
Tigase Team

Tigase Team

iii

Table of Contents
1. Tigase Development Guide ... 1

Basic Information ... 1
Tigase Architecture ... 1
Tigase Server Elements .. 3
Connector .. 4

Tigase Code Style ... 5
Introduction ... 5
Source file basics .. 5
Source file structure .. 5
Formatting ... 7
Naming ... 9
Programming Practices ... 10
Javadoc ... 10

Hack Tigase XMPP Server in Eclipse ... 11
Requirements .. 11
Installation ... 11
Setup ... 17

Server Compilation .. 22
Distribution Packages .. 22
Building Server and Generating Packages .. 22
Running Server ... 23

Tigase Kernel ... 23
Basics ... 23
Lifecycle of a bean .. 24
Registration of a bean .. 26
Defining dependencies ... 28
Nested kernels and exported beans ... 29
Configuration ... 31

Data Source and Repositories .. 33
Data sources ... 33
User and authentication repositories ... 34
Other repositories .. 36

Component Development .. 37
Component Implementation - Lesson 1 - Basics ... 37
Component Implementation - Lesson 2 - Configuration .. 41
Component Implementation - Lesson 3 - Multi-Threading .. 43
Component Implementation - Lesson 4 - Service Discovery 48
Component Implementation - Lesson 5 - Statistics .. 54
Component Implementation - Lesson 6 - Scripting Support 59
Component Implementation - Lesson 7 - Data Repository .. 65
Component Implementation - Lesson 8 - Lifecycle of a component 73

Packet Filtering in Components ... 74
The Packet Filter API .. 74
Configuration ... 75

EventBus API in Tigase ... 77
EventBus API ... 77
Distributed EventBus ... 77
Local EventBus .. 78

Cluster Map Interface .. 79
Requirements .. 79
Map Creation ... 79

iv

Map Changes ... 80
Map Destruction ... 81

Plugin Development .. 81
Writing Plugin Code .. 81
Plugin Configuration .. 85
How Packets are Processed by the SM and Plugins ... 87
SASL Custom Mechanisms and Configuration ... 91

Using Maven .. 93
Setting up Maven in Windows .. 93
A Very Short Maven Guide .. 96

Tests ... 96
Tests ... 96
Tigase Test Suite ... 100
Test Suite Scripting Language ... 102
Writing Tests for Plugins .. 104
Test Case Parameters Description ... 106

Experimental ... 110
Dynamic Rosters ... 110
Mobile Optimizations ... 112
Bosh Session Cache ... 113

Old Stuff .. 115
Tigase DB Schema Explained .. 115
Why the most recent JDK? ... 117
API Description for Virtual Domains Management in the Tigase Server 118
Stanza Limitations ... 120
API changes in the Tigase Server 5.x .. 121

2. REST API .. 123
Scripting introduction ... 123

Properties ... 123
Properties containing closures .. 123
Accessing beans .. 124

Usage Examples .. 124
Retrieving user avatar .. 124
Retrieving list of available adhoc commands .. 125
Retrieving command form ... 126
Executing example ad-hoc commands ... 128
Operations on VHosts/Domains ... 131
Sending any XMPP Stanza ... 135
Setting XMPP user status ... 136

BOSH HTTP Pre-Binding ... 138
Bosh (HTTP) Pre-Binding ... 138
Configuration .. 139

1

Chapter 1. Tigase Development Guide
Tigase Team <team@tigase.com [mailto:team@tigase.com]> :toc: :numbered: :website: http://tigase.net

Basic Information

Tigase Architecture

The most important thing to understand is that Tigase is very modular and you can have multiple compo-
nents running inside single instance. However one of the most important components is MessageRouter,
which sits in the centre and serves as a, as name suggest, packet router directing packets to the appropriate
components.

There is also a group of specialised component responsible for handling users connections: Connec-
tionManagers (c2s, s2s, ws2s, bosh). They receive packets from the incoming connection, then
subsequently they forward processed packet to MessageRouter. Most of the time, especially for pack-
ets coming from user connections, packet is routed to SessionManager component (with the session
object referring to appropriate user in case of client to server connection). After processing in Session-
Manager packet goes back to MessageRouter and then, based on the stanza addressing` can go to
different component (muc, pubsub) or if it’s addressed to another user it can go through:

• SessionManager (again), MessageRouter and then (user) ConnectionManagers or,

• s2s (server to server connection manager) if the user or component is on the different, federated, xmpp
server;

In a very broad view this can be depicted with a following graph:

mailto:team@tigase.com
mailto:team@tigase.com
http://tigase.net

Tigase Development Guide

2

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]
[Not supported by viewer]

Connection Managers

Tigase Development Guide

3

Tigase Server Elements
To make it easier to get into the code below are defined basic terms in the Tigase server world and there is
a brief explanation how the server is designed and implemented. This document also points you to basic
interfaces and implementations which can be used as example code reference.

Logically all server code can be divided into 3 kinds of modules: components, plug-ins and connectors.

1. Components are the main element of Tigase server. Components are a bigger piece of code which can
have separate address, receive and send stanzas, and be configured to respond to numerous events. Sam-
ple components implemented for Tigase server are: c2s connection manager, s2s connection manager,
session manager, XEP-0114 - external component connection manager, MUC - multi user char rooms.

2. Plug-ins are usually small pieces of code responsible for processing specific XMPP stanzas. They
don’t have their own address. As a result of stanza processing they can produce new XMPP stanzas.
Plug-ins are loaded by session manager component or the c2s connection manager component. Sample
plug-ins are: vCard stanza processing, jabber:iq:register to register new user accounts, presence stanza
processing, and jabber:iq:auth for non-sasl authentication.

