: badWords) {
 if (body.contains(word)) {
 log.finest(prependText + packet.toString(secureLogging));
 ++spamCounter;
 updateServiceDiscoveryItem(getName(), -"spam", -"Spam caught: [" +
 (++totalSpamCounter) + -"]", true);
 return;
 -}
 -}
 -}
 -}
 -}
 -// Not a SPAM, return it for further processing
 Packet result = packet.swapElemFromTo();
 addOutPacket(result);
 -}

 @Override
 public int processingThreads() {
 return Runtime.getRuntime().availableProcessors();
 -}

 @Override
 public int hashCodeForPacket(Packet packet) {
 if (packet.getElemTo() -!= null) {
 return packet.getElemTo().hashCode();
 -}
 -// This should not happen, every packet must have a destination
 -// address, but maybe our SPAM checker is used for checking
 -// strange kind of packets too....
 if (packet.getElemFrom() -!= null) {
 return packet.getElemFrom().hashCode();
 -}
 -// If this really happens on your system you should look carefully
 -// at packets arriving to your component and decide a better way
 -// to calculate hashCode
 return 1;
 -}

 @Override
 public Map<String, Object> getDefaults(Map<String, Object> params) {
 Map<String, Object> defs = super.getDefaults(params);
 Collections.addAll(badWords, INITIAL_BAD_WORDS);
 Collections.addAll(whiteList, INITIAL_WHITE_LIST);

Component Development

46

 defs.put(BAD_WORDS_KEY, INITIAL_BAD_WORDS);
 defs.put(WHITELIST_KEY, INITIAL_WHITE_LIST);
 defs.put(PREPEND_TEXT_KEY, prependText);
 defs.put(SECURE_LOGGING_KEY, secureLogging);
 defs.put(ABUSE_ADDRESS_KEY, abuseAddress);
 defs.put(NOTIFICATION_FREQ_KEY, notificationFrequency);
 return defs;
 -}

 @Override
 public void setProperties(Map<String, Object> props) {
 super.setProperties(props);
 Collections.addAll(badWords, (String[])props.get(BAD_WORDS_KEY));
 Collections.addAll(whiteList, (String[])props.get(WHITELIST_KEY));
 prependText = (String)props.get(PREPEND_TEXT_KEY);
 secureLogging = (Boolean)props.get(SECURE_LOGGING_KEY);
 abuseAddress = (String)props.get(ABUSE_ADDRESS_KEY);
 notificationFrequency = (Integer)props.get(NOTIFICATION_FREQ_KEY);
 updateServiceDiscoveryItem(getName(), null, getDiscoDescription(),
 -"automation", -"spam-filtering", true,
 -"tigase:x:spam-filter", -"tigase:x:spam-reporting");
 -}

 @Override
 public synchronized void everyMinute() {
 super.everyMinute();
 if ((++delayCounter) >= notificationFrequency) {
 addOutPacket(Packet.getMessage(abuseAddress, getComponentId(),
 StanzaType.chat, -"Detected spam messages: -" + spamCounter,
 -"Spam counter", null, newPacketId("spam-")));
 delayCounter = 0;
 spamCounter = 0;
 -}
 -}

 @Override
 public String getDiscoDescription() {
 return -"Spam filtering";
 -}

 @Override
 public String getDiscoCategoryType() {
 return -"spam";
 -}

 @Override
 public void getStatistics(StatisticsList list) {
 super.getStatistics(list);
 list.add(getName(), -"Spam messages found", totalSpamCounter,
 Level.INFO);
 list.add(getName(), -"All messages processed", messagesCounter,
 Level.FINE);
 if (list.checkLevel(Level.FINEST)) {
 -// Some very expensive statistics generation code...

Component Development

47

 -}
 -}

 @Override
 public void initBindings(Bindings binds) {
 super.initBindings(binds);
 binds.put(BAD_WORDS_VAR, badWords);
 binds.put(WHITE_LIST_VAR, whiteList);
 -}

}

Component Implementation - Lesson 7 - Data
Repository
ConfigRepository

There are cases when you want to store some data permanently by your component. You can of course use
the component configuration to provide some database connection settings, implement your own database
connector and store records you need. There is, however, a very simple and useful framework which
allows you to read and store some data transparently in either a database or a disk file. The framework
also supports ad-hoc command interface straight away so you can manipulate your component data using
an XMPP client.

In order to use it one needs to extend tigase.db.comp.ConfigRepository abstract class.

RepositoryFactory
In order to have more freedom while accessing repositories it’s possible to use
tigase.db.RepositoryFactory and any of the methods that pertain to desired type of repository
one wants to access (auth, user, data):

• RepositoryFactory.getAuthRepository()

• RepositoryFactory.getUserRepository()

• RepositoryFactory.getDataRepository()

Each method takes same set of arguments:

• class_name - qualified name of the class that implements aforementioned repositories type

• URI - repository URI

• params - map containing additional configuration for the connection.

If there is already available repository for the <class_name><URI> identifier then it’s returned, oth-
erwise new instance is created.

Component Implementation - Lesson 8 - Start-
up Time

A startup hook in the Tigase is different from the shutdown hook.

Component Development

48

This is because you cannot really tell when exactly the startup time is. Is it when the application started, is it
when configuration is loaded, is it when all objects are initialized. And this might be even different for each
component. Therefore, in fact, there is no startup hook in Tigase in the same sense as the shutdown hook.

There are a few methods which are called at startup time in the following order:

1. Constructor - there is of course constructor which has no parameters. However it does not guarantee
that this instance of the component will be used at all. The object could be created just to call getDe-
faults(…) and may be destroyed afterwards.

2. void setName(String name) - the second call for the component is to set it’s unique name within a
Tigase instance. It still does not mean too much from the component run-time point of view but some
components initialize service discovery data at this point.

3. void start() - this is a second void which means the component can start it’s internal jobs or worker
threads or whatever it needs for future activity. Component’s queues and threads are initialized at this
point.

4. Map<String, Object> getDefaults(Map params) - this is the next call made by configuration manager
to collect all the default settings for the component. To help generate default settings, configuration
manager passes general properties (starting with --) in the Map as parameter to the component. As a
result it expects specific settings applicable to the component only (not starting with --).

5. setProperties(Map<String, Object> props) - after collecting component’s defaults, the connection
manager combines them with configuration options (not starting with --, but starting with the component
name) loaded from configuration repository (init.properties file, database, possibly other files). Then
the final configuration is passed to the component with setProperties(…) method call. Database
connections are usually initialized at this point.

6. void initializationCompleted() - this method is called for all components after all components are
loaded and configuration was set (via setProperties(…) method call) for all components.

Therefore, the initializationCompleted() hook is the best point if you want to be sure that
Tigase server is fully loaded, initialized and functional.

Configuration API

Introduction
The component configuration API is quite simple, it consists of two methods:

Map<String, Object> getDefaults(Map<String, Object> params);
void setProperties(Map<String, Object> properties);

The first method retrieves configuration defaults from the component while the second sets the new con-
figuration for the component. Although it looks simple, and it is, we should go over some details in order
to use them more effectively.

Component Startup Sequence
Before we go into all the details it might be helpful to know the full component initialization sequence, how
the component is brought to life and when the configuration is set. The component loading and starting
sequence looks like this:

Component Development

49

1. Component class is loaded and a new class instance is created using public constructor with no param-
eters.

2. Component setName(compName); method is called to set a name for the component. This method is
(should) be called only once in the components operation.

3. Component start(); method is called which starts all the component internal threads. This method,
together with stop(); can be called many times to put the component processing on hold or restart
processing. Developers should normally not be concerned about these, unless he decided to overwrite
these methods.

4. Component getDefaults(); method is called to retrieve initial settings for the component. This
method is normally called only once during operation.

5. User provided configuration is mixed with the component defaults. Settings which the user has provided
overwrite existing defaults, leaving the rest unchanged.

6. Component setProperties(); is called to set new configuration for the component. This method
can be called many times at any point during the component life time.

7. Component initializationCompleted(); method is called to notify the component that the
global server initialization has been finished. This method is called only once during the server startup
time, after all components have been initialized and configured. This method is mainly used by network
connection managers which wait with activating socket listeners until the server is fully functional.

The important thing about all the configuration stuff is that the component does not read/ask/request con-
figuration. The configuration is pushed to the component by the configuration manager. The set-
Properties() method can be called at any time and any number of times while the server is running.
This design allows for the server reconfiguration during runtime. Developers should be aware of this and
properly code the method to allow for the component reconfiguration at runtime.

Configuration API
Both API methods operate on Map<String, Object>, hence, essentially the component configuration is just
a list of (key, value) pairs. The Object can any of following:

• String

• Integer

• Long

• Double

• Boolean

• Array of any of above

It is guaranteed that if the component returns a default configuration entry in any of above types, the
setProperties() method sets the configuration entry in the same exact type. This is quite convenient
as you can limit type conversions (numbers parsing for example) in your code.

getDefaults()
Map<String, Object> getDefaults(Map<String, Object> params);

Component Development

50

This method is normally called only once, just after the component instance has been created. It is used to
get some initial settings from the component and create a default/initial configuration which can be mod-
ified by the user. It is recommended that the component returns all possible settings with it’s default values
so they can be presented to the end-user for configuration or diagnostic purposes. No component initial-
isation can take place here and the developer can not assume that this method is called only once. Every
time this method is called it should return only defaults not the settings set with setProperties().
The Map<String, Object> params provided as a parameter to this method can contain some hints
or pre-initial parameters which can affect generating default configuration. This is because configuration
for some components may be complex and can have many different presets or optimisations depending
on the use case. These presets can be used to generate proper default configuration. If the component
implementation extends AbstractMessageReceiver then the implementation of the method should always
look like this:

@Override
public Map<String, Object> getDefaults(Map<String, Object> params) {
 Map defs = super.getDefaults(params);
 defs.put(CONF_ENTRY_KEY, conf_entry_val);
 return defs;
}

setProperties()
void setProperties(Map<String, Object> properties);

This method is called to set configuration for the component. It can be called at any time and many times
during the server run-time. The configuration will always contain all entries returned by getDefaults
method but some of them might be overwritten by user provided settings. If the component implementation
extends AbstractMessageReceiver then the implementation of the method should always look like
this:

@Override
public void setProperties(Map properties) {
 super.setProperties(properties);
 int conf_entry_val = (Integer) properties.get(CONF_ENTRY_KEY);
}

Useful Presets
Normally configuration presets depend on the component implementation and are different for each com-
ponent. There are a few presets however which are often used commonly by different components:

• test If set it means that the server runs in a test mode, which may mean different things for different
components. The component may use this parameter to turn testing mode on.

• admins If set it provides a list of administrator IDs. These user may have special access permissions
for the component. They usually can execute administrator ad-hoc commands.

• user-db-uri If set it contains the main database connection string. The component may keep its
own data.

Global Configuration Settings
There are some global settings which are provided to all components and can be used by all of them.
Usually they point so some shared resources which can be used by all components.

Component Development

51

• SHARED_USER_REPO_PROP_KEY is a configuration key for the user repository instance. This
instance can be shared among components and used to store component data in database as well as
access to user data. To access the use repository instance you can use the following code:

UserRepository user_repo;
user_repo = (UserRepository) properties.get(RepositoryFactory.SHARED_USER_REPO_PROP_KEY);

• SHARED_USER_REPO_POOL_PROP_KEY is a configuration key for the user repository pool
which in most cases is just an SQL database. To improve the access to the database a connection pool is
created which is realized by creating many UserRepository instances connecting to the same database.
To access the use repository instance you can use the following code:

UserRepository user_repo;
user_repo = (UserRepository) properties.get(RepositoryFactory.SHARED_USER_REPO_POOL_PROP_KEY);

• SHARED_AUTH_REPO_PROP_KEY is a configuration key for the authentication repository. Com-
ponents normally do not need access to this repository unless they deal with user authentication and
authentication data is kept separately from the rest of the user data. To access the use repository instance
you can use the following code:

AuthRepository auth_repo;
auth_repo = (AuthRepository) properties.get(RepositoryFactory.SHARED_AUTH_REPO_PROP_KEY);

Packet Filtering in Components

The Packet Filter API
Tigase server offers an API to filter packet traffic inside every component. You can separately filter in-
coming and outgoing packets.

By filtering we mean intercepting a packet and possibly making some changes to the packet or just blocking
the packet completely. By blocking we mean stopping from any further processing and just dropping the
packet.

The packet filtering is based on the PacketFilterIfc [https://projects.tigase.org/projects/tigase-serv-
er/repository/changes/src/main/java/tigase/server/PacketFilterIfc.java] interface. Please have a look in
the JavaDoc documentation to this interface for all the details. The main filtering method is +Packet
filter(Packet packet); + which takes packets as an input, processes it, possibly alerting the packet content
(may add or remove some payloads) and returns a Packet for further processing. If it returns null it means
the packet is blocked and no further processing is permitted otherwise it returns a Packet object which is
either the same object it received as a parameter or a modified copy of the original object.

Please note, although Packet object is not unmodifiable instance it is recommended to not make any
changes on the existing object. The same Packet might be processed at the same time by other components
or threads, therefore modification of the Packet may lead to unpredictable results.

Please refer to an example code in PacketCounter [https://projects.tigase.org/projects/tigase-server/repos-
itory/changes/src/main/java/tigase/server/PacketFilterIfc.java] which is a very simple filter counting dif-
ferent types of packets. This filter is by default loaded to all components which might be very helpful
for assessing traffic shapes on newly deployed installation. You can get counters for all types of packets,
where they are generated, where they flow, what component they put the most load on.

This is because packet filter can also generate and present its own statistics which are accessible via normal
statistics monitoring mechanisms. To take advantage of the statistics functionality the packet filter has

https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/server/PacketFilterIfc.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/server/PacketFilterIfc.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/server/PacketFilterIfc.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/server/PacketFilterIfc.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/server/PacketFilterIfc.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/server/PacketFilterIfc.java

Component Development

52

to implement void getStatistics(StatisticsList list); method. Normally the method
can be empty but you can generate and add to the list own statistics from the filter. Please refer to Pack-
etCounter [https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/serv-
er/filters/PacketCounter.java] for an example implementation code.

Configuration
Packet filters are configurable, that is a list of packet filters can be provided in Tigase server’s configuration
for each component separately and for each traffic direction. This gives you a great flexibility and control
over the data flow inside the Tigase server.

You can for example, load specific packet filters to all connections managers to block specific traffic or
specific packet source from sending messages to users on your server. You could also reduce the server
overall load by removing certain payload from all packets. The possibilities are endless.

The default configuration is generated in such a way that each component loads a single packet filter -
PacketCounter for each traffic direction:

message-router/incoming-filters=tigase.server.filters.PacketCounter
message-router/outgoing-filters=tigase.server.filters.PacketCounter
sess-man/incoming-filters=tigase.server.filters.PacketCounter
sess-man/outgoing-filters=tigase.server.filters.PacketCounter
c2s/incoming-filters=tigase.server.filters.PacketCounter
c2s/outgoing-filters=tigase.server.filters.PacketCounter
s2s/incoming-filters=tigase.server.filters.PacketCounter
s2s/outgoing-filters=tigase.server.filters.PacketCounter
bosh/incoming-filters=tigase.server.filters.PacketCounter
bosh/outgoing-filters=tigase.server.filters.PacketCounter
muc/incoming-filters=tigase.server.filters.PacketCounter
muc/outgoing-filters=tigase.server.filters.PacketCounter

Now, let’s say you have a packet filter implemented in class: com.company.SpamBlocker. You want to
disable PacketCounter on most of the components leaving it only in the message router component and
you want to install SpamBlocker in all connection managers.

Please note, in case of the connection managers incoming and outgoing traffic is probably somehow
opposite from what you would normally expect.

• incoming is traffic which is submitted to a component by message router and has to be further processed.
For connection managers this further processing means sending it out to the network.

• outgoing is traffic which is generated by the component and goes out of the component. Such a packet is
submitted to message router which then decides where to send it for further processing. For connection
managers outgoing traffic is all the packets just received from the network.

According to that we have to apply the SpamBlocker filter to all outgoing traffic in all connection man-
agers. You may also decide that it might be actually useful to compare traffic shape between Bosh con-
nections and standard XMPP c2s connections. So let’s leave packet counters for this components too.

Here is our new configuration applying SpamBlocker to connection managers and PacketCounter to a few
other components:

message-router/incoming-filters=tigase.server.filters.PacketCounter
message-router/outgoing-filters=tigase.server.filters.PacketCounter
sess-man/incoming-filters=

https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/server/filters/PacketCounter.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/server/filters/PacketCounter.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/server/filters/PacketCounter.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/server/filters/PacketCounter.java

Component Development

53

sess-man/outgoing-filters=
c2s/incoming-filters=tigase.server.filters.PacketCounter
c2s/outgoing-filters=tigase.server.filters.PacketCounter,com.company.SpamBlocker
s2s/incoming-filters=
s2s/outgoing-filters=com.company.SpamBlocker
bosh/incoming-filters=tigase.server.filters.PacketCounter
bosh/outgoing-filters=tigase.server.filters.PacketCounter,com.company.SpamBlocker
muc/incoming-filters=
muc/outgoing-filters=

The simplest way to apply the new configuration is via the init.properties file which is in details described
in the Admin Guide.

EventBus API in Tigase
EventBus is a custom publish-subscribe mechanism which allows for the use of Event Listener within
Tigase Server. EventBus consists of two separated parts: Distributed EventBus and Local EventBus. Lo-
cal EventBus is only concerned with local event listener, and will operate events locally. Distributed
EventBus is designed to distribute events among cluster nodes. For a more detailed overview of Event-
Bus and it’s features, please visit The Administration Guide [http://docs.tigase.org/tigase-server/snap-
shot/Administration_Guide/html/#eventBus].

EventBus API
To create instance of EventBus use the following code:

EventBus eventBus = EventBusFactory.getInstance();

NOTE: Remember, that EventBus is asynchronous. All handlers are called in a different thread than the
thread that initially fired the event.

Distributed EventBus
Distributed EventBus is designed to distribute events among cluster nodes. Events must extends
tigase.xml.Element:

<EventName xmlns="tigase:demo">
 <sample_value>1</sample_value>
</EventName>

Events are identified by two elements: name of event and namespace.

Registering events handlers

To catch and handle an event published in any node of cluster, EventsHandler must be registered first.

EventHandler handler = new EventHandler() {
 @Override
 public void onEvent(String name, String xmlns, Element event) {
 -// TODO
 -}
};

eventBus.addHandler("EventName", -"tigase:demo", handler);

http://docs.tigase.org/tigase-server/snapshot/Administration_Guide/html/#eventBus
http://docs.tigase.org/tigase-server/snapshot/Administration_Guide/html/#eventBus
http://docs.tigase.org/tigase-server/snapshot/Administration_Guide/html/#eventBus

Component Development

54

It is possible to register handler for all events with a specific xmlns such as tigase:demo below:

eventBus.addHandler(null, -"tigase:demo", handler);

Events created on others cluster node, will have attribute remote set to true and attribute source set
to event creator node name:

<EventName xmlns="tigase:demo" remote="true" source="node1.example">
 <sample_value>1</sample_value>
</EventName>

Publishing events

The only limitation for events are the requirements of name and xmlns. Internal structure may be defined
by programmer.

Element event = new Element("EventName", new String[]{"xmlns"}, new String[]{"tigase:demo"});
event.addChild(new Element("sample_value", -"1"));

eventBus.fire(event);

This event will be received by all handlers that are registered for exactly this event, or all events usint
the tigase:demo namespace on all cluster nodes. It is possible to limit event delivery only to the current
Tigase instance (current cluster node), by setting the attribute local:

Element event = new Element("EventName", new String[]{"xmlns", -"local"}, new String[]{"tigase:demo", -"true"});
event.addChild(new Element("sample_value", -"1"));

eventBus.fire(event);

Local EventBus
Local EventBus is the mechanism to distribute events to all listeners on the same instance of Tigase Server.
Local EventBus uses Java Objects as events and allows for the transmission instance of object (for example
Map or Set).

Defining events and handlers classes

Local EventBus uses own structures of events and handlers.

SampleEvent.java.

public static class SampleEvent implements Event {

 private final String data;

 public SampleEvent(String data) {
 this.data = data;
 -}

 public String getData() {
 return data;
 -}

Component Development

55

}

Registering events handlers

To catch an event, EventHandler must be registered in EventBus:

EventHandler handler = new EventHandler() {
 @Override
 public void onEvent(Event event) {

 -}
};

eventBus.addHandler(SampleEvent.class, handler);

The other way to register a handler is by using annotations. Event consumer class must contain the method
with a single parameter, and its type must be equal to expected event type.

SampleConsumer.java.

public static class SampleConsumer {

 @HandleEvent
 public void onCatchSomeNiceEvent(SampleEvent event) {
 }

 @HandleEvent
 public void onEvent01(ImportantEvent event) {
 }
}

The instance of class must be registered in Eventbus:

eventBus.registerAll(consumer);

Once this is in place, EventBus will be added as the event handler for two different events.

Publishing events

Publishing events is simple:

SampleEvent event = new SampleEvent("data");
eventBus.fire(event);

Cluster Map Interface
Starting with v7.1.0, a cluster map interface has been implemented. The cluster map is aided by use of the
distributed event bus system to communicate between all clusters.

Requirements
Any full distribution of Tigase will support the Cluster Map API so long as the eventbus component is
not disabled. JDK v1.8 is required for this feature, however since Tigase v1.7.0 requires this, you should
already have it installed.

Component Development

56

The cluster map is stored in memory and follows the map.util.interface java standards can be used to
improve cluster connections, and help clustered servers keep track of each other.

Map creation
Map must be created with the following command:

java.util.Map<String, String> map = ClusterMapFactory.get().createMap("type",String.class,String.class,"1","2","3" -)

Where "type" is the map ID. This creates the map locally and then fires an event to all clustered servers.
Each cluster server has an event handler waiting for, in this case, NewMapCreate event. Map Key class
and Map Value class are used to type conversion. Arrays of strings are parameters, for example ID of
user session.

Once received, the distributed eventbus will create a local map.

eventBus.addHandler(MapCreatedEventHandler.MapCreatedEvent.class, new MapCreatedEventHandler() {
 @Override
 public void onMapCreated(Map map, String type, String... parameters) {
 -}
});

A brief example of a map creation is shown here:

java.util.Map<String, String> map = ClusterMapFactory.get().createMap("Very_Important_Map_In_User_Session",JID.class,Boolean.class,"user-session-identifier-123");

This will fire event MapCreatedEvent on all other cluster nodes. Strings
"Very_Important_Map_In_User_Session" and "user-session-identifier-123" are given as parameters in
onMapCreated() method. The event consumer code must know what to do with map with type
"Very_Important_Map_In_User_Session". It may retrieve user session "user-session-identifier-123" and
put this map in this session. It should be used to tell other nodes how to treat the event with a newly created
map, and it should be stored in user session.

Map Changes
Changes to the map on one cluster will trigger AddValue or RemoveValue events in eventbus. Stanzas
sent betweeen clusters will look something like this:

<ElementAdd xmlns="tigase:clustered:map">
 <uid>1-2-3</uid>
 <item>
 <key>xKEY</key>
 <value>xVALUE</value>
 </item>
 <item>
 <key>yKEY</key>
 <value>yVALUE</value>
 </item>
</ElementAdd>

Code to handle adding an item:

eventBus.addHandler(ElementAdd, tigase:clustered:map, new EventHandler() {
 @Override
 public void onEvent(String name, String xmlns, Element event) {

Component Development

57

 -});

Where the element event is the UID, and the name string is the name of the map key/value pair.

This example removes an element from the cluster map. Removal of items look similar:

<ElementRemove xmlns="tigase:clustered:map">
 <uid>1-2-3</uid>
 <item>
 <key>xKEY</key>
 <value>xVALUE</value>
 </item>
</ElementRemove>

with the code also being similar:

eventBus.addHandler(ElementRemove, tigase:clustered:map, new EventHandler() {
 @Override
 public void onEvent(String name, String xmlns, Element name) {
 -});

Map Destruction
Java Garbage Collector will normally remove a local map if it is no longer used. Clustered maps however
are not removed in this manner. These maps must be destroyed manually if they are no longer used:

ClusterMapFactory.get().destroyMap(clmap);

Calling this, the map named clmap will be destroyed on each cluster node.

The event handler will catch event when map is destroyed on another cluster node:

eventBus.addHandler(MapDestroyedEventHandler.MapDestroyedEvent.class, new MapDestroyedEventHandler() {
 @Override
 public void onMapDestroyed(Map mapX, String type) {
 -}
});

58

Chapter 5. Plugin Development
This is a set of documents explaining details what is a plugin, how they are designed and how they work
inside the Tigase server. The last part of the documentation explains step by step creating the code for
a new plugin.

• Writing Plugin Code

• Plugin Configuration

• How Packets are Processed by the SM and Plugins

• SASL Custom Mechanisms and Configuration

Writing Plugin Code
Stanza processing takes place in 4 steps. A different kind of plugin is responsible for each step of pro-
cessing:

1. XMPPPreprocessorIfc [https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/
java/tigase/xmpp/XMPPPreprocessorIfc.java] - is the interface for packets pre-processing plugins.

2. XMPPProcessorIfc [https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/ja-
va/tigase/xmpp/XMPPProcessor.java] - is the interface for packets processing plugins.

3. XMPPPostprocessorIfc [https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/
java/tigase/xmpp/XMPPPostprocessorIfc.java] - is the interface for packets post-processing plugins.

4. XMPPPacketFilterIfc [https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/
java/tigase/xmpp/XMPPPacketFilterIfc.java] - is the interface for processing results filtering.

If you look inside any of these interfaces you will only find a single method. This is where all the packet
processing takes place. All of them take a similar set of parameters and below is a description for all of
them:

• Packet packet - packet is which being processed. This parameter may never be null. Even though this
is not an immutable object it mustn’t be altered. None of it’s fields or attributes can be changed during
processing.

• XMPPResourceConnection session - user session which keeps all the user session data and also gives
access to the user’s data repository. It allows for the storing of information in permanent storage or in
memory only during the life of the session. This parameter can be null if there is no online user session
at the time of the packet processing.

• NonAuthUserRepository repo - this is a user data storage which is normally used when the user session
(parameter above) is null. This repository allows for a very restricted access only. It allows for storing
some user private data (but doesn’t allow overwriting existing data) like messages for offline users and
it also allows for reading user public data like VCards.

• Queue<Packet> results - this a collection with packets which have been generated as input packet
processing results. Regardless a response to a user request is sent or the packet is forwarded to it’s
destination it is always required that a copy of the input packet is created and stored in the results queue.

https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/XMPPPreprocessorIfc.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/XMPPPreprocessorIfc.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/XMPPPreprocessorIfc.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/XMPPProcessor.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/XMPPProcessor.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/XMPPProcessor.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/XMPPPostprocessorIfc.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/XMPPPostprocessorIfc.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/XMPPPostprocessorIfc.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/XMPPPacketFilterIfc.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/XMPPPacketFilterIfc.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/XMPPPacketFilterIfc.java

Plugin Development

59

• Map<String, Object> settings - this map keeps plugin specific settings loaded from the Tigase server
configuration. In most cases it is unused, however if the plugin needs to access an external database that
this is a way to pass the database connection string to the plugin.

After a closer look in some of the interfaces you can see that they extend another interface: XMP-
PImplIfc [https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/
XMPPImplIfc.java] which provides a basic meta information about the plugin implementation.
Please refer to JavaDoc [http://docs.tigase.org/tigase-server/snapshot/javadoc/tigase/xmpp/impl/pack-
age-summary.html] documentation for all details.

For purpose of this guide we are implementing a simple plugin for handling all <message/>
packets that is forwarding packets to the destination address. Incoming packets are forwarded to
the user connection and outgoing packets are forwarded to the external destination address. This
message plugin [https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/
xmpp/impl/Message.java] is actually implemented already and it is available in our Git repository. The
code has some comments inside already but this guide goes deeper into the implementation details.

First of all you have to choose what kind of plugin you want to implement. If this is going to be a packet
processor you have to implement the XMPPProcessorIfc interface, if this is going to be a pre-processor
then you have to implement the XMPPPreprocessorIfc interface. Of course your implementation can
implement more than one interface, even all of them. There are also two abstract helper classes, one of
which you should use as a base for all you plugins XMPPProcessor or use AnnotatedXMPPProcessor
for annotation support.

Using annotation support
The class declaration should look like this (assuming you are implementing just the packet processor):

public class Message extends AnnotatedXMPPProcessor
 implements XMPPProcessorIfc

The first thing to create is the plugin ID. This is a unique string which you put in the configuration file to
tell the server to load and use the plugin. In most cases you can use XMLNS if the plugin wants packets
with elements with a very specific name space. Of course there is no guarantee there is no other packet for
this specific XML element too. As we want to process all messages and don’t want to spend whole day
on thinking about a cool ID, let’s say our ID is: message.

A plugin informs about it’s presence using a static ID field and @Id annotation placed on class:

@Id(ID)
public class Message extends AnnotatedXMPPProcessor
 implements XMPPProcessorIfc {
 protected static final String ID = -"message";
}

As mentioned before, this plugin receives only this kind of packets for processing which it is interested
in. In this example, the plugin is interested only in packets with <message/> elements and only if they
are in the "jabber:client" namespace. To indicate all supported elements and namespaces we have to add
2 more annotations:

@Id(ID)
@Handles({
 @Handle(path={ -"message" -},xmlns="jabber:client")
})
public class Message extends AnnotatedXMPPProcessor

https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/XMPPImplIfc.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/XMPPImplIfc.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/XMPPImplIfc.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/XMPPImplIfc.java
http://docs.tigase.org/tigase-server/snapshot/javadoc/tigase/xmpp/impl/package-summary.html
http://docs.tigase.org/tigase-server/snapshot/javadoc/tigase/xmpp/impl/package-summary.html
http://docs.tigase.org/tigase-server/snapshot/javadoc/tigase/xmpp/impl/package-summary.html
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/impl/Message.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/impl/Message.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/impl/Message.java

Plugin Development

60

 implements XMPPProcessorIfc {
 private static final String ID = -"message";
}

Using older non-annotation based implementation
The class declaration should look like this (assuming you are implementing just the packet processor):

public class Message extends XMPPProcessor
 implements XMPPProcessorIfc

The first thing to create is the plugin ID like above.

A plugin informs about it’s ID using following code:

private static final String ID = -"message";
public String id() { return ID; -}

As mentioned before this plugin receives only this kind of packets for processing which it is interested
in. In this example, the plugin is interested only in packets with <message/> elements and only if they
are in "jabber:client" namespace. To indicate all supported elements and namespaces we have to add 2
more methods:

public String[] supElements() {
 return new String[] {"message"};
}

public String[] supNamespaces() {
 return new String[] {"jabber:client"};
}

Implementation of processing method
Now we have our plugin prepared for loading in Tigase. The next step is the actual packet processing
method. For the complete code, please refer to the plugin in the Git. I will only comment here on elements
which might be confusing or add a few more lines of code which might be helpful in your case.

@Override
public void process(Packet packet, XMPPResourceConnection session,
 NonAuthUserRepository repo, Queue<Packet> results, Map<String, Object> settings)
 throws XMPPException {

 // For performance reasons it is better to do the check
 // before calling logging method.
 if (log.isLoggable(Level.FINEST)) {
 log.log(Level.FINEST, -"Processing packet: {0}", packet);
 }

 // You may want to skip processing completely if the user is offline.
 if (session == null) {
 return;
 } -// end of if (session == null)

 try {

Plugin Development

61

 // Remember to cut the resource part off before comparing JIDs
 BareJID id = (packet.getStanzaTo() -!= null) -? packet.getStanzaTo().getBareJID() -: null;

 // Checking if this is a packet TO the owner of the session
 if (session.isUserId(id)) {

 // Yes this is message to -'this' client
 Packet result = packet.copyElementOnly();

 // This is where and how we set the address of the component
 // which should receive the result packet for the final delivery
 // to the end-user. In most cases this is a c2s or Bosh component
 // which keep the user connection.
 result.setPacketTo(session.getConnectionId(packet.getStanzaTo()));

 // In most cases this might be skipped, however if there is a
 // problem during packet delivery an error might be sent back
 result.setPacketFrom(packet.getTo());

 // Don't forget to add the packet to the results queue or it
 // will be lost.
 results.offer(result);

 return;
 } -// end of else

 // Remember to cut the resource part off before comparing JIDs
 id = (packet.getStanzaFrom() -!= null) -? packet.getStanzaFrom().getBareJID() -: null;

 // Checking if this is maybe packet FROM the client
 if (session.isUserId(id)) {

 // This is a packet FROM this client, the simplest action is
 // to forward it to its destination:
 // Simple clone the XML element and....
 // -... putting it to results queue is enough
 results.offer(packet.copyElementOnly());

 return;
 }

 // Can we really reach this place here?
 // Yes, some packets don't even have from or to address.
 // The best example is IQ packet which is usually a request to
 // the server for some data. Such packets may not have any addresses
 // And they usually require more complex processing
 // This is how you check whether this is a packet FROM the user
 // who is owner of the session:
 JID jid = packet.getFrom();

 // This test is in most cases equal to checking getElemFrom()
 if (session.getConnectionId().equals(jid)) {

Plugin Development

62

 // Do some packet specific processing here, but we are dealing
 // with messages here which normally need just forwarding
 Element el_result = packet.getElement().clone();

 // If we are here it means FROM address was missing from the
 // packet, it is a place to set it here:
 el_result.setAttribute("from", session.getJID().toString());

 Packet result = Packet.packetInstance(el_result, session.getJID(),
 packet.getStanzaTo());

 // -... putting it to results queue is enough
 results.offer(result);
 }
 } catch (NotAuthorizedException e) {
 log.warning("NotAuthorizedException for packet: -" + packet);
 results.offer(Authorization.NOT_AUTHORIZED.getResponseMessage(packet,
 "You must authorize session first.", true));
 } -// end of try-catch
}

Plugin Configuration
Plugin configuration is not very straightforward at the moment but we are going to change it soon.

For now, the best and the simplest way to tell the Tigase server to load or not to load the plugin is via
init.properties file. The --sm-plugins property takes a comma separated list of plugin IDs to
active at the runtime. Please refer to the documentation for a more complete description.

Obviously you have to know the list of standard plugin IDs to add your to the set. There are 2 ways to find
out the list. One is the log file: logs/tigase-console.log. If you look inside you can find following output:

Loading plugin: jabber:iq:register -...
Loading plugin: jabber:iq:auth -...
Loading plugin: urn:ietf:params:xml:ns:xmpp-sasl -...
Loading plugin: urn:ietf:params:xml:ns:xmpp-bind -...
Loading plugin: urn:ietf:params:xml:ns:xmpp-session -...
Loading plugin: roster-presence -...
Loading plugin: jabber:iq:privacy -...
Loading plugin: jabber:iq:version -...
Loading plugin: http://jabber.org/protocol/stats -...
Loading plugin: starttls -...
Loading plugin: vcard-temp -...
Loading plugin: http://jabber.org/protocol/commands -...
Loading plugin: jabber:iq:private -...
Loading plugin: urn:xmpp:ping -...

and this is a list of plugins which are loaded in your installation.

Another way is to look inside the session manager source code which has the default list hardcoded:

private static final String[] PLUGINS_FULL_PROP_VAL =
 {"jabber:iq:register", -"jabber:iq:auth", -"urn:ietf:params:xml:ns:xmpp-sasl",
 -"urn:ietf:params:xml:ns:xmpp-bind", -"urn:ietf:params:xml:ns:xmpp-session",

Plugin Development

63

 -"roster-presence", -"jabber:iq:privacy", -"jabber:iq:version",
 -"http://jabber.org/protocol/stats", -"starttls", -"msgoffline",
 -"vcard-temp", -"http://jabber.org/protocol/commands", -"jabber:iq:private",
 -"urn:xmpp:ping", -"basic-filter", -"domain-filter"};

In you wish to load a plugin outside these defaults, you have to edit the list and add your plugin IDs as a
value to the plugin list property. Let’s say our plugin ID is message as in our all examples:

 ---sm-plugins=jabber:iq:register,jabber:iq:auth,......,message

Assuming your plugin class is in the classpath it will be loaded and used at the runtime.

There is another part of the plugin configuration though. If you looked at the Writing Plugin Code guide
you can remember the Map settings processing parameter. This is a map of properties you can set in the
configuration file and these setting will be passed to the plugin at the processing time.

Again init.properties is the place to put the stuff. These kind of properties start with a string: sess-man/
plugins-conf/, then you add your plugin ID and at the end and follow it with key and value pair for your
setting:

sess-man/plugins-conf/pluginID/key1=val1
sess-man/plugins-conf/pluginID/key2=val2
sess-man/plugins-conf/pluginID/key3=val3

It is possible to provide settings for a few plugins within one configuration string by specifying multiple
pluginIDs separated with a comma like below:

sess-man/plugins-conf/plugin1,plugin2,plugin3/key1=val1

This will make key/pair setting available only to listed plugins, in above case plugin1, plugin2 and plugin3.

Last but not least - in case you have omitted plugin ID:

sess-man/plugins-conf/key1=val1

then the configured key-value pair will be a global/common plugin setting available to all loaded plugins.

How Packets are Processed by the SM and Plu-
gins

For Tigase server plugin development it is important to understand how it all works. There are different
kind of plugins responsible for processing packets at different stages of the data flow. Please read the
introduction below before proceeding to the actual coding part.

Introduction
In Tigase server plugins are pieces of code responsible for processing particular XMPP stanzas. A separate
plugin might be responsible for processing messages, a different one for processing presences, a separate
plugins responsible for iq roster, and a different one for iq version and so on.

A plugin provides information about what exact XML element(s) name(s) with xmlns it is interested in.
So you can create a plugin which is interested in all packets containing caps child.

There might be no plugin for a particular stanza element, in this case the default action is used which is
simple forwarding stanza to a destination address. There might be also more than one plugin for a specific

Plugin Development

64

XML element and then they all process the same stanza simultaneously in separate threads so there is no
guarantee on the order in which the stanza is processed by a different plugins.