3. Connectors are modules responsible for access to data repositories like databases or LDAP to store and
retrieve user data. There are 2 kinds of connectors: authentication connectors and user data connectors.
Both of them are independent and can connect to different data sources. Sample connectors are: JDBC
database connector, XMLDB - embedded database connector, Drupal database connector.

There is an API defined for each kind of above modules and all you have to do is enable the implementation
of that specific interface. Then the module can be loaded to the server based on it’s configuration settings.
There is also abstract classes available, implementing these interfaces to make development easier.

Here is a brief list of all interfaces to look at and for more details you have to refer to the guide for specific
kind of module.

Components

This is list of interfaces to look at when you work on a new component:

1. tigase.server.ServerComponent - This is the very basic interface for component. All components must
implement it.

2. tigase.server.MessageReceiver - This interface extends ServerComponent and is required to im-
plement by components which want to receive data packets like session manager and c2s connection
manager.

3. tigase.conf.Configurable - Implementing this interface is required to make it configurable. For each
object of this type, configuration is pushed to it at any time at runtime. This is necessary to make it
possible to change configuration at runtime. Be careful to implement this properly as it can cause issues
for modules that cannot be configured.

4. tigase.disco.XMPPService - Objects using this interface can respond to "ServiceDiscovery" requests.

5. tigase.stats.StatisticsContainer - Objects using this interface can return runtime statistics. Any object
can collect job statistics and implementing this interface guarantees that statistics will be presented in
consisted way to user who wants to see them.

Instead of implementing above interfaces directly, it is recommended to extend one of existing abstract
classes which take care of the most of "dirty and boring" stuff. Here is a list the most useful abstract classes:

Tigase Development Guide

4

• tigase.server.AbstractMessageReceiver - Implements 4 basic interfaces:

ServerComponent, MessageReceiver, Configurable and StatisticsContainer.
AbstractMessageReceiver also manages internal data queues using it’s own threads which prevents
dead-locks from resource starvation. It offers even-driven data processing which means whenever pack-
et arrives the abstract void processPacket(Packet packet); method is called to
process it. You have to implement this abstract method in your component, if your component wants to
send a packet (in response to data it received for example).

boolean addOutPacket(Packet packet)

• tigase.server.ConnectionManager - This is an extension of AbstractMessageReceiver ab-
stract class. As the name says this class takes care of all network connection management stuff. If your
component needs to send and receive data directly from the network (like c2s connection, s2s connection
or external component) you should use this implementation as a basic class. It takes care of all things
related to networking, I/O, reconnecting, listening on socket, connecting and so on. If you extend this
class you have to expect data coming from to sources:

From the MessageRouter and this is when the abstract void processPacket(Packet
packet); method is called and second, from network connection and then the abstract Queue
processSocketData(XMPPIOService serv); method is called.

Plug-ins

All Tigase plugins currently implemented are located in package: tigase.xmpp.impl. You can use this
code as a sample code base. There are 3 types of plug-ins and they are defined in interfaces located in
tigase.xmpp package:

1. XMPPProcessorIfc - The most important and basic plug-in. This is the most common plug-in type
which just processes stanzas in normal mode. It receives packets, processes them on behalf of the user
and returns resulting stanzas.

2. XMPPPreprocessorIfc - This plugin performs pre-processing of the packet, intended for the pre-
processors to setup for packet blocking.

3. XMPPPostprocessorIfc - This plugin performs processing of packets for which there was no specific
processor.

Connector

Data, Stanzas, Packets - Data Flow and Processing

Data received from the network are read from the network sockets as bytes by code in the tigase.io
package. Bytes then are changed into characters in classes of tigase.net package and as characters
they are sent to the XML parser (tigase.xml) which turns them to XML DOM structures.

All data inside the server is exchanged in XML DOM form as this is the format used by XMPP protocol.
For basic XML data processing (parsing characters stream, building DOM, manipulate XML elements and
attributes) we use Tigase XML parser and DOM builder [https://github.com/tigase/tigase-xmltools].

Each stanza is stored in the tigase.xml.Element object. Every Element can contain any number of
Child Elements and any number of attributes. You can access all these data through the class API.

To simplify some, most common operations Element is wrapped in tigase.server.Packet class
which offers another level of API for the most common operations like preparation of response stanza
based on the element it contains (swap to/from values, put type=result attribute and others).

https://github.com/tigase/tigase-xmltools
https://github.com/tigase/tigase-xmltools

Tigase Development Guide

5

Tigase Code Style

Introduction
This documents defines and describes coding style and standard used in Tigase projects source code.

Examples should be considered as non-normative, that is formatting choices should not be treated as rules.

Source file basics

Technicals details

• File name consists of the case-sensitive, camel-cased name of the top-level class it contains plus the
.java extension.

• Source files are encoded in UTF-8.

Source file structure
A source file consists of, in order:

1. License or copyright information, if present

2. Package statement

3. Import statements

4. Exactly one top-level class

Additionally:

• Exactly one blank line separates sections 2-4;

• The package statement is not line-wrapped (column limit does not apply);

Import statements

• Wildcard imports can be used for:

• more than 5 class imports;

• more than 3 name imports;

• import statements are not line-wrapped (column limit does not apply);

• following import ordering applies:

• all imports not pertaining to any of the groups listed below

• blank line

• javax.* classes

• java.* classes

Tigase Development Guide

6

• blank line

• all static imports in single block

• items in each block are ordered by names in ASCII sort order (since ; sorts before .)

Class declaration

• Each top-level class resides in a source file of its own.