Each stanza goes through the Session Manager component which processes packets in a few steps. Have
a look at the picture below:

The picture shows that each stanza is processed by the session manager in 4 steps:

1. Pre-processing - All loaded pre-processors receive the packet for processing. They work within session
manager thread and they have no internal queue for processing. As they work within Session Manager
thread it is important that they limit processing time to absolute minimum as they may affect the Session
Manager performance. The intention for the pre-processors is to use them for packet blocking. If the
pre-processing result is true then the packet is blocked and no further processing is performed.

2. Processing - This is the next step the packet gets through if it wasn’t blocked by any of the pre-proces-
sors. It gets inserted to all processors queues with requested interest in this particular XML element.
Each processor works in a separate thread and has own internal fixed size processing queue.

3. Post-processing - If there is no processor for the stanza then the packet goes through all post-processors.
The last post-processor that is built into session manager post-processor tries to apply a default action
to a packet which hasn’t been processed in step 2. Normally the default action is just forwarding the
packet to a destination. Most commonly it is applied to <message/> packets.

4. Finally, if any of above 3 steps produced output/result packets all of them go through all filters which
may or may not block them.

An important thing to note is that we have two kinds or two places where packets may be blocked or
filtered out. One place is before packet is processed by the plugin and another place is after processing
where filtering is applied to all results generated by the processor plugins.

It is also important to note that session manager and processor plugins act as packet consumers. The packet
is taken for processing and once processing is finished the packet is destroyed. Therefore to forward a
packet to a destination one of the processor must create a copy of the packet, set all properties and attributes
and return it as a processing result. Of course processor can generate any number of packets as a result.
Result packets can be generated in any of above 4 steps of the processing. Have a look at the picture below:

Plugin Development

65

If the packet P1 is sent from outside of the server, for example to a user on another server or to some
component (MUC, PubSub, transport), then one of the processor must create a copy (P2) of the packet and
set all attributes and destination addresses correctly. Packet P1 has been consumed by the session manager
during processing and a new packet has been generated by one of the plugins.

The same of course happens on the way back from the component to the user:

Plugin Development

66

The packet from the component is processed and one of the plugins must generate a copy of the packet
to deliver it to the user. Of course packet forwarding is a default action which is applied when there is no
plugin for the particular packet.

It is implemented this way because the input packet P1 can be processed by many plugins at the same time
therefore the packet should be in fact immutable and must not change once it got to the session manager
for processing.

The most obvious processing work flow is when a user sends request to the server and expects a response
from the server:

Plugin Development

67

This design has one surprising consequence though. If you look at the picture below showing communica-
tion between 2 users you can see that the packet is copied twice before it is delivered to a final destination:

The packet has to be processed twice by the session manager. The first time it is processed on behalf
of the User A as an outgoing packet and the second time it is processed on behalf of the User B as an
incoming packet.

This is to make sure the User A has permission to send a packet out and all processing is applied to the
packet and also to make sure that User B has permission to receive the packet and all processing is applied.
If, for example, the User B is offline there is an offline message processor which should send the packet
to a database instead of User B.

SASL Custom Mechanisms and Configuration
This API is available from Tigase XMPP Server version 5.2.0 or later on our current master branch.

Note that API is under active development. This description may be updated at any time.

Basic SASL Configuration
SASL implementation in Tigase XMPP Server is compatible with Java API, the same exact interfaces
are used.

The SASL implementation consists of following parts:

1. mechanism

2. CallbackHandler

Properties list for SASL plugin (sess-man/plugins-conf/urn\:ietf\:params\:xml\:ns\:xmpp-sasl):

Property Description

Plugin Development

68

factory A factory class for SASL mechanisms. De-
tailed description at Mechanisms configura-
tion

callbackhandler A default callback handler class. Detailed de-
scription at CallbackHandler configuration

callbackhandler-${MECHANISM} A callback handler class for a particular
mechanism. Detailed description at Callback-
Handler configuration

mechanism-selector A class for filtering SASL mechanisms avail-
able in a stream. Detailed description at Se-
lecting mechanisms

Mechanisms Configuration

To add a new mechanism, a new factory for the mechanism has to be registered. It can be done with a new
line in the init.properties file like this one:

sess-man/plugins-conf/urn\:ietf\:params\:xml\:ns\:xmpp-sasl/
factory=com.example.OwnFactory

The class must implement the SaslServerFactory interface. All mechanisms returned by get-
MechanismNames() method will be registered automatically.

The default factory that is available and registered by default is
tigase.auth.TigaseSaslServerFactory which provides PLAIN and ANONYMOUS mecha-
nisms.

CallbackHandler Configuration

The CallbackHandler is a helper class used for loading/retrieving authentication data from data repos-
itory and providing them to a mechanism.

To register a new callback handler a new line in the init.properties file like this one has to be added:

sess-man/plugins-conf/urn\:ietf\:params\:xml\:ns\:xmpp-sasl/
callbackhandler=com.example.DefaultCallbackHandler

It is also possible to register different callback handlers for different mechanisms:

sess-man/plugins-conf/urn\:ietf\:params\:xml\:ns\:xmpp-sasl/
callbackhandler-PLAIN=com.example.PlainCallbackHandler

sess-man/plugins-conf/urn\:ietf\:params\:xml\:ns\:xmpp-sasl/
callbackhandler-OAUTH=com.example.OAuthCallbackHandler

During the authentication process, Tigase server always checks for a handler specific to selected mecha-
nisms, and if there is no specific handler the default one is used.

Selecting Mechanisms Available in the Stream

The tigase.auth.MechanismSelector interface is used for selecting mechanisms available in a
stream. Method filterMechanisms() should return a collection with mechanisms available based
on:

Plugin Development

69

1. all registered SASL factories

2. XMPP session data (from XMPPResourceConnection class)

The default selector returns mechanisms from Tigase’s default factory (TigaseSaslServerFacto-
ry) only.

It is possible to use a custom selector by specifying it’s class int the init.properties file:

sess-man/plugins-conf/urn\:ietf\:params\:xml\:ns\:xmpp-sasl/
mechanism-selector=com.example.OwnSelector

Logging/Authentication
After the XMPP stream is opened by a client, the server checks which SASL mechanisms are available
for the XMPP session. Depending on whether the stream is encrypted or not, depending on the domain,
the server can present different available authentication mechanisms. MechanismSelector is responsible
for choosing mechanisms. List of allowed mechanisms is stored in the XMPP session object.

When the client/user begins the authentication procedure it uses one particular mechanism. It must use one
of the mechanisms provided by the server as available for this session. The server checks whether mecha-
nisms used by the client is on the list of allowed mechanisms. It the check is successful, the server creates
SaslServer class instance and proceeds with exchanging authentication information. Authentication
data is different depending on the mechanism used.

When the SASL authentication is completed without any error, Tigase server should have authorized user
name or authorized BareJID. In the first case, the server automatically builds user’s JID based on the
domain used in the stream opening element in to attribute.

If, after a successful authentication, method call: getNegotiatedProperty("IS_ANONYMOUS")
returns Boolean.TRUE then the user session is marked as anonymous. For valid and registered users
this can be used for cases when we do not want to load any user data such as roster, vcard, privacy lists
and so on. This is a performance and resource usage implication and can be useful for use cases such as
support chat. The authorization is performed based on the client database but we do not need to load any
XMPP specific data for the user’s session.

More details about implementation can be found in the custom mechanisms development section.

Built-in Mechanisms
PLAIN

TODO!

ANONYMOUS

TODO!

Custom Mechanisms Development

Mechanism

getAuthorizationID() method from SaslServer class should return bare JID authorized user.
In case that the method returns only user name such as romeo for example, the server automatically ap-

Plugin Development

70

pends domain name to generate a valid BareJID: romeo@example.com. In case the method returns a full,
valid BareJID, the server does not change anything.

handleLogin() method from SessionManagerHandler will be called with user’s Bare JID pro-
vided by getAuthorizationID() (or created later using stream domain name).

CallbackHandler

For each session authorization, the server creates a new and separate empty handler. Factory which creates
handler instance allows to inject different objects to the handler, depending on interfaces implemented by
the handler class:

• AuthRepositoryAware - injects AuthRepository;

• DomainAware - injects domain name within which the user attempts to authenticate

• NonAuthUserRepositoryAware - injects NonAuthUserRepository, although I have no
idea what for…

General Remarks

JabberIqAuth used for non-SASL authentication mechanisms uses the same callback as the SASL
mechanisms.

Methods auth in Repository interfaces will be deprecated. These interfaces will be treated as user
details providers only. There will be new methods available which will allow for additional login opera-
tions on the database such as last successful login recording.

Known Problems

Because JabberIqAuth is initialized separately, we strongly recommend to use more general prefix
in init.properties:

sess-man/plugins-conf/${KEY}=${VALUE}

instead of

sess-man/plugins-conf/urn\:ietf\:params\:xml\:ns\:xmpp-sasl/${KEY}=${VALUE}

If JabberIqAuth is disabled, then this is not necessary.

71

Chapter 6. Using Maven
Documents Describing Maven Use with the Tigase Projects

Setting up Maven in Windows
Here at Tigase, we employ Apache Maven to download latest builds, compile codes for export, and check
for errors in the code during build. This guide will go over installing and running Maven from a Windows
operating environment. We will consider windows versions 7, 8, and 8.1 for this guide. Because Maven
does not come with an installer, there is a manual install process which might be a bit daunting for the
new user, but setup and use is fairly simple.

Requirements

1. Maven requires Java Development Kit (JDK) 6 or later. As Tigase requires the latest JDK to run, that
will do for our purposes. If you haven’t installed it yet, download the installer from this website [http://
www.oracle.com/technetwork/java/javase/downloads/index.html]. Once you install JDK and restart
your machine, be sure that you have the JAVA_HOME variable entered into Environment Variables
so calls to Java will work from the command line.

2. Download the Maven package from here [https://maven.apache.org/download.cgi] and unpack it into
a directory of your choice. For this guide we will use C:\Maven\ .

Setting up Environment Variables

The Environment Variables panel is brought up from the Control Panel by clicking System and Security

> System > Advanced System Settings. Now click the button at the
bottom of the panel and the Environment Variables panel will show.

IMPORTANT NOTICE: CHANGING THESE SETTINGS CAN BREAK OTHER FUNCTIONS
IN THE OPERATING SYSTEM. DO NOT FOLLOW THIS GUIDE IF YOU DO NOT KNOW
WHAT YOU ARE DOING!

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi

Using Maven

72

We need to first add two variable paths to the System variables to account for Maven’s install location. As
there are some programs that look for M2_HOME, and others that look for MAVEN_HOME, it’s easier
to just add both and have all the bases covered.

Click on New…

Using Maven

73

For the Name, use M2_HOME, and for the variable enter the path to maven, which in this case is

C:\Maven

Create another new variable with the MAVEN_HOME name and add the same directory. These variable
values just point to where you have unpacked maven, so they do not have to be in the C directory.

Go down to the system variables dialog and select Path, then click on Edit. The Path variables are separated
by semicolons, find the end of the Variable value string, and add the following after the last entry:

;%M2_HOME%\bin;%MAVEN_HOME%\bin;

We have added two variables using the %% wildcards surrounding our Variable names from earlier.

Testing Maven

Now we must test the command line to be sure everything installed correctly. Bring up the command line
either by typing cmd in search, or navigating the start menu.

From the prompt, you do not need to change directory as setting Path allows you to reference it. Type the
following command: mvn -v

something like this should show up

Apache Maven 3.3.3 (7994120775791599e205a5524ec3e0dfe41d4a06; 2015-04-22T04:57:3
7-07:00)
Maven home: C:\Maven
Java version: 1.8.0_45, vendor: Oracle Corporation
Java home: C:\Program Files\Java\jdk1.8.0_45\jre
Default locale: en_US, platform encoding: Cp1252
OS name: -"windows 7", version: -"6.1", arch: -"amd64", family: -"dos"

If you see this message, success! You have finished installation and are ready to use Maven! If not,
go back on your settings and insure that JDK is installed, and the JAVA_HOME, M2_HOME, and
MAVEN_HOME variables are set properly.

Using Maven

74

A Very Short Maven Guide
If you don’t use Maven [http://maven.apache.org/] at all or use it once a year you may find the document
a useful maven commands reminder:

Snapshot Compilation and Snapshot Package Genera-
tion

• mvn compile - compilation of the snapshot package

• mvn package - create snapshot jar file

• mvn install - install in local repository shanpshot jar file

• mvn deploy - deploy to the remote repository snapshot jar file

Release Compilation, Generation
• mvn release:prepare prepare the project for a new version release

• mvn release:perform execute new version release generation

Generating tar.gz, tar.bz2 File With Sources Only
• mvn -DdescriptorId=src assembly:assembly

Any of these commands will work when your commandline is in a directory with a pom.xml file. This
file will instruct what Maven will do.

Maven 2.x Support
Addendum: for a more recent guide please follow Tigase XMPP Server 5.2.0 and Later - Compilation and
Generating Distribution Packages.

Thanks to bmalkow [http://www.tigase.org/user/2] you can now build Tigase server from sources using
Maven 2.x [http://maven.apache.org/] tool. This should greatly simplify first steps with Tigase code and
it was requested by many of those trying to get the server running from sources. Maven repository with
Tigase packages is located at address: maven.tigase.org [http://maven.tigase.org/]. Now all you need to
compile sources and generate packages needed to run the server is just a few simple steps below:

1. Download and install Maven 2.x

2. Checkout Tigase server sources from Subversion [http://www.tigase.org/content/=] repository:

svn co https://svn.tigase.org/reps/tigase-server/trunk/ tigase-server

1. Now go to directory with server code:

cd tigase-server

1. And run maven command to generate server package:

mvn assembly:assembly

http://maven.apache.org/
http://maven.apache.org/
http://www.tigase.org/user/2
http://www.tigase.org/user/2
http://maven.apache.org/
http://maven.apache.org/
http://maven.tigase.org/
http://maven.tigase.org/
http://www.tigase.org/content/=
http://www.tigase.org/content/=

Using Maven

75

1. After maven finished his work there should be new subdirectory created: target. Go to this directory
now:

cd target/

1. and list content of this directory. On Linux, Unix system:

ls --l

+ On MS Windows system:

+

dir

1. You should see at least 2 files like these:

tigase-server-2.4.0-SNAPSHOT-prodenv.tar.gz
tigase-server-2.4.0-SNAPSHOT-prodenv.zip

2. Unpack one of these files whichever you like:

tar --xzvf tigase-server-2.4.0-SNAPSHOT-prodenv.tar.gz

or

unzip tigase-server-2.4.0-SNAPSHOT-prodenv.zip

3. New directory will be created in our case it will be: tigase-server-2.4.0-SNAPSHOT/. Now
go to this directory:

cd tigase-server-2.4.0-SNAPSHOT/

4. Now almost everything is ready to run the server. Almost because sometimes on Unix like (including
Linux) operating systems you have to change script execution bit before you can run it:

chmod u+x bin/*

5. Now you can run Tigase server:

./bin/tigase.sh run etc/tigase.conf

You can get a few warnings about missing configuration file (which will be automatically created) and
user repository file (which will be automatically created when you register first user).

For your convenience there are a few other startup files in etc/ directory. You can look and modify them
according to your needs.

76

Chapter 7. Tests
Tests

Tests are very important part of Tigase server development process.

Each release goes through fully automated testing process. All server functions are considered implement-
ed only when they pass the testing cycle. Tigase test suite is used for all our automatic tests which allows
to define different test scenarios.

There is no tweaking on databases for tests. All databases are installed in a standard way and run with
default settings. Databases are cleared each time before the test cycle starts.

There are no modifications needed to be made to Tigase’s configuration file as well. All tests are performed
on a default configuration generated by the configuration wizards.

The server is tested in all supported environments:

1. XMLDB - tests with built-in simple XML database. This is a simple and efficient solution for small
installations. It is recommended for services with up to 100 user accounts although it has been success-
fully tested with 10,000 user accounts.

2. MySQL - tests with a MySQL [http://www.mysql.com/] database. Much slower than XMLDB but may
handle many more user accounts.

3. PostgreSQL - tests with a PostgreSQL [http://www.postgresql.org/] database. Again it is much slower
than XMLDB but may handle much more user accounts. This is basically exactly the same code as for
MySQL database (SQL Connector) but tests are executed to make sure the code is compatible with all
supported SQL databases and to compare performance.

4. Distributed - is a test for distributed installation where c2s and s2s components run on separated ma-
chine which connects using external an component protocol (XEP-0114 [http://www.xmpp.org/exten-
sions/xep-0114.html]) to another machine with SessionManager running.

Functional Tests
Basic checking to see if all the functions work at correctly. These tests are performed every time the code
is sent to source repository.