Class contents order

Following order of the elements of the class is mandatory:

• final, static fields in following order:

• public

• protected

• package-private

• private

• public enum

• static fields in following order:

• public

• protected

• package-private

• private

• static initializer block

• final fields in following order:

• public

• protected

• package-private

• private

• fields without modifiers in following order:

• public

• protected

• package-private

• private

Tigase Development Guide

7

• initializer block

• static method(s)

• constructor(s)

• methods(s) without modifiers

• enums(s) without modifiers

• interfaces(s) without modifiers

• inner static classes

• inner classes

In addition:

• Getters and Setters are kept together

• Overloads are never split - multiple constructors or methods with the same name appear sequentially.

Formatting

Braces

• Braces are mandatory in optional cases - for all syntax where braces use can be optional, Tigase mandate
using braces even if the body is empty or contains only single statement.

• Braces follow the Kernighan and Ritchie style (Egyptian brackets [http://www.codinghorror.com/
blog/2012/07/new-programming-jargon.html]):

• No line break before the opening brace.

• Line break after the opening brace.

• Line break before the closing brace.

• Line break after the closing brace, only if that brace terminates a statement or terminates the body
of a method, constructor, or named class. For example, there is no line break after the brace if it is
followed by else or a comma.

Block indentation: tab

All indentation (opening a new block of block-like construct) must be made with tabs. After the block,
then indent returns to the previous.

Ideal tab-size: 4

Column limit: 120

Defined column limit is 120 characters and must be line-wrapped as described below Java code has a
column limit of 100 characters. Except as noted below, any line that would exceed this limit must be line-
wrapped, as explained in section Line-wrapping.

http://www.codinghorror.com/blog/2012/07/new-programming-jargon.html
http://www.codinghorror.com/blog/2012/07/new-programming-jargon.html
http://www.codinghorror.com/blog/2012/07/new-programming-jargon.html

Tigase Development Guide

8

Line-wrapping

line-wrapping is a process of dividing long lines that would otherwise go over the defined Column Limit
(above). It’s recommended to wrap lines whenever it’s possible even if they are not longer than defined
limit.

Whitespace

Vertical Whitespace

A single blank line appears:

• after package statement;

• before imports;

• after imports;

• around class;

• after class header;

• around field in interface;

• around method in interface;

• around method;

• around initializer;

• as required by other sections of this document.

Multiple blank lines are not permitted.

Horizontal whitespace

Beyond where required by the language or other style rules, and apart from literals, comments and Javadoc,
a single ASCII space also appears in the following places only.

1. Separating any reserved word, such as if, for, while, switch, try, catch or synchronized,
from an open parenthesis (() that follows it on that line

2. Separating any reserved word, such as else or catch, from a closing curly brace (}) that precedes
it on that line

3. Before any open curly brace ({), with two exceptions:

• @SomeAnnotation({a, b}) (no space is used)

• String[][] x = {{"foo"}}; (no space is required between {{, by item 8 below)

4. On both sides of any binary or ternary operator. This also applies to the following "operator-like" sym-
bols:

• the ampersand in a conjunctive type bound: <T extends Foo & Bar>

Tigase Development Guide

9

• the pipe for a catch block that handles multiple exceptions: catch (FooException | BarEx-
ception e)

• the colon (:) in an enhanced for ("foreach") statement

• the arrow in a lambda expression: (String str) # str.length()

but not:

• the two colons (::) of a method reference, which is written like Object::toString

• the dot separator (.), which is written like object.toString()

5. After ,:; or the closing parenthesis ()) of a cast

6. Between the type and variable of a declaration: List<String> list

Horizontal alignment: never required

Horizontal alignment is the practice of adding a variable number of additional spaces in your code with
the goal of making certain tokens appear directly below certain other tokens on previous lines.

This practice is permitted, but is never required. It is not even required to maintain horizontal alignment
in places where it was already used.

Specific constructs

Enum classes

After each comma that follows an enum constant, a line break is mandatory.

Variable declarations

• One variable per declaration - Every variable declaration (field or local) declares only one variable:
declarations such as int a, b; are not used.

• Declared when needed -Local variables are not habitually declared at the start of their containing block
or block-like construct. Instead, local variables are declared close to the point they are first used (within
reason), to minimize their scope. Local variable declarations typically have initializers, or are initialized
immediately after declaration.

Arrays

Any array initializer may optionally be formatted as if it were a "block-like construct." (especially when
line-wrapping need to be applied).

Naming

Rules common to all identifiers

Identifiers use only ASCII letters and digits, and, in a small number of cases noted below, underscores.
Thus each valid identifier name is matched by the regular expression \w+ .

Tigase Development Guide

10

Specific Rules by identifier type

• Package names are all lowercase, with consecutive words simply concatenated together (no underscores,
not camel-case).

• Class names are written in UpperCamelCase.

• Method names are written in lowerCamelCase.

• Constant names use CONSTANT_CASE: all uppercase letters, with words separated by underscores.

• Non-constant field names (static or otherwise) are written in lowerCamelCase.

• Parameter names are written in lowerCamelCase (one-character parameter names in public methods
should be avoided).

• Local variable names are written in lowerCamelCase.

Programming Practices

• A method is marked with the @Override annotation whenever it is legal. This includes a class method
overriding a superclass method, a class method implementing an interface method, and an interface
method re-specifying a super-interface method.

• Caught exceptions should not be ignored (and if this is a must then a log entry is required).

Javadoc

• blank lines should be inserted after:

• description,

• parameter description,

• return tag;

• empty tag should be included for following tags:

• @params

• @return

• @throws

Usage

At the minimum, Javadoc is present for every public class, and every public or protected member
of such a class, with a few exceptions:

• is optional for "simple, obvious" methods like getFoo, in cases where there really and truly is nothing
else worthwhile to say but "Returns the foo".

• in methods that overrides a supertype method.

Tigase Development Guide

11

Hack Tigase XMPP Server in Eclipse
If you want to write code for Tigase server we recommend using Eclipse IDE [//https://eclipse.org/down-
loads/]. Either the IDE for Java or Java EE developers will work.

Requirements

Eclipse IDE currently requires the use of Java Development Kit 8 [http://www.oracle.com/technetwork/ja-
va/javase/downloads/jdk8-downloads-2133151.html].

You will also need the M2E plugin for Maven integration, however this can be done inside Eclipse now,
so refer to the Plugin Installation section for that.

Installation

Eclipse does not come as an installer, but rather an archive. Extract the directory to a working location
wherever you would like. Now install the JDK software, location is not important as Eclipse will find it
automatically.

Before we begin, we will need to clone the repository from git.

Linux

For linux operating systems, navigate to a directory where you want the repository to be cloned to and
type the following into terminal.

git clone https://repository.tigase.org/git/tigase-server.git

Windows

Please see the Windows coding guide for instructions on how to obtain source code from git. If you don’t
want to install git software specifically, you can use Eclipse’s git plugin to obtain the repository without
any new software. First click on File, then Import… Next select from Git folder and the Projects from Git

//https://eclipse.org/downloads/
//https://eclipse.org/downloads/
//https://eclipse.org/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

Tigase Development Guide

12

Click next, and now select clone URI

Tigase Development Guide

13

Now click next, and in this window enter the following into the URI field

git://repository.tigase.org/git/tigase-server.git

The rest of the fields will populate automatically

Tigase Development Guide

14

Select the master branch, and any branches you wish to edit. The master branch should be the only one
you need, branches are used for specific code changes

Tigase Development Guide

15

Now select the directory where you wanted to clone the repository to. This was function as the project
root directory you will use later on in the setup.

Tigase Development Guide

16

Once you click next Eclipse will download the repository and any branches you selected to that directory.
Note you will be unable to import this git directory since there are no git a project specific files downloaded.
However, once downloading is complete you may click cancel, and the git repository will remain in the
directory you have chosen.

Tigase Development Guide

17

Setup

Once you have the main window open and have established a workspace (where most of your working
files will be stored), click on Help and then Install New Software…

Under the Work With field enter the following and press enter: http://download.eclipse.org/technolo-
gy/m2e/releases/

Note: You may wish to click the Add… button and add the above location as a permanent software
location to keep the location in memory

http://download.eclipse.org/technology/m2e/releases/
http://download.eclipse.org/technology/m2e/releases/

Tigase Development Guide

18

Tigase Development Guide

19

You should see the M2 Eclipse software packages show in the main window. Click the check-box and
click Next. Once the installer is finished it will need to restart Eclipse.

Once that is done, lets connect Eclipse to the cloned repository.

Click File and Import… to bring up the import dialog window. Select Maven and then Existing Maven
Project.

Tigase Development Guide

20

Now click Next and point the root directory to where you cloned the git repository, Eclipse should auto-
matically see the pom.xml file and show up in the next window.

Tigase Development Guide

21

Tigase Development Guide

22

Once the import is finished, you are able to now begin working with Tigase’s code inside Eclipse! Happy
coding!

Server Compilation
Tigase XMPP Server Project uses Maven for compilation. For details on Maven and it’s use, please see
the Maven Guide.

Distribution Packages
Once Compiled, Tigase creates two separate distribution archives:

• -dist is a minimal version containing only tigase-server, tigase-xmltools and tigase-utils, MUC, Pubsub,
and HTTP.

• -dist-max is a version containing all additional tigase components as well as dependencies required by
those components.

They will be available as both zip and tarball.

Building Server and Generating Packages

Server binary and it’s documentation

After cloning tigase-server repository:

git clone https://repository.tigase.org/git/tigase-server.git
cd tigase-server

You compile server with maven :

mvn clean install

This will: - Build Tigase XMPP tigase-server jar in tigase-server/target.

If you wish to include compilation of the documentation use distribution profile:

mvn --Pdist clean install

This will - compile server binaries. - generate javadoc and manual documentation tigase-serv-
er/target/_docs directory.

Server distribution packages

Distribution building is handled by separate project (Tigase Server Distribution [https://github.com/tigase/
tigase-server-distribution])

In order to build distribution packages * clone tigase-server-distribution repository:

git clone https://git.tigase.tech/tigase-server-distribution
tigase-server-distribution

and compile it using maven with distribution profile:

https://github.com/tigase/tigase-server-distribution
https://github.com/tigase/tigase-server-distribution
https://github.com/tigase/tigase-server-distribution

Tigase Development Guide

23

mvn --Pdist clean install

This will:

• compile all documentation sources (including dependencies) and place them in tigase-serv-
er-distribution/target/_docs directory

• download all dependencies in defined versions and put them in tigase-server-distribu-
tion/target/dist/jars/ directory.

• create both types of distribution packages (-dist and -dist-max) and place them in tigase-serv-
er-distribution/target/_dist/ directory.

Running Server
Afterwards you can run the server with the regular shell script from within server module:

cd server
./scripts/tigase.sh start etc/tigase.conf

Please bear in mind, that you need to provide correct setup in etc/config.tdsl configuration files for the
server to work correctly.

Tigase Kernel
Tigase Kernel is an implementation of IoC [https://en.wikipedia.org/wiki/Inversion_of_control] created
for Tigase XMPP Server. It is responsible for maintaining object lifecycle and provides mechanisms for
dependency resolutions between beans.