Version XMLDB MySQL PGSQL Distributed

3.3.2-b889 00:00:12
[tests/3.3.2-b889/
func/xmldb/func-
tional-tests.html]

00:00:17
[tests/3.3.2-b889/
func/mysql/func-
tional-tests.html]

00:00:17
[tests/3.3.2-b889/
func/pgsql/func-
tional-tests.html]

none

3.3.2-b880 00:00:13
[tests/3.3.2-b880/
func/xmldb/func-
tional-tests.html]

00:00:15
[tests/3.3.2-b880/
func/mysql/func-
tional-tests.html]

00:00:15
[tests/3.3.2-b880/
func/pgsql/func-
tional-tests.html]

None

3.0.2-b700 00:00:22
[tests/3.0.2-b700/
func/xmldb/func-
tional-tests.html]

00:00:24
[tests/3.0.2-b700/
func/mysql/func-
tional-tests.html]

00:00:25
[tests/3.0.2-b700/
func/pgsql/func-
tional-tests.html]

00:00:25
[tests/3.0.2-
b700/func/sm-
mysql/function-
al-tests.html]

http://www.mysql.com/
http://www.mysql.com/
http://www.postgresql.org/
http://www.postgresql.org/
http://www.xmpp.org/extensions/xep-0114.html
http://www.xmpp.org/extensions/xep-0114.html
http://www.xmpp.org/extensions/xep-0114.html
tests/3.3.2-b889/func/xmldb/functional-tests.html
tests/3.3.2-b889/func/xmldb/functional-tests.html
tests/3.3.2-b889/func/xmldb/functional-tests.html
tests/3.3.2-b889/func/xmldb/functional-tests.html
tests/3.3.2-b889/func/mysql/functional-tests.html
tests/3.3.2-b889/func/mysql/functional-tests.html
tests/3.3.2-b889/func/mysql/functional-tests.html
tests/3.3.2-b889/func/mysql/functional-tests.html
tests/3.3.2-b889/func/pgsql/functional-tests.html
tests/3.3.2-b889/func/pgsql/functional-tests.html
tests/3.3.2-b889/func/pgsql/functional-tests.html
tests/3.3.2-b889/func/pgsql/functional-tests.html
tests/3.3.2-b880/func/xmldb/functional-tests.html
tests/3.3.2-b880/func/xmldb/functional-tests.html
tests/3.3.2-b880/func/xmldb/functional-tests.html
tests/3.3.2-b880/func/xmldb/functional-tests.html
tests/3.3.2-b880/func/mysql/functional-tests.html
tests/3.3.2-b880/func/mysql/functional-tests.html
tests/3.3.2-b880/func/mysql/functional-tests.html
tests/3.3.2-b880/func/mysql/functional-tests.html
tests/3.3.2-b880/func/pgsql/functional-tests.html
tests/3.3.2-b880/func/pgsql/functional-tests.html
tests/3.3.2-b880/func/pgsql/functional-tests.html
tests/3.3.2-b880/func/pgsql/functional-tests.html
tests/3.0.2-b700/func/xmldb/functional-tests.html
tests/3.0.2-b700/func/xmldb/functional-tests.html
tests/3.0.2-b700/func/xmldb/functional-tests.html
tests/3.0.2-b700/func/xmldb/functional-tests.html
tests/3.0.2-b700/func/mysql/functional-tests.html
tests/3.0.2-b700/func/mysql/functional-tests.html
tests/3.0.2-b700/func/mysql/functional-tests.html
tests/3.0.2-b700/func/mysql/functional-tests.html
tests/3.0.2-b700/func/pgsql/functional-tests.html
tests/3.0.2-b700/func/pgsql/functional-tests.html
tests/3.0.2-b700/func/pgsql/functional-tests.html
tests/3.0.2-b700/func/pgsql/functional-tests.html
tests/3.0.2-b700/func/sm-mysql/functional-tests.html
tests/3.0.2-b700/func/sm-mysql/functional-tests.html
tests/3.0.2-b700/func/sm-mysql/functional-tests.html
tests/3.0.2-b700/func/sm-mysql/functional-tests.html
tests/3.0.2-b700/func/sm-mysql/functional-tests.html

Tests

77

2.9.5-b606 00:00:22
[tests/2.9.5-b606/
func/xmldb/func-
tional-tests.html]

00:00:24
[tests/2.9.5-b606/
func/mysql/func-
tional-tests.html]

00:00:24
[tests/2.9.5-b606/
func/pgsql/func-
tional-tests.html]

00:00:24
[tests/2.9.5-
b606/func/sm-
mysql/function-
al-tests.html]

2.9.3-b548 00:00:22
[tests/2.9.3-b548/
func/xmldb/func-
tional-tests.html]

00:00:23
[tests/2.9.3-b548/
func/mysql/func-
tional-tests.html]

00:00:25
[tests/2.9.3-b548/
func/pgsql/func-
tional-tests.html]

00:00:25
[tests/2.9.3-
b548/func/sm-
mysql/function-
al-tests.html]

2.9.1-b528 00:00:21
[tests/2.9.1-b528/
func/xmldb/func-
tional-tests.html]

00:00:23
[tests/2.9.1-b528/
func/mysql/func-
tional-tests.html]

00:00:24
[tests/2.9.1-b528/
func/pgsql/func-
tional-tests.html]

00:00:25
[tests/2.9.1-
b528/func/sm-
mysql/function-
al-tests.html]

2.8.6-b434 00:00:21
[tests/2.8.6-b434/
func/xmldb/func-
tional-tests.html]

00:00:24
[tests/2.8.6-b434/
func/mysql/func-
tional-tests.html]

00:00:24
[tests/2.8.6-b434/
func/pgsql/func-
tional-tests.html]

00:00:25
[tests/2.8.6-
b434/func/sm-
mysql/function-
al-tests.html]

2.8.5-b422 00:00:21
[tests/2.8.5-b422/
func/xmldb/func-
tional-tests.html]

00:00:24
[tests/2.8.5-b422/
func/mysql/func-
tional-tests.html]

00:00:24
[tests/2.8.5-b422/
func/pgsql/func-
tional-tests.html]

00:00:26
[tests/2.8.5-
b422/func/sm-
mysql/function-
al-tests.html]

2.8.3-b409 00:00:27
[tests/2.8.3-b409/
func/xmldb/func-
tional-tests.html]

00:00:29
[tests/2.8.3-b409/
func/mysql/func-
tional-tests.html]

00:00:29
[tests/2.8.3-b409/
func/pgsql/func-
tional-tests.html]

00:00:32
[tests/2.8.3-
b409/func/sm-
mysql/function-
al-tests.html]

2.7.2-b378 00:00:30
[tests/2.7.2-b378/
func/xmldb/func-
tional-tests.html]

00:00:34
[tests/2.7.2-b378/
func/mysql/func-
tional-tests.html]

00:00:33
[tests/2.7.2-b378/
func/pgsql/func-
tional-tests.html]

00:00:35
[tests/2.7.2-
b378/func/sm-
mysql/function-
al-tests.html]

2.6.4-b300 00:00:30
[tests/2.6.4-b300/
func/xmldb/func-
tional-tests.html]

00:00:32
[tests/2.6.4-b300/
func/mysql/func-
tional-tests.html]

00:00:35
[tests/2.6.4-b300/
func/pgsql/func-
tional-tests.html]

00:00:39
[tests/2.6.4-
b300/func/sm-
mysql/function-
al-tests.html]

2.6.4-b295 00:00:29
[tests/2.6.4-b295/
func/xmldb/func-
tional-tests.html]

00:00:32
[tests/2.6.4-b295/
func/mysql/func-
tional-tests.html]

00:00:45
[tests/2.6.4-b295/
func/pgsql/func-
tional-tests.html]

00:00:36
[tests/2.6.4-
b295/func/sm-
mysql/function-
al-tests.html]

2.6.0-b287 00:00:31
[tests/2.6.0-b287/
func/xmldb/func-
tional-tests.html]

00:00:34
[tests/2.6.0-b287/
func/mysql/func-
tional-tests.html]

00:00:47
[tests/2.6.0-b287/
func/pgsql/func-
tional-tests.html]

00:00:43
[tests/2.6.0-
b287/func/sm-
mysql/function-
al-tests.html]

tests/2.9.5-b606/func/xmldb/functional-tests.html
tests/2.9.5-b606/func/xmldb/functional-tests.html
tests/2.9.5-b606/func/xmldb/functional-tests.html
tests/2.9.5-b606/func/xmldb/functional-tests.html
tests/2.9.5-b606/func/mysql/functional-tests.html
tests/2.9.5-b606/func/mysql/functional-tests.html
tests/2.9.5-b606/func/mysql/functional-tests.html
tests/2.9.5-b606/func/mysql/functional-tests.html
tests/2.9.5-b606/func/pgsql/functional-tests.html
tests/2.9.5-b606/func/pgsql/functional-tests.html
tests/2.9.5-b606/func/pgsql/functional-tests.html
tests/2.9.5-b606/func/pgsql/functional-tests.html
tests/2.9.5-b606/func/sm-mysql/functional-tests.html
tests/2.9.5-b606/func/sm-mysql/functional-tests.html
tests/2.9.5-b606/func/sm-mysql/functional-tests.html
tests/2.9.5-b606/func/sm-mysql/functional-tests.html
tests/2.9.5-b606/func/sm-mysql/functional-tests.html
tests/2.9.3-b548/func/xmldb/functional-tests.html
tests/2.9.3-b548/func/xmldb/functional-tests.html
tests/2.9.3-b548/func/xmldb/functional-tests.html
tests/2.9.3-b548/func/xmldb/functional-tests.html
tests/2.9.3-b548/func/mysql/functional-tests.html
tests/2.9.3-b548/func/mysql/functional-tests.html
tests/2.9.3-b548/func/mysql/functional-tests.html
tests/2.9.3-b548/func/mysql/functional-tests.html
tests/2.9.3-b548/func/pgsql/functional-tests.html
tests/2.9.3-b548/func/pgsql/functional-tests.html
tests/2.9.3-b548/func/pgsql/functional-tests.html
tests/2.9.3-b548/func/pgsql/functional-tests.html
tests/2.9.3-b548/func/sm-mysql/functional-tests.html
tests/2.9.3-b548/func/sm-mysql/functional-tests.html
tests/2.9.3-b548/func/sm-mysql/functional-tests.html
tests/2.9.3-b548/func/sm-mysql/functional-tests.html
tests/2.9.3-b548/func/sm-mysql/functional-tests.html
tests/2.9.1-b528/func/xmldb/functional-tests.html
tests/2.9.1-b528/func/xmldb/functional-tests.html
tests/2.9.1-b528/func/xmldb/functional-tests.html
tests/2.9.1-b528/func/xmldb/functional-tests.html
tests/2.9.1-b528/func/mysql/functional-tests.html
tests/2.9.1-b528/func/mysql/functional-tests.html
tests/2.9.1-b528/func/mysql/functional-tests.html
tests/2.9.1-b528/func/mysql/functional-tests.html
tests/2.9.1-b528/func/pgsql/functional-tests.html
tests/2.9.1-b528/func/pgsql/functional-tests.html
tests/2.9.1-b528/func/pgsql/functional-tests.html
tests/2.9.1-b528/func/pgsql/functional-tests.html
tests/2.9.1-b528/func/sm-mysql/functional-tests.html
tests/2.9.1-b528/func/sm-mysql/functional-tests.html
tests/2.9.1-b528/func/sm-mysql/functional-tests.html
tests/2.9.1-b528/func/sm-mysql/functional-tests.html
tests/2.9.1-b528/func/sm-mysql/functional-tests.html
tests/2.8.6-b434/func/xmldb/functional-tests.html
tests/2.8.6-b434/func/xmldb/functional-tests.html
tests/2.8.6-b434/func/xmldb/functional-tests.html
tests/2.8.6-b434/func/xmldb/functional-tests.html
tests/2.8.6-b434/func/mysql/functional-tests.html
tests/2.8.6-b434/func/mysql/functional-tests.html
tests/2.8.6-b434/func/mysql/functional-tests.html
tests/2.8.6-b434/func/mysql/functional-tests.html
tests/2.8.6-b434/func/pgsql/functional-tests.html
tests/2.8.6-b434/func/pgsql/functional-tests.html
tests/2.8.6-b434/func/pgsql/functional-tests.html
tests/2.8.6-b434/func/pgsql/functional-tests.html
tests/2.8.6-b434/func/sm-mysql/functional-tests.html
tests/2.8.6-b434/func/sm-mysql/functional-tests.html
tests/2.8.6-b434/func/sm-mysql/functional-tests.html
tests/2.8.6-b434/func/sm-mysql/functional-tests.html
tests/2.8.6-b434/func/sm-mysql/functional-tests.html
tests/2.8.5-b422/func/xmldb/functional-tests.html
tests/2.8.5-b422/func/xmldb/functional-tests.html
tests/2.8.5-b422/func/xmldb/functional-tests.html
tests/2.8.5-b422/func/xmldb/functional-tests.html
tests/2.8.5-b422/func/mysql/functional-tests.html
tests/2.8.5-b422/func/mysql/functional-tests.html
tests/2.8.5-b422/func/mysql/functional-tests.html
tests/2.8.5-b422/func/mysql/functional-tests.html
tests/2.8.5-b422/func/pgsql/functional-tests.html
tests/2.8.5-b422/func/pgsql/functional-tests.html
tests/2.8.5-b422/func/pgsql/functional-tests.html
tests/2.8.5-b422/func/pgsql/functional-tests.html
tests/2.8.5-b422/func/sm-mysql/functional-tests.html
tests/2.8.5-b422/func/sm-mysql/functional-tests.html
tests/2.8.5-b422/func/sm-mysql/functional-tests.html
tests/2.8.5-b422/func/sm-mysql/functional-tests.html
tests/2.8.5-b422/func/sm-mysql/functional-tests.html
tests/2.8.3-b409/func/xmldb/functional-tests.html
tests/2.8.3-b409/func/xmldb/functional-tests.html
tests/2.8.3-b409/func/xmldb/functional-tests.html
tests/2.8.3-b409/func/xmldb/functional-tests.html
tests/2.8.3-b409/func/mysql/functional-tests.html
tests/2.8.3-b409/func/mysql/functional-tests.html
tests/2.8.3-b409/func/mysql/functional-tests.html
tests/2.8.3-b409/func/mysql/functional-tests.html
tests/2.8.3-b409/func/pgsql/functional-tests.html
tests/2.8.3-b409/func/pgsql/functional-tests.html
tests/2.8.3-b409/func/pgsql/functional-tests.html
tests/2.8.3-b409/func/pgsql/functional-tests.html
tests/2.8.3-b409/func/sm-mysql/functional-tests.html
tests/2.8.3-b409/func/sm-mysql/functional-tests.html
tests/2.8.3-b409/func/sm-mysql/functional-tests.html
tests/2.8.3-b409/func/sm-mysql/functional-tests.html
tests/2.8.3-b409/func/sm-mysql/functional-tests.html
tests/2.7.2-b378/func/xmldb/functional-tests.html
tests/2.7.2-b378/func/xmldb/functional-tests.html
tests/2.7.2-b378/func/xmldb/functional-tests.html
tests/2.7.2-b378/func/xmldb/functional-tests.html
tests/2.7.2-b378/func/mysql/functional-tests.html
tests/2.7.2-b378/func/mysql/functional-tests.html
tests/2.7.2-b378/func/mysql/functional-tests.html
tests/2.7.2-b378/func/mysql/functional-tests.html
tests/2.7.2-b378/func/pgsql/functional-tests.html
tests/2.7.2-b378/func/pgsql/functional-tests.html
tests/2.7.2-b378/func/pgsql/functional-tests.html
tests/2.7.2-b378/func/pgsql/functional-tests.html
tests/2.7.2-b378/func/sm-mysql/functional-tests.html
tests/2.7.2-b378/func/sm-mysql/functional-tests.html
tests/2.7.2-b378/func/sm-mysql/functional-tests.html
tests/2.7.2-b378/func/sm-mysql/functional-tests.html
tests/2.7.2-b378/func/sm-mysql/functional-tests.html
tests/2.6.4-b300/func/xmldb/functional-tests.html
tests/2.6.4-b300/func/xmldb/functional-tests.html
tests/2.6.4-b300/func/xmldb/functional-tests.html
tests/2.6.4-b300/func/xmldb/functional-tests.html
tests/2.6.4-b300/func/mysql/functional-tests.html
tests/2.6.4-b300/func/mysql/functional-tests.html
tests/2.6.4-b300/func/mysql/functional-tests.html
tests/2.6.4-b300/func/mysql/functional-tests.html
tests/2.6.4-b300/func/pgsql/functional-tests.html
tests/2.6.4-b300/func/pgsql/functional-tests.html
tests/2.6.4-b300/func/pgsql/functional-tests.html
tests/2.6.4-b300/func/pgsql/functional-tests.html
tests/2.6.4-b300/func/sm-mysql/functional-tests.html
tests/2.6.4-b300/func/sm-mysql/functional-tests.html
tests/2.6.4-b300/func/sm-mysql/functional-tests.html
tests/2.6.4-b300/func/sm-mysql/functional-tests.html
tests/2.6.4-b300/func/sm-mysql/functional-tests.html
tests/2.6.4-b295/func/xmldb/functional-tests.html
tests/2.6.4-b295/func/xmldb/functional-tests.html
tests/2.6.4-b295/func/xmldb/functional-tests.html
tests/2.6.4-b295/func/xmldb/functional-tests.html
tests/2.6.4-b295/func/mysql/functional-tests.html
tests/2.6.4-b295/func/mysql/functional-tests.html
tests/2.6.4-b295/func/mysql/functional-tests.html
tests/2.6.4-b295/func/mysql/functional-tests.html
tests/2.6.4-b295/func/pgsql/functional-tests.html
tests/2.6.4-b295/func/pgsql/functional-tests.html
tests/2.6.4-b295/func/pgsql/functional-tests.html
tests/2.6.4-b295/func/pgsql/functional-tests.html
tests/2.6.4-b295/func/sm-mysql/functional-tests.html
tests/2.6.4-b295/func/sm-mysql/functional-tests.html
tests/2.6.4-b295/func/sm-mysql/functional-tests.html
tests/2.6.4-b295/func/sm-mysql/functional-tests.html
tests/2.6.4-b295/func/sm-mysql/functional-tests.html
tests/2.6.0-b287/func/xmldb/functional-tests.html
tests/2.6.0-b287/func/xmldb/functional-tests.html
tests/2.6.0-b287/func/xmldb/functional-tests.html
tests/2.6.0-b287/func/xmldb/functional-tests.html
tests/2.6.0-b287/func/mysql/functional-tests.html
tests/2.6.0-b287/func/mysql/functional-tests.html
tests/2.6.0-b287/func/mysql/functional-tests.html
tests/2.6.0-b287/func/mysql/functional-tests.html
tests/2.6.0-b287/func/pgsql/functional-tests.html
tests/2.6.0-b287/func/pgsql/functional-tests.html
tests/2.6.0-b287/func/pgsql/functional-tests.html
tests/2.6.0-b287/func/pgsql/functional-tests.html
tests/2.6.0-b287/func/sm-mysql/functional-tests.html
tests/2.6.0-b287/func/sm-mysql/functional-tests.html
tests/2.6.0-b287/func/sm-mysql/functional-tests.html
tests/2.6.0-b287/func/sm-mysql/functional-tests.html
tests/2.6.0-b287/func/sm-mysql/functional-tests.html

Tests

78

2.5.0-b279 00:00:30
[tests/2.5.0-b279/
func/xmldb/func-
tional-tests.html]

00:00:34
[tests/2.5.0-b279/
func/mysql/func-
tional-tests.html]

00:00:45
[tests/2.5.0-b279/
func/pgsql/func-
tional-tests.html]

00:00:43
[tests/2.5.0-
b279/func/sm-
mysql/function-
al-tests.html]

2.4.0-b263 00:00:29
[tests/2.4.0-b263/
func/xmldb/func-
tional-tests.html]

00:00:33
[tests/2.4.0-b263/
func/mysql/func-
tional-tests.html]

00:00:45
[tests/2.4.0-b263/
func/pgsql/func-
tional-tests.html]

00:00:44
[tests/2.4.0-
b263/func/sm-
mysql/function-
al-tests.html]

2.3.4-b226 None 00:00:48 [tests/
function-
al-tests.html]

None None

Performance Tests

Checking to see whether the function performs well enough.