Additionally, as and optional feature, Tigase Kernel is capable of configuring beans using a provided bean
configurator.

Basics

What is kernel?

Kernel is an instance of the Kernel class which is responsible for managing scope and visibility of beans.
Kernel handles bean:

• registration of a bean

• unregistration of a bean

• initialization of a bean

• deinitialization of a bean

• dependency injection to the bean

• handling of bean lifecycle

• registration of additional beans based on annotations (optionally using registered class implementing
BeanConfigurator as defaultBeanConfigurator)

https://en.wikipedia.org/wiki/Inversion_of_control
https://en.wikipedia.org/wiki/Inversion_of_control

Tigase Development Guide

24

• configuration of a bean (optionally thru registered class implementing BeanConfigurator as de-
faultBeanConfigurator)

Kernel core is responsible for dependency resolution and maintaining lifecycle of beans. Other features,
like proper configuration of beans are done by additional beans working inside the Kernel.

Kernel identifies beans by their name, so each kernel may have only one bean named abc. If more than one
bean has the same name, then the last one registered will be used as its registration will override previously
registered beans. You may use whatever name you want to name a bean inside kernel but it cannot:

• be service as this name is used by Tigase Kernel internally when `RegistrarBean`s are in use (see
RegistrarBean

• end with #KERNEL as this names are also used by Tigase Kernel internally

Tip

Kernel initializes beans using lazy initialization. This means that if a bean is not required by any
other beans, or not retrieved from the kernel manually, an instance will not be created.

During registration of a bean, the kernel checks if there is any beans which requires this newly registered
bean and if so, then instance of a newly registered bean will be created and injected to fields which require
it.

What is a kernel scope?

Each kernel has its own scope in which it can look for beans. By default kernel while injecting dependencies
may look for them only in the same kernel instance in which new instance of a bean is created or in the
direct parent kernel. This way it is possible to have separate beans named the same in the different kernel
scopes.

Note

If bean is marked as exportable, it is also visible in all descendants kernel scopes.

What is a bean?

A bean is a named instance of the class which has parameterless constructor and which is registered in
the kernel.

Warning

Parameterless constructor is a required as it will be used by kernel to create an instance of the
bean, see bean lifecycle.

Lifecycle of a bean

Creating instance of a bean

Instantiation of a bean

During this step, kernel creates instance of the class which was registered for this bean (for more details
see Registration of a bean). Instance of a bean is created using paremeterless constructor of a class.

Tigase Development Guide

25

Configuring a bean (optional)

In this step kernel passes class instance of a bean to the configurator bean (an instance of BeanCon-
figurator if available), for configuring it. During this step, BeanConfigurator instance, which is
aware of the configuration loaded from the file, injects this configuration to the bean fields annotated with
@ConfigField annotation. By default configurator uses reflections to access those fields. However, if a
bean has a corresponding public setter/getter methods for a field annotated with @ConfigField
(method parameter/return type matches field type), then configurator will use them instead of accessing
a field via reflection.

Note

If there is no value for a field specified in the configuration or value is equal to the current value
of the field, then configurator will skip setting value for this field (It will also not call setter
method even if it exists).

At the end of the configuration step, if bean implements ConfigurationChangedAware interface,
then method beanConfigurationChanged(Collection<String> changedFields) is be-
ing called, to notify bean about field names which values has changed. This is useful, if you need to update
bean configuration, when you have all configuration available inside bean.

Note

Configuration of the bean may be changed at runtime and it will be applied in the same way as
initial configuration is passed to the bean. So please keep in mind that getter/setter may be
called multiple times - even for already configured and initialized bean.

Injecting dependencies

At this point kernel looks for the bean class fields annotated with @Inject and looks for a value for each
of this fields. During this step, kernel checks list of available beans in this kernel, which matches field
type and additional constraints specified in the annotation.

When a required value (instance of a bean) is found, then kernel tries to inject it using reflection. However,
if there is a matching getter/setter defined for that field it will be called instead of reflection.

Note

If dependency changes, ie. due to reconfiguration, then value of the dependent field will change
and setter will be called if it exists. So please keep in mind that getter/setter may be
called multiple times - even for already configured and initialized bean.

Initialization of a bean

When bean is configured and dependencies are set, then initialization of a bean is almost finished. At this
point, if bean implements Initializable interface, kernel calls initialize() method to allow
bean initialize properly if needed.

Destroying instance of a bean

When bean is being unloaded, then reference to its instance is just dropped. However, if bean class imple-
ments UnregisterAware interface, then kernel calls beforeUnregister() method. This is very
useful in case which bean acquires some resources during initialization and should release them now.

Tigase Development Guide

26

Note

This method will not be called if bean was not initialized fully (bean initialization step was note
passed)!

Reconfiguration of a bean (optional)

At any point in time bean may be reconfigured by default bean configurator (instance of BeanConfig-
urator) registered in the kernel. This will happen in the same way as it described in Configuring a bean
in Creating instace of a bean section.

Updating dependencies

It may happen, that due to reconfiguration or registration/unregistration or activation/deactivation of some
other beans dependencies of a bean will change. As a result, Tigase Kernel will inject new dependencies
as described in Injecting dependencies

Registration of a bean
There are few ways to register a bean.

Using annotation (recommended but optional)

To register a bean using annotation you need to annotate it with @Bean annotation and pass values for
following properties:

• name - name under which item should be registered

• active - true if bean should be enabled without enabling it in the configuration (however it is still
possible to disable it using configuration)

• parent - class of the parent bean which activation should trigger registration of your bean. In most
cases parent class should be implementing RegistrarBean

• parents - array of classes which should be threaten as parent classes if more than one parent class
is required (optional)

• exportable - true if bean should be visible in all descendant kernels (in other case default visibility
rules will be applied) (optional)

• selectors - array of selector classes which will decide whether class should be registered or not
(optional)

Tip

If parent is set to Kernel.class it tells kernel to register this bean in the root/main kernel
(top-level kernel).

If you want your bean SomeDependencyBean to be registered when another bean ParentBean is
being registered (like a required dependency), you may annotate your bean SomeDependencyBean
with @Bean annotation like this example:

@Bean(name = -"nameOfSomeDependencyBean", parent = ParentBean.class, active = true)
public class SomeDependencyBean {
 -...

Tigase Development Guide

27

}

Warning

Works only if bean registered as defaultBeanConfigurator supports this feature. By de-
fault Tigase XMPP Server uses DSLBeanConfigurator which is subclass of Abstract-
BeanConfigurator which provides support for this feature.

Setting parent to class not implementing RegistrarBean interface

If parent is set to the class which is not implementing RegistrarBean interface, then your bean
will be registered in the same kernel scope in which parent bean is registered. If you do so, ie. by setting
parent to the class of the bean which is registered in the kernel1 and your bean will be also registered
in kernel1. As the result it will be exposed to other beans in the same kernel scope. This also means
that if you will configure it in the same way as you would set parent to the parent of annotation of
the class to which your parent point to.

Example.

@Bean(name="bean1", parent=Kernel.class)
public class Bean1 {
 @ConfigField(desc="Description")
 private int field1 = 0;
 -....
}

@Bean(name="bean2", parent=Bean1.class)
public class Bean2 {
 @ConfigField(desc="Description")
 private int field2 = 0;
 -....
}

In this case it means that bean1 is registered in the root/main kernel instance. At the same time, bean2
is also registered to the root/main kernel as its value of parent property of annotation points to class not
implementing RegistrarBean.

To configure value of field1 in instance of bean1 and field2 in instance of bean2 in DSL (for
more information about DSL format please check section DSL file format of the Admin Guide)
you would need to use following entry in the config file:

bean1 {
 field1 = 1
}
bean2 {
 field2 = 2
}

As you can see, this resulted in the bean2 configuration being on the same level as bean1 configuration.

Calling kernel methods

As a class

To register a bean as a class, you need to have an instance of a Tigase Kernel execute it’s register-
Bean() method passing your Bean1 class.

Tigase Development Guide

28

kernel.registerBean(Bean1.class).exec();

Note

To be able to use this method you will need to annotate Bean1 class with @Bean annotation and
provide a bean name which will be used for registration of the bean.

As a factory

To do this you need to have an instance of a Tigase Kernel execute it’s registerBean() method
passing your bean Bean5 class.

kernel.registerBean("bean5").asClass(Bean5.class).withFactory(Bean5Factory.class).exec();

As an instance

For this you need to have an instance of a Tigase Kernel execute it’s registerBean() method passing
your bean Bean41 class instance.

Bean41 bean41 = new Bean41();
kernel.registerBean("bean4_1").asInstance(bean41).exec();

Warning

Beans registered as an instance will not inject dependencies. As well this bean instances will not
be configured by provided bean configurators.

Using config file (optional)

If there is registered a bean defaultBeanConfigurator which supports registration in the config
file, it is possible to do so. By default Tigase XMPP Server uses DSLBeanConfigurator which pro-
vides support for that and registration is possible in the config file in DSL. As registration of beans using a
config file is part of the admin of the Tigase XMPP Server tasks, it is described in explained in the Admin
Guide in subsection Defining bean of DSL file format section.

Tip

This way allows admin to select different class for a bean. This option should be used to provide
alternative implementations to the default beans which should be registered using annotations.

Warning

Works only if bean registered as defaultBeanConfigurator supports this feature. By de-
fault Tigase XMPP Server uses DSLBeanConfigurator which provides support for that.

Defining dependencies
All dependencies are defined with annotations:

public class Bean1 {
 @Inject
 private Bean2 bean2;

Tigase Development Guide

29

 @Inject(bean = -"bean3")
 private Bean3 bean3;

 @Inject(type = Bean4.class)
 private Bean4 bean4;

 @Inject
 private Special[] tableOfSpecial;

 @Inject(type = Special.class)
 private Set<Special> collectionOfSpecial;

 @Inject(nullAllowed = true)
 private Bean5 bean5;
}

Kernel automatically determines type of a required beans based on field type. As a result, there is no need
to specify the type of a bean in case of bean4 field.

When there are more than one bean instances matching required dependency fields, the type needs to be an
array or collection. If kernel is unable to resolve dependencies, it will throw an exception unless @Inject
annotation has nullAllowed set to true. This is useful to make some dependencies optional. To help
kernel select a single bean instance when more that one bean will match field dependency, you may set
name of a required bean as shown in annotation to field bean3.

Dependencies are inserted using getters/setters if those methods exist, otherwise they are inserted directly
to the fields. Thanks to usage of setters, it is possible to detect a change of dependency instance and react
as required, i.e. clear internal cache.

Warning

Kernel is resolving dependencies during injection only using beans visible in its scope. This
makes it unable to inject an instance of a class which is not registered in the same kernel as a
bean or not visible in this kernel scope (see Scope and visibility).

Warning

If two beans have bidirectional dependencies, then it is required to allow at least one of them be
null (make it an optional dependency). In other case it will create circular dependency which
cannot be satisfied and kernel will throw exceptions at runtime.

Nested kernels and exported beans
Tigase Kernel allows the usage of nested kernels. This allows you to create complex applications and
maintain proper separation and visibility of beans in scopes as each module (subkernel) may work within
its own scope.