Version XMLDB MySQL PGSQL Distributed

3.3.2-b889 00:12:17
[tests/3.3.2-
b889/perf/
xmldb/perfor-
mance-tests.html]

00:13:42
[tests/3.3.2-
b889/perf/
mysql/perfor-
mance-tests.html]

00:17:10
[tests/3.3.2-
b889/perf/
pgsql/perfor-
mance-tests.html]

none

3.3.2-b880 00:13:39
[tests/3.3.2-
b880/perf/
xmldb/perfor-
mance-tests.html]

00:14:09
[tests/3.3.2-
b880/perf/
mysql/perfor-
mance-tests.html]

00:17:39
[tests/3.3.2-
b880/perf/
pgsql/perfor-
mance-tests.html]

None

3.0.2-b700 00:10:26
[tests/3.0.2-
b700/perf/
xmldb/perfor-
mance-tests.html]

00:11:00
[tests/3.0.2-
b700/perf/
mysql/perfor-
mance-tests.html]

00:12:08
[tests/3.0.2-
b700/perf/
pgsql/perfor-
mance-tests.html]

00:24:05
[tests/3.0.2-
b700/perf/sm-
mysql/perfor-
mance-tests.html]

2.9.5-b606 00:09:54
[tests/2.9.5-
b606/perf/
xmldb/perfor-
mance-tests.html]

00:11:18
[tests/2.9.5-
b606/perf/
mysql/perfor-
mance-tests.html]

00:37:08
[tests/2.9.5-
b606/perf/
pgsql/perfor-
mance-tests.html]

00:16:20
[tests/2.9.5-
b606/perf/sm-
mysql/perfor-
mance-tests.html]

2.9.3-b548 00:10:00
[tests/2.9.3-
b548/perf/
xmldb/perfor-
mance-tests.html]

00:11:29
[tests/2.9.3-
b548/perf/
mysql/perfor-
mance-tests.html]

00:36:43
[tests/2.9.3-
b548/perf/
pgsql/perfor-
mance-tests.html]

00:16:47
[tests/2.9.3-
b548/perf/sm-
mysql/perfor-
mance-tests.html]

2.9.1-b528 00:09:46
[tests/2.9.1-
b528/perf/
xmldb/perfor-
mance-tests.html]

00:11:15
[tests/2.9.1-
b528/perf/
mysql/perfor-
mance-tests.html]

00:36:12
[tests/2.9.1-
b528/perf/
pgsql/perfor-
mance-tests.html]

00:16:36
[tests/2.9.1-
b528/perf/sm-
mysql/perfor-
mance-tests.html]

tests/2.5.0-b279/func/xmldb/functional-tests.html
tests/2.5.0-b279/func/xmldb/functional-tests.html
tests/2.5.0-b279/func/xmldb/functional-tests.html
tests/2.5.0-b279/func/xmldb/functional-tests.html
tests/2.5.0-b279/func/mysql/functional-tests.html
tests/2.5.0-b279/func/mysql/functional-tests.html
tests/2.5.0-b279/func/mysql/functional-tests.html
tests/2.5.0-b279/func/mysql/functional-tests.html
tests/2.5.0-b279/func/pgsql/functional-tests.html
tests/2.5.0-b279/func/pgsql/functional-tests.html
tests/2.5.0-b279/func/pgsql/functional-tests.html
tests/2.5.0-b279/func/pgsql/functional-tests.html
tests/2.5.0-b279/func/sm-mysql/functional-tests.html
tests/2.5.0-b279/func/sm-mysql/functional-tests.html
tests/2.5.0-b279/func/sm-mysql/functional-tests.html
tests/2.5.0-b279/func/sm-mysql/functional-tests.html
tests/2.5.0-b279/func/sm-mysql/functional-tests.html
tests/2.4.0-b263/func/xmldb/functional-tests.html
tests/2.4.0-b263/func/xmldb/functional-tests.html
tests/2.4.0-b263/func/xmldb/functional-tests.html
tests/2.4.0-b263/func/xmldb/functional-tests.html
tests/2.4.0-b263/func/mysql/functional-tests.html
tests/2.4.0-b263/func/mysql/functional-tests.html
tests/2.4.0-b263/func/mysql/functional-tests.html
tests/2.4.0-b263/func/mysql/functional-tests.html
tests/2.4.0-b263/func/pgsql/functional-tests.html
tests/2.4.0-b263/func/pgsql/functional-tests.html
tests/2.4.0-b263/func/pgsql/functional-tests.html
tests/2.4.0-b263/func/pgsql/functional-tests.html
tests/2.4.0-b263/func/sm-mysql/functional-tests.html
tests/2.4.0-b263/func/sm-mysql/functional-tests.html
tests/2.4.0-b263/func/sm-mysql/functional-tests.html
tests/2.4.0-b263/func/sm-mysql/functional-tests.html
tests/2.4.0-b263/func/sm-mysql/functional-tests.html
tests/functional-tests.html
tests/functional-tests.html
tests/functional-tests.html
tests/functional-tests.html
tests/3.3.2-b889/perf/xmldb/performance-tests.html
tests/3.3.2-b889/perf/xmldb/performance-tests.html
tests/3.3.2-b889/perf/xmldb/performance-tests.html
tests/3.3.2-b889/perf/xmldb/performance-tests.html
tests/3.3.2-b889/perf/xmldb/performance-tests.html
tests/3.3.2-b889/perf/mysql/performance-tests.html
tests/3.3.2-b889/perf/mysql/performance-tests.html
tests/3.3.2-b889/perf/mysql/performance-tests.html
tests/3.3.2-b889/perf/mysql/performance-tests.html
tests/3.3.2-b889/perf/mysql/performance-tests.html
tests/3.3.2-b889/perf/pgsql/performance-tests.html
tests/3.3.2-b889/perf/pgsql/performance-tests.html
tests/3.3.2-b889/perf/pgsql/performance-tests.html
tests/3.3.2-b889/perf/pgsql/performance-tests.html
tests/3.3.2-b889/perf/pgsql/performance-tests.html
tests/3.3.2-b880/perf/xmldb/performance-tests.html
tests/3.3.2-b880/perf/xmldb/performance-tests.html
tests/3.3.2-b880/perf/xmldb/performance-tests.html
tests/3.3.2-b880/perf/xmldb/performance-tests.html
tests/3.3.2-b880/perf/xmldb/performance-tests.html
tests/3.3.2-b880/perf/mysql/performance-tests.html
tests/3.3.2-b880/perf/mysql/performance-tests.html
tests/3.3.2-b880/perf/mysql/performance-tests.html
tests/3.3.2-b880/perf/mysql/performance-tests.html
tests/3.3.2-b880/perf/mysql/performance-tests.html
tests/3.3.2-b880/perf/pgsql/performance-tests.html
tests/3.3.2-b880/perf/pgsql/performance-tests.html
tests/3.3.2-b880/perf/pgsql/performance-tests.html
tests/3.3.2-b880/perf/pgsql/performance-tests.html
tests/3.3.2-b880/perf/pgsql/performance-tests.html
tests/3.0.2-b700/perf/xmldb/performance-tests.html
tests/3.0.2-b700/perf/xmldb/performance-tests.html
tests/3.0.2-b700/perf/xmldb/performance-tests.html
tests/3.0.2-b700/perf/xmldb/performance-tests.html
tests/3.0.2-b700/perf/xmldb/performance-tests.html
tests/3.0.2-b700/perf/mysql/performance-tests.html
tests/3.0.2-b700/perf/mysql/performance-tests.html
tests/3.0.2-b700/perf/mysql/performance-tests.html
tests/3.0.2-b700/perf/mysql/performance-tests.html
tests/3.0.2-b700/perf/mysql/performance-tests.html
tests/3.0.2-b700/perf/pgsql/performance-tests.html
tests/3.0.2-b700/perf/pgsql/performance-tests.html
tests/3.0.2-b700/perf/pgsql/performance-tests.html
tests/3.0.2-b700/perf/pgsql/performance-tests.html
tests/3.0.2-b700/perf/pgsql/performance-tests.html
tests/3.0.2-b700/perf/sm-mysql/performance-tests.html
tests/3.0.2-b700/perf/sm-mysql/performance-tests.html
tests/3.0.2-b700/perf/sm-mysql/performance-tests.html
tests/3.0.2-b700/perf/sm-mysql/performance-tests.html
tests/3.0.2-b700/perf/sm-mysql/performance-tests.html
tests/2.9.5-b606/perf/xmldb/performance-tests.html
tests/2.9.5-b606/perf/xmldb/performance-tests.html
tests/2.9.5-b606/perf/xmldb/performance-tests.html
tests/2.9.5-b606/perf/xmldb/performance-tests.html
tests/2.9.5-b606/perf/xmldb/performance-tests.html
tests/2.9.5-b606/perf/mysql/performance-tests.html
tests/2.9.5-b606/perf/mysql/performance-tests.html
tests/2.9.5-b606/perf/mysql/performance-tests.html
tests/2.9.5-b606/perf/mysql/performance-tests.html
tests/2.9.5-b606/perf/mysql/performance-tests.html
tests/2.9.5-b606/perf/pgsql/performance-tests.html
tests/2.9.5-b606/perf/pgsql/performance-tests.html
tests/2.9.5-b606/perf/pgsql/performance-tests.html
tests/2.9.5-b606/perf/pgsql/performance-tests.html
tests/2.9.5-b606/perf/pgsql/performance-tests.html
tests/2.9.5-b606/perf/sm-mysql/performance-tests.html
tests/2.9.5-b606/perf/sm-mysql/performance-tests.html
tests/2.9.5-b606/perf/sm-mysql/performance-tests.html
tests/2.9.5-b606/perf/sm-mysql/performance-tests.html
tests/2.9.5-b606/perf/sm-mysql/performance-tests.html
tests/2.9.3-b548/perf/xmldb/performance-tests.html
tests/2.9.3-b548/perf/xmldb/performance-tests.html
tests/2.9.3-b548/perf/xmldb/performance-tests.html
tests/2.9.3-b548/perf/xmldb/performance-tests.html
tests/2.9.3-b548/perf/xmldb/performance-tests.html
tests/2.9.3-b548/perf/mysql/performance-tests.html
tests/2.9.3-b548/perf/mysql/performance-tests.html
tests/2.9.3-b548/perf/mysql/performance-tests.html
tests/2.9.3-b548/perf/mysql/performance-tests.html
tests/2.9.3-b548/perf/mysql/performance-tests.html
tests/2.9.3-b548/perf/pgsql/performance-tests.html
tests/2.9.3-b548/perf/pgsql/performance-tests.html
tests/2.9.3-b548/perf/pgsql/performance-tests.html
tests/2.9.3-b548/perf/pgsql/performance-tests.html
tests/2.9.3-b548/perf/pgsql/performance-tests.html
tests/2.9.3-b548/perf/sm-mysql/performance-tests.html
tests/2.9.3-b548/perf/sm-mysql/performance-tests.html
tests/2.9.3-b548/perf/sm-mysql/performance-tests.html
tests/2.9.3-b548/perf/sm-mysql/performance-tests.html
tests/2.9.3-b548/perf/sm-mysql/performance-tests.html
tests/2.9.1-b528/perf/xmldb/performance-tests.html
tests/2.9.1-b528/perf/xmldb/performance-tests.html
tests/2.9.1-b528/perf/xmldb/performance-tests.html
tests/2.9.1-b528/perf/xmldb/performance-tests.html
tests/2.9.1-b528/perf/xmldb/performance-tests.html
tests/2.9.1-b528/perf/mysql/performance-tests.html
tests/2.9.1-b528/perf/mysql/performance-tests.html
tests/2.9.1-b528/perf/mysql/performance-tests.html
tests/2.9.1-b528/perf/mysql/performance-tests.html
tests/2.9.1-b528/perf/mysql/performance-tests.html
tests/2.9.1-b528/perf/pgsql/performance-tests.html
tests/2.9.1-b528/perf/pgsql/performance-tests.html
tests/2.9.1-b528/perf/pgsql/performance-tests.html
tests/2.9.1-b528/perf/pgsql/performance-tests.html
tests/2.9.1-b528/perf/pgsql/performance-tests.html
tests/2.9.1-b528/perf/sm-mysql/performance-tests.html
tests/2.9.1-b528/perf/sm-mysql/performance-tests.html
tests/2.9.1-b528/perf/sm-mysql/performance-tests.html
tests/2.9.1-b528/perf/sm-mysql/performance-tests.html
tests/2.9.1-b528/perf/sm-mysql/performance-tests.html

Tests

79

2.8.6-b434 00:10:02
[tests/2.8.6-
b434/perf/
xmldb/perfor-
mance-tests.html]

00:11:45
[tests/2.8.6-
b434/perf/
mysql/perfor-
mance-tests.html]

00:36:36
[tests/2.8.6-
b434/perf/
pgsql/perfor-
mance-tests.html]

00:17:36
[tests/2.8.6-
b434/perf/sm-
mysql/perfor-
mance-tests.html]

2.8.5-b422 00:12:37
[tests/2.8.5-
b422/perf/
xmldb/perfor-
mance-tests.html]

00:14:40
[tests/2.8.5-
b422/perf/
mysql/perfor-
mance-tests.html]

00:38:59
[tests/2.8.5-
b422/perf/
pgsql/perfor-
mance-tests.html]

00:21:40
[tests/2.8.5-
b422/perf/sm-
mysql/perfor-
mance-tests.html]

2.8.3-b409 00:12:32
[tests/2.8.3-
b409/perf/
xmldb/perfor-
mance-tests.html]

00:14:26
[tests/2.8.3-
b409/perf/
mysql/perfor-
mance-tests.html]

00:37:57
[tests/2.8.3-
b409/perf/
pgsql/perfor-
mance-tests.html]

00:21:26
[tests/2.8.3-
b409/perf/sm-
mysql/perfor-
mance-tests.html]

2.7.2-b378 00:12:28
[tests/2.7.2-
b378/perf/
xmldb/perfor-
mance-tests.html]

00:14:57
[tests/2.7.2-
b378/perf/
mysql/perfor-
mance-tests.html]

00:37:09
[tests/2.7.2-
b378/perf/
pgsql/perfor-
mance-tests.html]

00:22:20
[tests/2.7.2-
b378/perf/sm-
mysql/perfor-
mance-tests.html]

2.6.4-b300 00:12:46
[tests/2.6.4-
b300/perf/
xmldb/perfor-
mance-tests.html]

00:14:59
[tests/2.6.4-
b300/perf/
mysql/perfor-
mance-tests.html]

00:36:56
[tests/2.6.4-
b300/perf/
pgsql/perfor-
mance-tests.html]

00:35:00
[tests/2.6.4-
b300/perf/sm-
mysql/perfor-
mance-tests.html]

2.6.4-b295 00:12:23
[tests/2.6.4-
b295/perf/
xmldb/perfor-
mance-tests.html]

00:14:59
[tests/2.6.4-
b295/perf/
mysql/perfor-
mance-tests.html]

00:42:24
[tests/2.6.4-
b295/perf/
pgsql/perfor-
mance-tests.html]

00:30:18
[tests/2.6.4-
b295/perf/sm-
mysql/perfor-
mance-tests.html]

2.6.0-b287 00:13:50
[tests/2.6.0-
b287/perf/
xmldb/perfor-
mance-tests.html]

00:16:53
[tests/2.6.0-
b287/perf/
mysql/perfor-
mance-tests.html]

00:48:17
[tests/2.6.0-
b287/perf/
pgsql/perfor-
mance-tests.html]

00:49:06
[tests/2.6.0-
b287/perf/sm-
mysql/perfor-
mance-tests.html]

2.5.0-b279 00:13:29
[tests/2.5.0-
b279/perf/
xmldb/perfor-
mance-tests.html]

00:16:58
[tests/2.5.0-
b279/perf/
mysql/perfor-
mance-tests.html]

00:47:15
[tests/2.5.0-
b279/perf/
pgsql/perfor-
mance-tests.html]

00:41:52
[tests/2.5.0-
b279/perf/sm-
mysql/perfor-
mance-tests.html]

2.4.0-b263 00:13:20
[tests/2.4.0-
b263/perf/
xmldb/perfor-
mance-tests.html]

00:16:21
[tests/2.4.0-
b263/perf/
mysql/perfor-
mance-tests.html]

00:43:56
[tests/2.4.0-
b263/perf/
pgsql/perfor-
mance-tests.html]

00:42:08
[tests/2.4.0-
b263/perf/sm-
mysql/perfor-
mance-tests.html]

2.3.4-b226 None 01:23:30
[tests/perfor-
mance-tests.html]