Subkernels may be created using one of two ways:

Manual registration of new a new kernel

You can create an instance of a new kernel and register it as a bean within the parent kernel.

Kernel parent = new Kernel("parent");

Tigase Development Guide

30

Kernel child = new Kernel("child");
parent.registerBean(child.getName()).asInstance(child).exec();

Usage of RegistrarBean

You may create a bean which implements the RegistrarBean interfaces. For all beans that implement
this interface, subkernels are created. You can access this new kernel within an instance of Registrar-
Bean class as register(Kernel) and unregister(Kernel) methods are called once the Reg-
istrarBean instance is created or destroyed.

There is also an interface named RegistrarBeanWithDefaultBeanClass. This interface is very
useful if you want or need to create a bean which would allow you to configure many subbeans which will
have the same class but different names and you do not know names of those beans before configuration
will be set. All you need to do is to implement this interface and in method getDefaultBeanClass()
return class which should be used for all subbeans defined in configuration for which there will be no
class configured.

As an example of such use case is dataSource bean, which allows administrator to easily configure
many data sources without passing their class names, ie.

dataSource {
 default () { -.... -}
 domain1 () { -.... -}
 domain2 () { -.... -}
}

With this config we just defined 3 beans named default, domain1 and domain2. All of those beans
will be instances of a class returned by a getDefaultBeanClass() method of dataSource bean.

Scope and visibility

Beans that are registered within a parent kernel are visible to beans registered within the first level of
child kernels. However, beans registered within child kernels are not available to beans registered in
a parent kernel with the exception that they are visible to bean that created the subkernel (an instance
of RegistrarBean).

It is possible to export beans so they can be visible outside the first level of child kernels.

To do so, you need to mark the bean as exportable using annotations or by calling the exportable()
method.

Using annotation.

@Bean(name = -"bean1", exportable = true)
public class Bean1 {
}

Calling exportable().

kernel.registerBean(Bean1.class).exportable().exec();

Dependency graph

Kernel allows the creation of a dependency graph. The following lines will generate it in a format supported
by Graphviz [http://www.graphviz.org].

http://www.graphviz.org
http://www.graphviz.org

Tigase Development Guide

31

DependencyGrapher dg = new DependencyGrapher(krnl);
String dot = dg.getDependencyGraph();

Configuration
The kernel core does not provide any way to configure created beans. Do do that you need to use the
DSLBeanConfigurator class by providing its instance within configuration and registration of this
instances within kernel.

Example.

Kernel kernel = new Kernel("root");
kernel.registerBean(DefaultTypesConverter.class).exportable().exec();
kernel.registerBean(DSLBeanConfigurator.class).exportable().exec();
DSLBeanConfigurator configurator = kernel.getInstance(DSLBeanConfigurator.class);
Map<String, Object> cfg = new ConfigReader().read(file);
configurator.setProperties(cfg);
// and now register other beans...

DSL and kernel scopes

DSL is a structure based format explained in Tigase XMPP Server Administration Guide: DSL file for-
mat section [http://docs.tigase.org/tigase-server/snapshot/Administration_Guide/html/#dslConfig]. It is
important to know that kernel and beans structure have an impact on what the configuration in
DSL will look like.

Example kernel and beans classes.

@Bean(name = -"bean1", parent = Kernel.class, active = true -)
public class Bean1 implements RegistrarBean {
 @ConfigField(desc = -"V1")
 private String v1;

 public void register(Kernel kernel) {
 kernel.registerBean("bean1_1").asClass(Bean11.class).exec();
 -}

 public void unregister(Kernel kernel) {}
}

public class Bean11 {
 @ConfigField(desc = -"V11")
 private String v11;
}

@Bean(name = -"bean1_2", parent = Bean1.class, active = true)
public class Bean12 {
 @ConfigField(desc = -"V12")
 private String v12;
}

@Bean(name = -"bean2", active = true)
public class Bean2 {
 @ConfigField(desc = -"V2")

http://docs.tigase.org/tigase-server/snapshot/Administration_Guide/html/#dslConfig
http://docs.tigase.org/tigase-server/snapshot/Administration_Guide/html/#dslConfig
http://docs.tigase.org/tigase-server/snapshot/Administration_Guide/html/#dslConfig

Tigase Development Guide

32

 private String v2;
}

public class Bean3 {
 @ConfigField(desc = -"V3")
 private String v3;
}

public class Main {
 public static void main(String[] args) {
 Kernel kernel = new Kernel("root");
 kernel.registerBean(DefaultTypesConverter.class).exportable().exec();
 kernel.registerBean(DSLBeanConfigurator.class).exportable().exec();
 DSLBeanConfigurator configurator = kernel.getInstance(DSLBeanConfigurator.class);
 Map<String, Object> cfg = new ConfigReader().read(file);
 configurator.setProperties(cfg);

 configurator.registerBeans(null, null, config.getProperties());

 kernel.registerBean("bean4").asClass(Bean2.class).exec();
 kernel.registerBean("bean3").asClass(Bean3.class).exec();
 -}
}

Following classes will produce following structure of beans:

• "bean1" of class Bean1

• "bean1_1" of class Bean11

• "bean1_2" of class Bean12

• "bean4" of class Bean2

• "bean3" of class Bean3

Note

This is a simplified structure, the actual structure is slightly more complex. However. this version
makes it easier to explain structure of beans and impact on configuration file structure.

Warning

Even though Bean2 was annotated with name bean2, it was registered with name bean4 as
this name was passed during registration of a bean in main() method.