None None

tests/2.8.6-b434/perf/xmldb/performance-tests.html
tests/2.8.6-b434/perf/xmldb/performance-tests.html
tests/2.8.6-b434/perf/xmldb/performance-tests.html
tests/2.8.6-b434/perf/xmldb/performance-tests.html
tests/2.8.6-b434/perf/xmldb/performance-tests.html
tests/2.8.6-b434/perf/mysql/performance-tests.html
tests/2.8.6-b434/perf/mysql/performance-tests.html
tests/2.8.6-b434/perf/mysql/performance-tests.html
tests/2.8.6-b434/perf/mysql/performance-tests.html
tests/2.8.6-b434/perf/mysql/performance-tests.html
tests/2.8.6-b434/perf/pgsql/performance-tests.html
tests/2.8.6-b434/perf/pgsql/performance-tests.html
tests/2.8.6-b434/perf/pgsql/performance-tests.html
tests/2.8.6-b434/perf/pgsql/performance-tests.html
tests/2.8.6-b434/perf/pgsql/performance-tests.html
tests/2.8.6-b434/perf/sm-mysql/performance-tests.html
tests/2.8.6-b434/perf/sm-mysql/performance-tests.html
tests/2.8.6-b434/perf/sm-mysql/performance-tests.html
tests/2.8.6-b434/perf/sm-mysql/performance-tests.html
tests/2.8.6-b434/perf/sm-mysql/performance-tests.html
tests/2.8.5-b422/perf/xmldb/performance-tests.html
tests/2.8.5-b422/perf/xmldb/performance-tests.html
tests/2.8.5-b422/perf/xmldb/performance-tests.html
tests/2.8.5-b422/perf/xmldb/performance-tests.html
tests/2.8.5-b422/perf/xmldb/performance-tests.html
tests/2.8.5-b422/perf/mysql/performance-tests.html
tests/2.8.5-b422/perf/mysql/performance-tests.html
tests/2.8.5-b422/perf/mysql/performance-tests.html
tests/2.8.5-b422/perf/mysql/performance-tests.html
tests/2.8.5-b422/perf/mysql/performance-tests.html
tests/2.8.5-b422/perf/pgsql/performance-tests.html
tests/2.8.5-b422/perf/pgsql/performance-tests.html
tests/2.8.5-b422/perf/pgsql/performance-tests.html
tests/2.8.5-b422/perf/pgsql/performance-tests.html
tests/2.8.5-b422/perf/pgsql/performance-tests.html
tests/2.8.5-b422/perf/sm-mysql/performance-tests.html
tests/2.8.5-b422/perf/sm-mysql/performance-tests.html
tests/2.8.5-b422/perf/sm-mysql/performance-tests.html
tests/2.8.5-b422/perf/sm-mysql/performance-tests.html
tests/2.8.5-b422/perf/sm-mysql/performance-tests.html
tests/2.8.3-b409/perf/xmldb/performance-tests.html
tests/2.8.3-b409/perf/xmldb/performance-tests.html
tests/2.8.3-b409/perf/xmldb/performance-tests.html
tests/2.8.3-b409/perf/xmldb/performance-tests.html
tests/2.8.3-b409/perf/xmldb/performance-tests.html
tests/2.8.3-b409/perf/mysql/performance-tests.html
tests/2.8.3-b409/perf/mysql/performance-tests.html
tests/2.8.3-b409/perf/mysql/performance-tests.html
tests/2.8.3-b409/perf/mysql/performance-tests.html
tests/2.8.3-b409/perf/mysql/performance-tests.html
tests/2.8.3-b409/perf/pgsql/performance-tests.html
tests/2.8.3-b409/perf/pgsql/performance-tests.html
tests/2.8.3-b409/perf/pgsql/performance-tests.html
tests/2.8.3-b409/perf/pgsql/performance-tests.html
tests/2.8.3-b409/perf/pgsql/performance-tests.html
tests/2.8.3-b409/perf/sm-mysql/performance-tests.html
tests/2.8.3-b409/perf/sm-mysql/performance-tests.html
tests/2.8.3-b409/perf/sm-mysql/performance-tests.html
tests/2.8.3-b409/perf/sm-mysql/performance-tests.html
tests/2.8.3-b409/perf/sm-mysql/performance-tests.html
tests/2.7.2-b378/perf/xmldb/performance-tests.html
tests/2.7.2-b378/perf/xmldb/performance-tests.html
tests/2.7.2-b378/perf/xmldb/performance-tests.html
tests/2.7.2-b378/perf/xmldb/performance-tests.html
tests/2.7.2-b378/perf/xmldb/performance-tests.html
tests/2.7.2-b378/perf/mysql/performance-tests.html
tests/2.7.2-b378/perf/mysql/performance-tests.html
tests/2.7.2-b378/perf/mysql/performance-tests.html
tests/2.7.2-b378/perf/mysql/performance-tests.html
tests/2.7.2-b378/perf/mysql/performance-tests.html
tests/2.7.2-b378/perf/pgsql/performance-tests.html
tests/2.7.2-b378/perf/pgsql/performance-tests.html
tests/2.7.2-b378/perf/pgsql/performance-tests.html
tests/2.7.2-b378/perf/pgsql/performance-tests.html
tests/2.7.2-b378/perf/pgsql/performance-tests.html
tests/2.7.2-b378/perf/sm-mysql/performance-tests.html
tests/2.7.2-b378/perf/sm-mysql/performance-tests.html
tests/2.7.2-b378/perf/sm-mysql/performance-tests.html
tests/2.7.2-b378/perf/sm-mysql/performance-tests.html
tests/2.7.2-b378/perf/sm-mysql/performance-tests.html
tests/2.6.4-b300/perf/xmldb/performance-tests.html
tests/2.6.4-b300/perf/xmldb/performance-tests.html
tests/2.6.4-b300/perf/xmldb/performance-tests.html
tests/2.6.4-b300/perf/xmldb/performance-tests.html
tests/2.6.4-b300/perf/xmldb/performance-tests.html
tests/2.6.4-b300/perf/mysql/performance-tests.html
tests/2.6.4-b300/perf/mysql/performance-tests.html
tests/2.6.4-b300/perf/mysql/performance-tests.html
tests/2.6.4-b300/perf/mysql/performance-tests.html
tests/2.6.4-b300/perf/mysql/performance-tests.html
tests/2.6.4-b300/perf/pgsql/performance-tests.html
tests/2.6.4-b300/perf/pgsql/performance-tests.html
tests/2.6.4-b300/perf/pgsql/performance-tests.html
tests/2.6.4-b300/perf/pgsql/performance-tests.html
tests/2.6.4-b300/perf/pgsql/performance-tests.html
tests/2.6.4-b300/perf/sm-mysql/performance-tests.html
tests/2.6.4-b300/perf/sm-mysql/performance-tests.html
tests/2.6.4-b300/perf/sm-mysql/performance-tests.html
tests/2.6.4-b300/perf/sm-mysql/performance-tests.html
tests/2.6.4-b300/perf/sm-mysql/performance-tests.html
tests/2.6.4-b295/perf/xmldb/performance-tests.html
tests/2.6.4-b295/perf/xmldb/performance-tests.html
tests/2.6.4-b295/perf/xmldb/performance-tests.html
tests/2.6.4-b295/perf/xmldb/performance-tests.html
tests/2.6.4-b295/perf/xmldb/performance-tests.html
tests/2.6.4-b295/perf/mysql/performance-tests.html
tests/2.6.4-b295/perf/mysql/performance-tests.html
tests/2.6.4-b295/perf/mysql/performance-tests.html
tests/2.6.4-b295/perf/mysql/performance-tests.html
tests/2.6.4-b295/perf/mysql/performance-tests.html
tests/2.6.4-b295/perf/pgsql/performance-tests.html
tests/2.6.4-b295/perf/pgsql/performance-tests.html
tests/2.6.4-b295/perf/pgsql/performance-tests.html
tests/2.6.4-b295/perf/pgsql/performance-tests.html
tests/2.6.4-b295/perf/pgsql/performance-tests.html
tests/2.6.4-b295/perf/sm-mysql/performance-tests.html
tests/2.6.4-b295/perf/sm-mysql/performance-tests.html
tests/2.6.4-b295/perf/sm-mysql/performance-tests.html
tests/2.6.4-b295/perf/sm-mysql/performance-tests.html
tests/2.6.4-b295/perf/sm-mysql/performance-tests.html
tests/2.6.0-b287/perf/xmldb/performance-tests.html
tests/2.6.0-b287/perf/xmldb/performance-tests.html
tests/2.6.0-b287/perf/xmldb/performance-tests.html
tests/2.6.0-b287/perf/xmldb/performance-tests.html
tests/2.6.0-b287/perf/xmldb/performance-tests.html
tests/2.6.0-b287/perf/mysql/performance-tests.html
tests/2.6.0-b287/perf/mysql/performance-tests.html
tests/2.6.0-b287/perf/mysql/performance-tests.html
tests/2.6.0-b287/perf/mysql/performance-tests.html
tests/2.6.0-b287/perf/mysql/performance-tests.html
tests/2.6.0-b287/perf/pgsql/performance-tests.html
tests/2.6.0-b287/perf/pgsql/performance-tests.html
tests/2.6.0-b287/perf/pgsql/performance-tests.html
tests/2.6.0-b287/perf/pgsql/performance-tests.html
tests/2.6.0-b287/perf/pgsql/performance-tests.html
tests/2.6.0-b287/perf/sm-mysql/performance-tests.html
tests/2.6.0-b287/perf/sm-mysql/performance-tests.html
tests/2.6.0-b287/perf/sm-mysql/performance-tests.html
tests/2.6.0-b287/perf/sm-mysql/performance-tests.html
tests/2.6.0-b287/perf/sm-mysql/performance-tests.html
tests/2.5.0-b279/perf/xmldb/performance-tests.html
tests/2.5.0-b279/perf/xmldb/performance-tests.html
tests/2.5.0-b279/perf/xmldb/performance-tests.html
tests/2.5.0-b279/perf/xmldb/performance-tests.html
tests/2.5.0-b279/perf/xmldb/performance-tests.html
tests/2.5.0-b279/perf/mysql/performance-tests.html
tests/2.5.0-b279/perf/mysql/performance-tests.html
tests/2.5.0-b279/perf/mysql/performance-tests.html
tests/2.5.0-b279/perf/mysql/performance-tests.html
tests/2.5.0-b279/perf/mysql/performance-tests.html
tests/2.5.0-b279/perf/pgsql/performance-tests.html
tests/2.5.0-b279/perf/pgsql/performance-tests.html
tests/2.5.0-b279/perf/pgsql/performance-tests.html
tests/2.5.0-b279/perf/pgsql/performance-tests.html
tests/2.5.0-b279/perf/pgsql/performance-tests.html
tests/2.5.0-b279/perf/sm-mysql/performance-tests.html
tests/2.5.0-b279/perf/sm-mysql/performance-tests.html
tests/2.5.0-b279/perf/sm-mysql/performance-tests.html
tests/2.5.0-b279/perf/sm-mysql/performance-tests.html
tests/2.5.0-b279/perf/sm-mysql/performance-tests.html
tests/2.4.0-b263/perf/xmldb/performance-tests.html
tests/2.4.0-b263/perf/xmldb/performance-tests.html
tests/2.4.0-b263/perf/xmldb/performance-tests.html
tests/2.4.0-b263/perf/xmldb/performance-tests.html
tests/2.4.0-b263/perf/xmldb/performance-tests.html
tests/2.4.0-b263/perf/mysql/performance-tests.html
tests/2.4.0-b263/perf/mysql/performance-tests.html
tests/2.4.0-b263/perf/mysql/performance-tests.html
tests/2.4.0-b263/perf/mysql/performance-tests.html
tests/2.4.0-b263/perf/mysql/performance-tests.html
tests/2.4.0-b263/perf/pgsql/performance-tests.html
tests/2.4.0-b263/perf/pgsql/performance-tests.html
tests/2.4.0-b263/perf/pgsql/performance-tests.html
tests/2.4.0-b263/perf/pgsql/performance-tests.html
tests/2.4.0-b263/perf/pgsql/performance-tests.html
tests/2.4.0-b263/perf/sm-mysql/performance-tests.html
tests/2.4.0-b263/perf/sm-mysql/performance-tests.html
tests/2.4.0-b263/perf/sm-mysql/performance-tests.html
tests/2.4.0-b263/perf/sm-mysql/performance-tests.html
tests/2.4.0-b263/perf/sm-mysql/performance-tests.html
tests/performance-tests.html
tests/performance-tests.html
tests/performance-tests.html

Tests

80

Stability Tests
Checking to see whether the function behaves well in long term run. It must handle hundreds of requests
a second in a several hour server run.

Version XMLDB MySQL PGSQL Distributed

2.3.4-b226 None 16:06:31
[tests/stabili-
ty-tests.html]

None None

Tigase Test Suite
Tigase Test Suite is an engine which allows you to run tests. Essentially it just executes TestCase imple-
mentations. The tests may depend on other tests which means they are executed in specific order. For
example authentication test is executed after the stream open test which in turn is executed after network
socket connection test.

Each TestCase implementation may have it’s own set of specific parameters. There is a set of common
parameters which may be applied to any TestCase. As an example of the common parameter you can take
-loop = 10 which specified that the TestCase must be executed 10 times. The test specific parameter might
be -user-name = tester which may set the user name for authentication test.

The engine is very generic and allows you to write any kind of tests but for the Tigase projects the current
TestCase implementations mimic an XMPP client and are designed to test XMPP servers.

The suite contains a kind of scripting language which allows you to combine test cases into a test scenarios.
The test scenario may contain full set of functional tests for example, another test scenario may contain
performance tests and so on.

Running Tigase Test Suite (TTS)
To obtain TTS, you will first need to clone the repository

git clone https://repository.tigase.org/git/tigase-testsuite.git

Once cloning is finished, navigate to the TTS root directory and compile with maven:

mvn clean install

Maven will compile TTS and place jars in the necessary locations. From the same directory, you can begin
running TTS using the following command:

./scripts/all-tests-runner.sh

You should see the following, which outlines the possible options to customize your test run

Run selected or all tests for Tigase server

Author: Artur Hefczyc <artur_hefczyc@vnu.co.uk>
Version: 2.0.0

 ---help|-h This help message
 ---func [mysql|pgsql|derby|mssql|mongodb]
 Run all functional tests for a single database configuration

tests/stability-tests.html
tests/stability-tests.html
tests/stability-tests.html

Tests

81

 ---lmem [mysql|pgsql|derby|mssql|mongodb]
 Run low memory tests for a single database configuration
 ---perf [mysql|pgsql|derby|mssql|mongodb]
 Run all performance tests for a single database configuration
 ---stab [mysql|pgsql|derby|mssql|mongodb]
 Run all stability tests for a single database
 configuration
 ---func-all Run all functional tests for all database
 configurations
 ---lmem-all Run low memory tests for all database
 configurations
 ---perf-all Run all performance tests for all database
 configurations
 ---stab-all Run all stability tests for all database
 configurations
 ---all-tests Run all functionality and performance tests for
 database configurations
 ---single test_file.cot
 ---other script_file.xmpt

 Special parameters only at the beginning of the parameters list
 ---debug|-d Turns on debug mode
 ---skip-db-relad|-no-db Turns off reloading database
 ---skip-server|-no-serv Turns off Tigase server start
 ---small-mem|-sm Run in small memory mode

 Other possible parameters are in following order:
 [server-dir] [server-ip]

Customizing Tigase Test Suite

You may run the tests from a command line like above, however you may create and edit the /scripts/tests-
runner-settings.sh file to fit your Tigase installation and avoid having to have long complex commands
as this template shows:

#!/bin/bash

func_rep="func-rep.html"
perf_rep="perf-rep.html"
db_name="tigasetest"
db_user="tigase"
db_pass="tigase"
root_user="root"
root_pass="root"

TESTS=("derby" -"mysql" -"pgsql" -"mssql")
IPS=("127.0.0.1" -"127.0.0.1" -"127.0.0.1" -"127.0.0.1")

server_timeout=10

server_dir="/home/tigase/tigase-server"
database="derby"
#database="mysql"
server_ip="127.0.0.1"

Tests

82

MS_MEM=100
MX_MEM=1000

SMALL_MS_MEM=10
SMALL_MX_MEM=50

This will allow you to maintain identical settings through multiple runs of TTS. See the next section for
learning how the scripting language works and how you can create and run your own custom tests.

Test Suite Scripting Language
The test suite contains scripting language which allows you to combine test cases into a test scenarios.
On the lowest level, however the language is designed to allow you to describe the test by setting test
parameters, test comments, identification and so on.

Let’s look at the example test description.

Short name@test-id-1;test-id-2: Short description for the test case
{
 --loop = 10
 --user-name = Frank
 # This is a comment which is ignored
}
>> Long, detailed description of the test case <<

Meaning of all elements:

1. Short name is any descriptive name you want. It doesn’t need to be unique, just something which tells
you what this test is about. @ is a separator between the short name and the test ids.

2. test-id-1;test-id-2 is a semicolon separated of the test cases IDs. The tests cases are executed in the
listed order. And listing them there means that the test-id-2 depends on test-id-1. Normally you don’t
have to list all the dependencies because all mandatory dependencies are included automatically. Which
means if you have an authentication test case the suite adds the network socket connection and stream
opening tests automatically. Sometimes however, there are dependencies which are optional or multiple
mandatory dependencies and you need to select which one has to be executed. As a good example is the
authentications test case. There are many authentication tests: PLAIN-AUTH, SASL-DIGESTMD5,
SASL-PLAIN, DIGEST-AUTH and they are all mandatory for most of other tests like roster, presence
and so on. One of the authentication tests is a default dependency but if you put on the list different
authentication it will be used instead of default one.

3. : is a separator between test cases ids list and the short test description.

4. Short test description is placed between : - colon and opening { - curly bracket. This is usually quite
brief, single line test description.

5. { } curly brackets contain all the test parameters, like how many times the test has to be executed or run
the test in a separate thread, user name, host IP address for the network connection and many others.

6. >> << inside the double greater than and double less than you put a very long, multiple line test de-
scription.

As for the testing script between open curly brackets { and close one } you can put all the test case param-
eters you wish. The format for it is:

Tests

83

-parameter-name = value

Parameter names always start with -. Note, some parameters don’t require any value. They can exist on
their own without any value assigned:

-debug-on-error

This imitates if you were to put yes or true as the value.

The scripting language includes also support for variables which can be assigned any value and used
multiple times later on. You assign a value to the variable the same way as you assign it to the parameter:

$(variable-name) = value

The variable name must be always enclosed with brackets () and start with $.

The value may be enclosed within double quotes "" or double quotes may be omitted. If this is a simple
string like a number or character string consisting only of digits, letters, underscore _ and hyphen - then
you can omit double quotes otherwise you must enclose the value.

The test case descriptions can be nested inside other test case descriptions. Nested test case descriptions
inherit parameters and variables from outer test case description.

Writing Tests for Plugins
You can write tests in a simple text file which is loaded during test suite runtime.

You simply specify what should be send to the server and what response should be expected from the
server. No need to write Java code and recompile the whole test suite for new tests. It means new test cases
can be now written easily and quickly which hopefully means more detailed tests for the server.

How it works:

Let’s take XEP-0049 [http://www.xmpp.org/extensions/xep-0049.html] Private XML Storage. Looking
into the spec we can see the first example:

Example 1. Client Stores Private Data

CLIENT:

<iq type="set" id="1001">
 <query xmlns="jabber:iq:private">
 <exodus xmlns="exodus:prefs">
 <defaultnick>Hamlet</defaultnick>
 </exodus>
 </query>
</iq>

SERVER:

<iq type="result" id="1001"/>

This is enough for the first simple test. I have to create text file JabberIqPrivate.test looking
like this:

send: {

http://www.xmpp.org/extensions/xep-0049.html
http://www.xmpp.org/extensions/xep-0049.html

Tests

84

<iq type="set" id="1001">
 <query xmlns="jabber:iq:private">
 <exodus xmlns="exodus:prefs">
 <defaultnick>Hamlet</defaultnick>
 </exodus>
 </query>
</iq>
}

expect: {
<iq type="result" id="1001"/>
}

And now I can execute the test:

testsuite $ -./scripts/all-tests-runner.sh ---single JabberIqPrivate.test

Tigase server home directory: -../server
Version: 2.8.5-b422
Database: xmldb
Server IP: 127.0.0.1
Extra parameters: JabberIqPrivate.test
Starting Tigase:
Tigase running pid=6751

Running: 2.8.5-b422-xmldb test, IP 127.0.0.1...
Script name: scripts/single-xmpp-test.xmpt
Common test: Common test -... failure!
FAILURE, (Received result doesnt match expected result.,
Expected one of: [<iq id="1001" type="result"/>],
received:
[<iq id="1001" type="error">
 <query xmlns="jabber:iq:private">
 <exodus xmlns="exodus:prefs">
 <defaultnick>Hamlet</defaultnick>
 </exodus>
 </query>
 <error type="cancel">
 <feature-not-implemented xmlns="urn:ietf:params:xml:ns:xmpp-stanzas"/>
 <text xml:lang="en" xmlns="urn:ietf:params:xml:ns:xmpp-stanzas">
 Feature not supported yet.</text>
 </error>
</iq>]),

Total: 100ms
Test time: 00:00:02
Shutting down Tigase: 6751

If I just started working on this XEP and there is no code on the server side, the result is perfectly expected
although maybe this is not what we want. After a while of working on the server code I can execute the
test once again:

testsuite $ -./scripts/all-tests-runner.sh ---single JabberIqPrivate.test

Tests

85

Tigase server home directory: -../server

Version: 2.8.5-b422

Database: xmldb

Server IP: 127.0.0.1

Extra parameters: JabberIqPrivate.test

Starting Tigase:

Tigase running pid=6984

Running: 2.8.5-b422-xmldb test, IP 127.0.0.1...

Script name: scripts/single-xmpp-test.xmpt

Common test: Common test -... success, Total: 40ms

Test time: 00:00:01

Shutting down Tigase: 6984

This is it. The result we want in a simple and efficient way. We can repeat it as many times we want which
is especially important in longer term trials. Every time we change the server code we can re-run tests to
make sure we get correct responses from the server.

You can have a look in the current build, with more complete test cases, file
for JabberIqPrivate [https://projects.tigase.org/projects/tigase-testsuite/repository/revisions/master/en-
try/tests/data/JabberIqPrivate.cot].

Now my server tests are no longer outdated. Of course not all cases are so simple. Some XEPs require
calculations to be done before stanza is sent or to compare received results. A good example for this case is
user authentication like SASL and even NON-SASL. But still, there are many cases which can be covered
by simple tests: roster management, privacy lists management, vCard, private data storage and so on.

Test Case Parameters Description
There is long list of parameters which can be applied to any test case. Here is the description of all possible
parameters which can be used to build test scenarios.

Test Report Configuration
There are test report parameters which must be set in the main script file in order to generate HTML report
from the test. These parameters have no effect is they are set inside the test case description.

1. -version = 2.0.0 sets the test script version. This is used to easily detect incompatibility issues when
the test suite loads a script created for more recent version of the suite and may not work properly for
this version.

2. -output-format = (html | html-content) sets the output format for the test report. There is actually
only one format possible right now - HTML. The only difference between these 2 options is that the
html format creates full HTML page with HTML header and body. The html-content format on the

https://projects.tigase.org/projects/tigase-testsuite/repository/revisions/master/entry/tests/data/JabberIqPrivate.cot
https://projects.tigase.org/projects/tigase-testsuite/repository/revisions/master/entry/tests/data/JabberIqPrivate.cot
https://projects.tigase.org/projects/tigase-testsuite/repository/revisions/master/entry/tests/data/JabberIqPrivate.cot

Tests

86

other hand creates only what is inside <body/> element. And is used to embed test result inside other
HTML content.

3. -output-file = "report-file.html" sets the file name for the test report.

4. -output-history = (yes | no) sets logging of the all protocol data sent between test suite and the XMPP
server. Normally for functional tests it is recommended to set it to yes but for all other tests like per-
formance or load tests it should be set to no.

5. -history-format = separate-file sets protocol data logging to a separate file. Currently this is the only
possible option.

6. -output-cols = (5 | 7) Only valid values are:

5: -"Test name", -"Result", -"Test time", -"Description" [, -"History" -]
7: -"Test name", -"Result", -"Total time", -"OK", -"Average", -"Description" [, -"History" -]

7. -title = "The title of the report page" This parameter sets the test report title which is placed in the
HTML page in the <title/> element as well as in the first page header.

Basic Test Parameters
These parameters can be set on per-test case basis but usually they are set in the main script file to apply
them to all test cases.

1. -base-ns = "jabber:client" sets the XML name space used for the XML stream in the XMPP connec-
tion. Some test cases can be used to test client to server protocol as well as server to server protocol
and possibly different protocols added in the future.

2. -debug switches debugging mode on. All the communication between the test suite and the server
is printed out to the text console and all other debugging information including java exceptions are
displayed as well. It is especially useful when some test fails and you want to find out why.

3. -debug-on-error switches on debugging mode on error detection. Normally debug output generates
lots of message which makes the output very hard to read. Especially in the performance tests not only
you can read fast scrolling lines of the protocol data but also it slows the test down. This option however
turns debugging off if everything is working well and then generates debug output if any test error us
detected.

4. -def-auth = (auth-plain | auth-digest | auth-sasl) sets the default authentication method for the user
connection.

5. -def-stream = (stream-client | stream-server | stream-component | stream-bosh) sets the connection
stream to be tested and the name space for the connection.

6. -host = "host.name" the vhost name the tested server runs for. It may be the real DNS name or just
configured for testing purposes hostname. It must match however the server configuration.

7. -keys-file = "certs/keystore" sets the location of the keys store file. No need to touch it.

8. -keys-file-password = keystore sets the password for the keystore file. Normally you don’t have to
touch it.

9. -serverip = "127.0.0.1" defines the XMPP server IP address. You may omit this parameter and then
the IP address will be determined automatically based on the server DNS address. However if the DNS

Tests

87

address can not be correctly resolved or if you run tests on the localhost you can use this parameter
to enforce the IP address.

10.-socket-wait = 10000 sets the network socket timeout in milliseconds that is maximum time the test
suite will wait for the response from the server. You may want to increase the timeout for some specific
tests which require lots of computation or database activity on the server. Normally 10 seconds is
enough for most cases.

11.-stop-on-fail = true causes the script to terminate all actions on the first failed test case. It helps diag-
nosing the server state at the failure point.

12.-trust-file = "certs/client_truststore" sets the file name for the client trust store file. No need to change
it.

13.-trust-file-password = truststore sets the password for the trust store file. Normally you don’t have
to touch it.

14.-user-name = tester sets the user name used for the XMPP connections between the test suite and the
XMPP server. It is usually set globally the same for all tests and for some tests like receiving the server
configuration you may want to use a different account (with admin permissions). Then you can set a
different user for this specific test case.

15.-user-pass = tester-password sets the password for the user used for the XMPP connection between
the test suite and the XMPP server.

16.-user-resr = resource sets the user JID resource part for the XMPP connection between the test suite
and the XMPP server.

Test Case Parameters
Test parameters which are normally set on per-test case basis and apply only to the test they are set for
and all inherited tests. Some of the parameters though are applied only to inherited test cases. Please look
in the description below to find more details.

1. -active-connection is a similar parameter to -on-one-socket option. If set the suite doesn’t close the
network socket and if the test is run in loop each loop run re-uses the network connection. Unlike in
the -on-one-socket mode the whole test is executed on each run including XMPP stream initialization
and user authentication. This option is currently not recommended in a normal use. It is useful only to
debug the server behavior in very special use cases.

2. -background executes the test in a separate thread in background and immediately returns control to
the test suite program without waiting for the test to complete. Default behavior is to execute all tests
sequentially and run next test when previous one has been completed. This parameter however allows
to run tests concurrently. This a bit similar option to the -daemon parameter. The daemon test/task
however is ignored completely and results from the daemon are not collected where the background
test is a normal test which is run concurrently with another one or possibly many other tests.

3. -daemon creates a task running in background in a separate thread. Such a test runs infinitely as a
daemon, it is not recorded in the test report and it’s result is not calculated. The purpose of such test/task
is to work as a helper for other test cases. A good example of such daemon test is message responder -
the test which runs under a different user name and waits for messages and responding to the sender.

4. -delay = 1000 sets the waiting time in milliseconds after the test case is completed. You may use it
if you want to introduce short delay between each test cases run in the loop or if you start the helper
daemon thread and you have to add the delay to make sure it is ready to work before next real test starts
sending requests to the daemon.

Tests

88

5. -expect-type = error sets the type for a packet expected as a response. Some test cases like message
sender expects sometimes response with the same type it has sent the packet (chat) but in some other
cases when it sends a message to a user who has privacy lists set to block messages the response should
be with an error. This way we can use the same test cases for testing different responses scenarios.

6. -loop = 10 sets the number of times the test (and all inherited tests) are repeated. You can use a $(loop)
pseudo-variable to obtain and use the current loop run number. This is useful if you want to run every
loop run for a different user name like registering 10 different user accounts. To do this you stick the
$(loop) variable to the user name string: -user-name = "nick_name_$(loop)".

7. -loop-delay = 10 sets a delay in milliseconds between each individual loop run for the tests which is
run multiple times. This is similar parameter to the -delay one but the -delay option introduces a delay
after the whole test (or all loop runs) has been completed. The loop delay options adds waiting time
between each run of the looped test.

8. -loop-start = 5 sets the loop starting value. It doesn’t affect number of loop runs in a any way. It only
affects the value of the $(loop) variable. Let’s say you want to run a load test for the server with 100k
concurrent users and you want to run the test from 3 different machines. To make sure each machine
uses distinct user accounts you have to set a different -loop-start parameter on each to prevent from
overlapping.

9. -messages = 10 sets the number of messages to send to the server. This is another way of looping the
test. Instead of repeating the whole test with opening network connection, XMPP stream, authentication
and so on it causes only to send the message this many times. This parameters is accepted by some test
cases only which send messages. For the messages listeners - test cases which is supposed to respond
to the messages the number set here specifies how many times the the response must be sent before
the test successfully terminates it’s work.

10.-multi-thread option causes to run the test case and all inherited in all levels test cases in separate
threads. Normally the test case where you put the parameter doesn’t have a test ID (what you put
between @ and : characters so it doesn’t run a test on it’s own. Instead it contains a series of test
cases inside which are then run in a separate thread each. This is a key parameter to run tests for
many concurrent users. (Not a load tests though.) For example you can see whether the server behaves
correctly when 5 simultaneous modifies their roster. The execution time all inherited tests run in a
separate threads is added together and also results from each individual test is calculated and added to
the total main test results.

11.-no-record is used for kind of configuration tests (tasks) which are used to prepare the XMPP server or
database for later tests. As an example can be creation of the test user account which is later on used for
the roster tests. Usually you don’t want to include such tests in the test report and using this parameter
you essentially exclude the test from the report. The test and the result however shows in the command
line output so you can still track what is really going on.

12.-on-one-socket is a modifier for a looped test case. Normally when we switch looping on using -loop
parameter the suite resets the state, closes the network socket and runs the test from the very beginning
including opening network socket, XMPP stream, authentication and so on. This parameter however
changes this behavior. The network socket is not closed when the test run is completed (successfully)
and next run executes only the last part of the test omitting the XMPP stream initialization, authentica-
tion and all others but last. This is useful when you want to send many messages to the server (although
this effect may be accomplished using -messages parameter as well) or registering many user accounts
on the server, unregistering user accounts and any other which might make sense repeating many times.

13.-port = 5223 this parameter is similar to the IP address setting and can be also set globally for all tests.
Normally however you set it for a selected tests only to check SSL connection. For all other tests default
port number is used. Therefore this parameters has been included in this section instead of "Basic test
parameters".

Tests

89

14.-presence this parameter enables sending initial presence with positive priority after connection and
binding the session.

15.-repeat-script = 100 and -repeat-wait = 10 are 2 parameters are specific to the common test cases.
(The test cases which reads the test input/output data from the pseudo-xml text file. The first parameter
is another variation of test looping. It sets how many times the test has to be repeated. It works very
much like the -on-one-socket parameter. The only difference is that the common test can preserve
some internal states between runs and therefore it has more control over the data. The second parameter
sets the timeout in milliseconds to wait/delay between each individual test run and it is a very similar
parameter to the -delay one but it sets a timeout inside the common test instead.

16.-source-file = "dir/path/to/file.cot" is a parameter to set the "common test" script file. The common
test is a test cases which depends on the authentication test case and can read data to send and responses
to expect from the text file. The "cot" file is a pseudo-xml file with stanzas to send and stanzas to expect.
The the test cases compares the received packets with those in the text file and reports the test result.
This is usually a more convenient way to write a new test cases than coding them in Java.

17.-time-out-ok is set for a test case when we expect socket timeout as a correct result from the test case.
Normally the timeout means that the test failed and there was no response from the server at all or the
response was incorrect. For some tests however (like sending a message to the user who is blocking
messages through privacy lists) the timeout is the desired correct test result.

18.-to-jid = "user_name@host.name [mailto:user_name@host.name]" sets the destination address for
packets sending packets somewhere. As an example is the test case sending <message /> packet. You
can set the destination address for the packet. Mind, normally every test expects some response for the
data sent so make sure the destination end-point will send back the data expected by the test case.

mailto:user_name@host.name
mailto:user_name@host.name

90

Chapter 8. Experimental
The guide contains description of non-standard or experimental functionality of the server. Some of them
are based on never published extensions, some of them are just test implementation for new ideas or
performance improvements.

• Dynamic Rosters

• Mobile Optimizations

• Bosh Session Cache

Dynamic Rosters

Problem Description
Normal roster contacts stored and created as dynamic roster parts are delivered to the end user trans-
parently. The XMPP client doesn’t really know what contacts come from its own static roster created
manually by the user and what contacts come from a dynamic roster part; contacts and groups generated
dynamically by the server logic.

Some specialized clients need to store extra bits of information about roster contacts. For the normal user
static roster information can be stored as private data and is available only to this single user. In some cases
however, clients need to store information about contacts from the dynamic roster part and this information
must be available to all users accessing dynamic roster part.

The protocol defined here allows the exchange of information, saving and retrieving extra data about the
contacts.

Syntax and Semantics
Extra contact data is accessed using IQ stanzas, specifically by means of a child element qualified by
the jabber:iq:roster-dynamic namespace. The child element MAY contain one or more children, each
describing a unique contact item. Content of the element is not specified and is implementation dependent.
From Tigase’s point of view it can contain any valid XML data. Whole element is passed to the Dynami-
cRoster implementation class as is and without any verification. Upon retrieving the contact extra data the
DynamicRoster implementation is supposed to provide a valid XML element with all the required data
for requested jid.

The jid attribute specifies the Jabber Identifier (JID) that uniquely identifies the roster item. Inclusion of
the jid attribute is REQUIRED.

Following actions on the extra contact data are allowed:

• set - stores extra information about the contact

• get - retrieves extra information about the contact

Retrieving Contact Data
Upon connecting to the server and becoming an active resource, a client can request the extra contact data.
This request can be made either before or after requesting the user roster. The client’s request for the extra
contact data is OPTIONAL.

Experimental

91

Example: Client requests contact extra data from the server using get request:

<iq type='get' id='rce_1'>
<query xmlns='jabber:iq:roster-dynamic'>
<item jid='archimedes@eureka.com'/>
</query>
</iq>

Example: Client receives contact extra data from the server, but there was either no extra information for
the user, or the user was not found in the dynamic roster:

<iq type='result' id='rce_1'>
<query xmlns='jabber:iq:roster-dynamic'>
<item jid='archimedes@eureka.com'/>
</query>
</iq>

Example: Client receives contact extra data from the server, and there was some extra information found
about the contact:

<iq type='result' id='rce_1'>
<query xmlns='jabber:iq:roster-dynamic'>
<item jid='archimedes@eureka.com'>
<phone>+12 3234 322342</phone>
<note>This is short note about the contact</note>
<fax>+98 2343 3453453</fax>
</item>
</query>
</iq>

Updating/Saving Extra Information About the Contact
At any time, a client MAY update extra contact information on the server.

Example: Client sends contact extra information using set request.

<iq type='set' id='a78b4q6ha463'>
<query xmlns='jabber:iq:roster-dynamic'>
<item jid='archimedes@eureka.com'>
<phone>+22 3344 556677</phone>
<note>he is a smart guy, he knows whether the crown is made from pure gold or not.</note>
</item>
</query>
</iq>

Client responds to the server:

<iq type='result' id='a78b4q6ha463'/>

A client MAY update contact extra information for more than a single item in one request:

Example: Client sends contact extra information using set request with many <item/> elements.

<iq type='set' id='a78b4q6ha464'>
<query xmlns='jabber:iq:roster-dynamic'>

Experimental

92

<item jid='archimedes@eureka.com'>
<phone>+22 3344 556677</phone>
<note>he is a smart guy, he knows whether the crown is made from pure gold or not.</note>
</item>
<item jid='newton@eureka.com'>
<phone>+22 3344 556688</phone>
<note>He knows how heavy I am.</note>
</item>
<item jid='pascal@eureka.com'>
<phone>+22 3344 556699</phone>
<note>This guy helped me cure my sickness!</note>
</item>
</query>
</iq>

Client responds to the server:

<iq type='result' id='a78b4q6ha464'/>

Configuration
DynamicRoster implementation class should be configured in the init.properties file. As it’s an extension
to the PresenceState, PresenceSubscription and Roster plugins classes should be configured either for
each plugin:

sess-man/plugins-conf/jabber\:iq\:roster/dynamic-roster-classes=<class list>
sess-man/plugins-conf/presence-state/dynamic-roster-classes=<classes list>
sess-man/plugins-conf/presence-subscription/dynamic-roster-classes=<classes list>

or globally:

sess-man/plugins-conf/dynamic-roster-classes=<classes list>

<classes list> is a comma separated list of classes.

Mobile Optimizations

Problem Description
In default configuration stanzas are sent to the client when processing is finished, but in mobile environ-
ment sending or receiving data drains battery due to use of the radio.

To save energy data should be sent to client only if it is important or client is waiting for it.

Solution
When mobile client is entering inactive state it notifies server about it by sending following stanza:

<iq type="set" id="xx">
<mobile
 xmlns="http://tigase.org/protocol/mobile#v3"
 enable="true"/>
</iq>

Experimental

93

After receiving stanza server starts queuing stanza which should be send to mobile client. What kind of
queued stanzas depends on the plugins used and in case of Mobile v3 presence stanzas are queued as well
as message stanzas which are Message Carbons. Any other stanza (such as iq or plain messenge) is sent
immediately to the client and every stanza from queue is also sent at this time.

When mobile client is entering active state it notifies server by sending following stanza:

<iq type="set" id="xx">
<mobile
 xmlns="http://tigase.org/protocol/mobile#v3"
 enable="false"/>
</iq>

After receiving stanza server sends all queued stanzas to the client.

Also all stanzas from queue will be sent if number of stanzas in queue will reach queue size limit. By
default this limit is set to 50.

Queuing Algorithms
There are three mobile optimization plugins for Tigase:

• Mobile v1 - all presence stanzas are kept in queue

• Mobile v2 - only last presence from each source is kept in queue

• Mobile v3 - only last presence from each source is kept in queue, also Message Carbons are queued

If you wish to activate you Mobile v1 plugin you need to send presented above with xmlns attribute value
replaced with http://tigase.org/protocol/mobile#v1

If you wish to activate you Mobile v2 plugin you need to send presented above with xmlns attribute value
replaced with http://tigase.org/protocol/mobile#v2

Configuration
Mentioned plugins are not activated by default thus additional entries in the init.properties are required:

+--sm-plugins=+mobile_v1,+mobile_v2,+mobile_v3

Only one of these plugins should be enabled

Bosh Session Cache

Problem Description
Web clients have no way to store any data locally, on the client side. Therefore after a web page reload
the web clients loses all the context it was running in before the page reload.

Some elements of the context can be retrieved from the server like the roster and all contacts presence
information. Some other data however, can not be restored easily like opened chat windows and the chat
windows contents. Even if the roster restoring is possible, this operation is very expensive in terms of time
and resources on the server side.

http://tigase.org/protocol/mobile#v1
http://tigase.org/protocol/mobile#v2

Experimental

94

On of possible solutions is to allow web client to store some data in the Bosh component cache on the
server side for the time while the Bosh session is active. After the page reloads, if the client can somehow
retrieve SID (stored in cookie or provided by the web application running the web client) it is possible to
reload all the data stored in the Bosh cache to the client.

Bosh session context data are: roster, contacts presence information, opened chat windows, chat windows
content and some other minor data. Ideally the web client should be able to store any data in the Bosh
component cache it wants.

Bosh Session Cache Description
The Bosh Session Cache is divided into 2 parts - automatic cache and dynamic cache.

The reason for splitting the cache into 2 parts is that some data can be collected automatically by the Bosh
component and it would be very inefficient to require the client to store the data in the Bosh cache. The
best example for such data is the Roster and contacts presence information.

• automatic cache - is the cache part which is created automatically by the Bosh component without any
interaction with the client. The client, however, can access the cache at any time. I would say this is
a read-only cache but I don’t want to stop client from manipulating the cache if it needs. The client
usually, only retrieves data from this part of the cache as all changes should be automatically updated by
the Bosh component. The general idea for the automatic cache is that the data stored there are accessible
in the standard XMPP form. So no extra code is needed for processing them.

• dynamic cache - is the cache part which is or can be modified at any time by the client. Client can store,
retrieve, delete and modify data in this part of the cache.

Cache Protocol
All the Bosh Session Cache actions are executed using additional <body/> element attributes: cache
and cache-id. Attribute cache stores the action performed on the Bosh cache and the cache-id
attribute refers to the cache element if the action attribute needs it. cache-id is optional. There is a
default cache ID (empty one) associated with the elements for which the cache-id is not provided.

If the <body/> element contains the cache attribute it means that all data included in the <body/> refer
to the cache action. It is not allowed, for example to send a message in the body and have the cache action
set to get. The <body/> element with cache action get, get_all, on, off, remove must be empty. The
<body/> element with actions set or add must contain data to store in the cache.

Cache Actions

• on or off - the client can switch the cache on or off at any time during the session. It is recommended,
however that the client switches the cache on in the first body packet, otherwise some information from
the automatic cache may be missing. The automatic cache is created from the stream of data passing the
Bosh component. Therefore if the cache is switched on after the roster retrieval is completed then the
roster information will be missing in the cache. If the cache is set to off (the default value) all requests to
the cache are ignored. This is to ensure backward compatibility with the original Bosh specification and
to make sure that in a default environment the Bosh component doesn’t consume any extra resources
for cache processing and storing as the cache wouldn’t be used by the client anyway.

• get - retrieves the cache element pointing by the cache-id from the Bosh cache. Note there is no result
cache action. The <body/> sent as a response from the server to the client may contain cache results
for a given cache-id and it may also contain other data received by the Bosh component for the client. It
may also happen that large cached data are split into a few parts and each part can be sent in a separate
<body/> element. It may usually happen for the Roster data.

Experimental

95

• get_all - retrieves all the elements kept in the Bosh cache. That action can can be performed after the
page reload. The client doesn’t have to request every single cached item one by one. It can retrieve all
cache items in one go. It doesn’t mean however the whole cache is sent to the client in a single <body/
> element. The cache content will be divided into a smaller parts of a reasonable size and will be sent to
the client in a separate <body/> elements. It may also happen that the <body/> element contain the
cache elements as well as the new requests sent to the user like new messages or presence information.

• set - sends data to the Bosh Session cache for later retrieval. The client can store any data it wants in the
cache. The Bosh components stores in the cache under the selected ID all the data inside the <body/>
element. The only restriction is that the cached data must be a valid XML content. The data are returned
to the client in exactly the same form as they were received from the server. The set action replaces any
previously stored data under this ID.

• add - adds new element to the cache under the given ID. This action might be useful for storing data
for the opened chat window. The client can add new elements for the chat window, like new messages,
icons and so on…

• remove - removes the cached element for the given cache ID.

Cache ID

Cache ID can be an any character string. There might be some IDs reserved for a special cases, like for
the Roster content. To avoid any future ID conflicts reserved ID values starts with: bosh - string.

There is a default cache ID - en empty string. Thus cache-id attribute can be omitted and then the requests
refers to data stored under the default (empty) ID.

Reserved Cache ID Names

Here is a list of reserved Cache IDs:

• bosh-roster - The user roster is cached in the Bosh component in exactly the same form as it was
received from the core server. The Bosh Cache might or might not do optimizations on the roster like
removing elements from the cached roster if the roster remove has been received or may just store all
the roster requests and then send them all to the client. There is a one mandatory optimization the Bosh
Cache must perform. It must remember the last (and only the last) presence status for each roster item.
Upon roster retrieving from the cache the Bosh component must send the roster item first and then the
presence for the item. If the presence is missing it means an offline presence. If the roster is small it
can be sent to the client in a single packet but for a large roster it is recommended to split contact lists
to batches of max 100 elements. The Bosh component may send all roster contacts first and then all
presences or it can send a part of the roster, presences for sent items, next part of the roster, presences
for next items and so on.

• bosh-resource-bind - The user resource bind is also cached to allow the client quickly retrieve infor-
mation about the full JID for the established Bosh session.

96

Chapter 9. Old Stuff
This contains sections on old features, or information pertaining to old builds of Tigase. It is kept here
for archival purposes.

97

Chapter 10. Tigase DB Schema
Explained

The schema basics, how it looks like and brief explanation to all rows can be found in the schema creation
script [https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/database/mysql-
schema-4-schema.sql]. However, this is hardly enough to understand how it works and how all the data
is accessed. There are only 3 basic tables which actually keep all the Tigase server users' data: tig_users,
tig_nodes and tig_pairs. Therefore it is not clear at first how Tigase’s data is organized.

Before you can understand the Tigase XMPP Server database schema, how it works and how to use it, is
it essential to know what were the goals of it’s development and why it works that way. Let’s start with
the API as this gives you the best introduction.

Simplified access can be made through methods:

void setData(BareJID user, String key, String value);
String getData(BareJID user, String key);

And more a complex version:

void setData(BareJID user, String subnode, String key, String value);
String getData(BareJID user, String subnode, String key, String def);

Even though the API contains more methods, the rest is more or less a variation of presented
above. A complete API description for all access methods is available in JavaDoc documentation
in the UserRepository [https://projects.tigase.org/projects/tigase-server/repository/entry/trunk/src/main/
java/tigase/db/UserRepository.java] interface. So we are not going into too much detail here except for
the main idea.

Tigase operates on <*key*, value> pairs for the individual user data. The idea behind this was to make the
API very simple and also at the same time very flexible, so adding a new plugin or component would not
require a database schema change, adding new tables, or conversion of the DB schema to a new version.

As a result the UserRepository interface is exposed to all of Tigase’s code, mainly the components and
plugins (let’s call all of them modules). These modules simply call set/get methods to store or access
module specific data.

As plugins or components are developed independently it may easily happen that developer choses the
same key name to store some information. To avoid key name conflicts in the database a node concept
has been introduced. Therefore, most modules when set/get key value they also provide a subnode part,
which in most cases is just XMLNS or some other unique string.

The node thing is a little bit like directory in a file system, it may contain subnodes which makes the Tigase
database behave like a hierarchical structure. And the notation is also similar to file systems, you use just
/ to separate node levels. In practice you can have the database organized like this:

user-name@domain ---> (key, value) pairs
 -|
 roster --->
 -|
 item1 ---> (key1, value1) pairs.
 -|
 item2 ---> (key1, value1) pairs.

https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/database/mysql-schema-4-schema.sql
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/database/mysql-schema-4-schema.sql
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/database/mysql-schema-4-schema.sql
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/database/mysql-schema-4-schema.sql
https://projects.tigase.org/projects/tigase-server/repository/entry/trunk/src/main/java/tigase/db/UserRepository.java
https://projects.tigase.org/projects/tigase-server/repository/entry/trunk/src/main/java/tigase/db/UserRepository.java
https://projects.tigase.org/projects/tigase-server/repository/entry/trunk/src/main/java/tigase/db/UserRepository.java

Tigase DB Schema Explained

98

So to access item’s 1 data from the roster you could call method like this:

getData("user-name@domain", -"roster/item1", key1, def1);

This is huge convenience for the developer, as he can focus on the module logic instead of worrying about
data storage implementation and organization. Especially at the prototype phase it speeds development up
and allows for a quick experiments with different solutions. In practice, accessing user’s roster in such a
way would be highly inefficient so the roster is stored a bit differently but you get the idea. Also there is
a more complex API used in some places allowing for more direct access to the database and store data
in any format optimized for the scenario.

Right now such a hierarchical structure is implemented on top of SQL databases but initially Tigase’s
database was implemented as an XML structure, so it was natural and simple.

In the SQL database we simulate hierarchical structure with three tables:

1. tig_users - with main users data, user id (JID), optional password, active flag, creation time and some
other basic properties of the account. All of them could be actually stored in tig_pairs but for perfor-
mance reasons they are in one place to quickly access them with a single, simple query.

2. tig_nodes - is a table where the hierarchy is implemented. When Tigase was storing data in XML
database the hierarchy was quite complex. However, in a SQL database it resulted in a very slow access
to the data and a now more flat structure is used by most components. Please note, every user’s entry
has something called root node, which is represented by root string;

3. tig_pairs - this is the table where all the user’s information is stored in form of the <key, value> pairs.

So we now know how the data is organized. Now we are going to learn how to access the data directly
in the database using SQL queries.

Let’s assume we have a user admin@test-d for whom we want to retrieve the roster. We could simply
execute query:

select pval
 from tig_users, tig_pairs
 where user_id = -'admin@test-d' and
 tig_users.uid = tig_pairs.uid and
 pkey = -'roster';

However, if multiple modules store data under the key roster for a single user, we would receive multiple
results. To access the correct roster we also have to know the node hierarchy for this particular key. The
main users roster is stored under the root node, so the query would look like:

select pval
 from tig_users, tig_nodes, tig_pairs
 where user_id = -'admin@test-d' and
 tig_users.uid = tig_nodes.uid and
 node = -'root' and
 tig_users.uid = tig_pairs.uid and
 pkey = -'roster';

How exactly the information is stored in the tig_pairs table depends on the particular module. For the
roster it looks a bit like XML content:

<contact jid="all-xmpp-test@test-d" subs="none" preped="simple" name="all-xmpp-test"/>

99

Chapter 11. Why the most recent JDK?
There are many reasons but the main is that we are a small team working on source code. So the whole
approach is to make life easier for us, make the project easier to maintain, and development more efficient.

Here is the list:

• Easy to maintain - No third-party libraries are used for the project which makes this project much
easier to maintain. This simplifies issues of compatibility between particular versions of libraries. This
also unifies coding with a single library package without having to rely on specific versions that may
not be supported.

• Easy to deploy - Another reason to not use third-party tools is to make it easier for end-users to install
and use the server.

• Efficient development - As no third-party libraries are used, Tigase needs either to implement many
things on its own or use as much as possible of JDK functionality. We try to use as much as possible of
existing library provided with JDK and the rest is custom coded.

What features of JDK-1.5 are critical for Tigase development? Why I can’t simply re-implement some
code to make it compatible with earlier JDK versions?

• Non-blocking I/O for SSL/TLS - This is functionality which can’t be simply re-implemented in
JDK-1.4. As the whole server uses NIO it doesn’t make sense to use blocking I/O for SSL and TLS.

• SASL - This could be re-implemented for JDK-1.4 without much effort.

• Concurrent package - This could be re-implemented for JDK-1.4 but takes a lot of work. This is a
critical part of the server as it uses multi-threading and concurrent processing.

• Security package - There number of extensions to the security package which otherwise would not
work as easily with earlier versions of JDK.

I think above list is enough to decide to use JDK-1.5. But why JDK-1.6?

• LinkedHashMap - in JDK-1.6 is a basement for the Tigase cache implementation.

• Light HTTP server - JDK-1.6 offers built-in light HTTP server which is needed to implement HTTP
binding (JEP-0124) and HTTP user interface to monitor server activity and work with the server con-
figuration.

100

Chapter 12. Generating Tigase Installer
To generate installer:

1. Install chosen version of IzPack [http://izpack.org/] including source code.

2. In order to compile custom Tigase panels you need to first compile IzPack [http://izpack.org/] classes.
You can use the included build.xml which is in the src directory of IzPack [http://izpack.org/] install.
Just enter this dir and type:

ant all

1. Depending on the IzPack version classes will be compiled directly into the src/lib directory or
_build directory of IzPack [http://izpack.org/]. You may need to tweak the build.xml file which
is in the same dir as the readme and point to the directory where IzPack [http://izpack.org/] compiled
classes reside.

<!-- fragment --->
<classpath>
 <pathelement location="java"/>

 <!-- tweak below fragment --->
 <pathelement location="${installer.path}/_build"/>

 <pathelement location="${installer.path}/bin/panels/TargetPanel.jar"/>
</classpath>

1. Make sure that the bin/panels directory of IzPack [http://izpack.org/] is writable by gener-
ate-installer.sh script. Compiled custom panels will be placed here before running installer
compiler.

2. Modify the script/generate-installer.sh. Change the IZPACK_DIR variable to point to
the IzPack [http://izpack.org/] instalation directory e.g.

IZPACK_DIR="/usr/local/IzPack421"

3. To start the installation process run the scripts/generate-installer.sh file you will find in
the main server source code directory. You should start it from the server root dir.

4. Generated files (jar and exe) will be placed in the packages dir of Tigase codebase.

http://izpack.org/
http://izpack.org/
http://izpack.org/
http://izpack.org/
http://izpack.org/
http://izpack.org/
http://izpack.org/
http://izpack.org/
http://izpack.org/
http://izpack.org/
http://izpack.org/
http://izpack.org/
http://izpack.org/
http://izpack.org/

101

Chapter 13. API Description for Virtual
Domains Management in the Tigase
Server

The purpose of this guide is to introduce vhost management in Tigase server. Please refer to the JavaDoc
documentation for all specific details not covered in this guide. All interfaces are well documented and you
can use existing implementation as an example code base and reference point. The VHost management files
are located in the repository and you can browse them using the project tracker [https://projects.tigase.org/
projects/tigase-server/repository/revisions/master/show/src/main/java/tigase/vhosts].

Virtual hosts management in Tigase can be adjusted in many ways through the flex-
ible API. The core elements of the virtual domains management is interface VHost-
Manager [https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/ja-
va/tigase/vhosts/VHostManager.java] class. They are responsible for providing the virtual hosts
information to the rest of the Tigase server components. In particular to the Mes-
sageRouter [https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/
java/tigase/server/MessageRouter.java] class which controls how XMPP packets flow inside the server.

The class you most likely want to re-implement is VHostJD-
BCRepository [https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/
main/java/tigase/vhosts/VHostJDBCRepository.java] used as a default virtual hosts storage and imple-
menting the VHostRepository [https://projects.tigase.org/projects/tigase-server/repository/revisions/mas-
ter/entry/src/main/java/tigase/vhosts/VHostRepository.java] interface. You might need to have your own
implementation in order to store and access virtual hosts in other than Tigase’s own data storage. This is
especially important if you are going to modify the virtual domains list through systems other than Tigase.

The very basic virtual hosts storage is provided by VHostItem [https://projects.tigase.org/projects/
tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostItem.java] class. This
is read only storage and provides the server a bootstrap vhosts data at the first startup time
when the database with virtual hosts is empty or is not accessible. Therefore it is advised
that all VHostItem [https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/
main/java/tigase/vhosts/VHostItem.java] implementations extend this class. The example code is provided
in the VHostJDBCRepository [https://projects.tigase.org/projects/tigase-server/repository/revisions/mas-
ter/entry/src/main/java/tigase/vhosts/VHostJDBCRepository.java] file.

All components which may need virtual hosts information or want to interact with virtual hosts man-
agement subsystem should implement the VHostListener [https://projects.tigase.org/projects/tigase-serv-
er/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostListener.java] interface. In some
cases implementing this interface is necessary to receive packets for processing.

Virtual host information is carried out in 2 forms inside the Tigase server:

1. As a String value with the domain name

2. As a VHostItem [https://projects.tigase.org/projects/tigase-server/repository/revisions/mas-
ter/entry/src/main/java/tigase/vhosts/VHostItem.java] which contains all the domain information
including the domain name, maximum number of users for this domain, whether the domain is enabled
or disabled and so on. The JavaDoc documentation contains all the details about all available fields
and usage.

Here is a complete list of all interfaces and classes with a brief description for each of them:

https://projects.tigase.org/projects/tigase-server/repository/revisions/master/show/src/main/java/tigase/vhosts
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/show/src/main/java/tigase/vhosts
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/show/src/main/java/tigase/vhosts
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostManager.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostManager.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostManager.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostManager.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/server/MessageRouter.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/server/MessageRouter.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/server/MessageRouter.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/server/MessageRouter.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostItem.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostItem.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostItem.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostItem.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostItem.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostItem.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostListener.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostListener.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostListener.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostItem.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostItem.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostItem.java

API Description for Virtual Domains
Management in the Tigase Server

102

1. VHostManagerIfc [https://projects.tigase.org/projects/tigase-server/repository/revisions/master/en-
try/src/main/java/tigase/vhosts/VHostManagerIfc.java] - is an interface used to access virtual hosts in-
formation in all other server components. There is one default implementation of the interface: VHost-
Manager.

2. VHostListener [https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/
main/java/tigase/vhosts/VHostListener.java] - is an interface which allows components to interact with
the VHostManager. The interaction is in both ways. The VHostManager provides virtual hosts infor-
mation to components and components provide some control data required to correctly route packets
to components.

3. VHostRepository [https://projects.tigase.org/projects/tigase-server/repository/revisions/master/en-
try/src/main/java/tigase/vhosts/VHostRepository.java] - is an interface used to store and load
virtual domains list from the database or any other storage media. There are 2 imple-
mentations for this interface: VHostConfigRepository [http://projects.tigase.org/server/trac/brows-
er/trunk/src/main/java/tigase/vhosts/VhostConfigRepository.java] which loads vhosts information
for the configuration file and provides read-only storage and - VHostJDBCRepository class
which extends VHostConfigRepository [http://projects.tigase.org/server/trac/browser/trunk/src/main/
java/tigase/vhosts/VhostConfigRepository.java] and allows for both - reading and saving virtual do-
mains list. VHostJDBCRepository is loaded as a default repository by Tigase server.

4. VHostItem [https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/
main/java/tigase/vhosts/VHostItem.java] - is a class which allows for keeping all the virtual domain
properties. Sometimes the domain name is not sufficient for data processing. The domain may be tem-
porarily disabled, may have a limited number of users and so on. Instances of this class keep all the
information about the domain which might be needed by the server components.

5. VHostManager [https://projects.tigase.org/projects/tigase-server/repository/revisions/master/en-
try/src/main/java/tigase/vhosts/VHostManager.java] - the default implementation of the VHostMan-
agerIfc interface. It provides components with the virtual hosts information and manages the virtual
hosts list. Processes ad-hoc commands for reloading, updating and removing domains.

6. VHostConfirRepository [https://projects.tigase.org/projects/tigase-server/repository/revisions/mas-
ter/entry/src/main/java/tigase/vhosts/VhostConfigRepository.java] - a very basic implementation of
the VHostRepository [http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/
VHostRepository.java] for loading domains list from the configuration file.

7. VHostJDBCRepository [https://projects.tigase.org/projects/tigase-server/repository/revisions/mas-
ter/entry/src/main/java/tigase/vhosts/VHostJDBCRepository.java] - the default implementation of
the VHostRepository [http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/
VHostRepository.java] loaded by Tigase server. It allows to read and store virtual domains list in the
database accessible through UserRepository.

https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostManagerIfc.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostManagerIfc.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostManagerIfc.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostListener.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostListener.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostListener.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VhostConfigRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VhostConfigRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VhostConfigRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VhostConfigRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VhostConfigRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VhostConfigRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostItem.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostItem.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostItem.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostManager.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostManager.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostManager.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VhostConfigRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VhostConfigRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VhostConfigRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostJDBCRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostRepository.java

103

Chapter 14. Stanza Limitations
Although XMPP is robust and can process stanzas of any size in bytes, there are some limitations to keep
in mind for Tigase server.

Please keep these in mind when using default Tigase settings and creating custom stanzas.

• Limit to number of attributes of single element = 50 attributes

• Limit to number of elements = 1024 elements

• Limit to length of element name = 1024 characters

• Limit to length of attribute name = 1024 characters

• Limit to length of attribute value = 10240 characters

• Limit to length of content of single element CDATA = 1048576b or 1Mb

These values may be changed.

Note that these limitations are to elements and attributes that may be within a stanza, but do not
limit the overall stanza length.

Escape Characters
There are special characters that need to be escaped if they are included in the stanza to avoid conflicts.
The rules are similar to normal XML escaping. The following is a list of characters that need to be escaped
and what to use to escape them:

& &
< <
> >
" "
' '