Tip

Bean12 was registered under name bean1_2 as subbean of Bean1 as a result of annotation
of Bean12

As mentioned DSL file structure depends on structure of beans, a file to set a config field in each bean
to bean name should look like that:

'bean1' () {

Tigase Development Guide

33

 -'v1' = -'bean1'

 -'bean1_1' () {
 -'v11' = -'bean1_1'
 -}
 -'bean1_2' () {
 -'v12' = -'bean1_2'
 -}
}
'bean4' () {
 -'v2' = -'bean4'
}
'bean3' () {
 -'v3' = -'bean3'
}

Data Source and Repositories
In Tigase XMPP Server 8.0.0 a new concept of data sources was introduced. It was introduced to create
distinction between classes responsible for maintaining connection to actual data source and classes oper-
ating on this data source.

Data sources

DataSource

DataSource is an interface which should be implemented by all classes implementing access to data
source, i.e. implementing access to database using JDBC connection or to MongoDB. Implementation of
DataSource is automatically selected using uri provided in configuration and @Repository.Meta
annotation on classes implementing DataSource interface.

DataSourcePool

DataSourcePool is interface which should be implemented by classes acting as a pool of da-
ta sources for single domain. There is no requirement to create class implementing this interface,

Tigase Development Guide

34

however if implementation of DataSource is blocking and does not support concurrent requests,
then creation of DataSourcePool is recommended. An example of such case is implementation of
DataRepositoryImpl which executes all requests using single connection and for this class there
is DataRepositoryPool implementing DataSourcePool interface and improving performance.
Implementation of DataSourcePool is automatically selected using uri provided in configuration and
@Repository.Meta annotation on classes implementing DataSourcePool interface.

DataSourceBean

This class is a helper class and provides support for handling multiple data sources. You can think of
a DataSourceBean as a map of named DataSource or DataSourcePool instances. This class
is also responsible for initialization of data source. Moreover, if data source will change during runtime
DataSourceBean is responsible for firing a DataSourceChangedEvent to notify other classes
about this change.

User and authentication repositories

This repositories may be using existing (configured and initialized) data sources. However, it is also pos-
sible to that they may have their own connections. Usage of data sources is recommended if possible.

Tigase Development Guide

35

AuthRepository and UserRepository

This are a base interfaces which needs to be implemented by authentication repository (AuthReposi-
tory) and by repository of users (UserRepository). Classes implementing this interfaces should be
only responsible for retrieving data from data sources.

AuthRepositoryPool and UserRepositoryPool

If class implementing AuthRepositoryPool or UserRepositoryPool is not using data sources
or contains blocking or is not good with concurrent access, then it should be wrapped within proper repos-
itory pool. Most of implementations provided as part of Tigase XMPP Server do not require to be wrapped
within repository pool. If your implementation is blocking or not perform well with concurrent access
(ie. due to synchronization), then it should be wrapped within this pool. To wrap implementation within
a pool, you need to set pool-cls property of configured user or authentication repository in your con-
figuration file.

AuthRepositoryMDPoolBean and UserRepositoryMDPoolBean

This classes are for classes implementing AuthRepository and UserRepository what
DataSourceBean is for classes implementing DataSource interface. This classes holds map of
named authentication or user repositories. They are also responsible for initialization of classes imple-
menting this repositories.

Tigase Development Guide

36

Other repositories

It is possible to implement repositories not implementing AuthRepository or UserRepository.
Each type of custom repository should have its own API and its own interface.

DataSourceAware

Custom repositories should implement they own interface specifying its API. This interfaces should
extend DataSourceAware interface which is base interface required to be implemented by custom
repositories. DataSourceAware has a method setDataSource() which will be called with in-
stance of data source to initialize instance of custom repository. Implementations should be annotat-
ed with @Repository.Meta implementation to make the automatically selected for proper type of
DataSource implementation.

Tigase Development Guide

37

MDRepositoryBean

It is required to create a class extending MDRepositoryBean implementing same custom interface as
the custom repository. This class will be a multi domain pool, allowing you to have separate implementa-
tion of custom repository for each domain. Moreover, it will be responsible for creation and initialization
of your custom repository instances.

Component Development
A component in the Tigase is an entity with its own JID address. It can receive packets, process them,
and can also generate packets.

An example of the best known components is MUC or PubSub. In Tigase however, almost everything is
actually a component: Session Manager, s2s connections manager, Message Router, etc… Components
are loaded based on the server configuration, new components can be loaded and activated at run-time.
You can easily replace a component implementation and the only change to make is a class name in the
configuration entry.

Creating components for Tigase server is an essential part of the server development hence there is a lot
of useful API and ready to use code available. This guide should help you to get familiar with the API and
how to quickly and efficiently create your own component implementations.

1. Component implementation - Lesson 1 - Basics

2. Component implementation - Lesson 2 - Configuration

3. Component implementation - Lesson 3 - Multi-Threading

4. Component implementation - Lesson 4 - Service Discovery

5. Component implementation - Lesson 5 - Statistics

6. Component implementation - Lesson 6 - Scripting Support

7. Component implementation - Lesson 7 - Data Repository

8. Component implementation - Lesson 8 - Startup Time

9. Configuration API

10.Packet Filtering in Component

Component Implementation - Lesson 1 - Basics
Creating a Tigase component is actually very simple and with broad API available you can create a pow-
erful component with just a few lines of code. You can find detailed API description elsewhere. This series
presents hands on lessons with code examples, teaching how to get desired results in the simplest possible
code using existing Tigase API.

Even though all Tigase components are just implementations of the ServerComponent interface I will
keep such a low level information to necessary minimum. Creating a new component based on just inter-
faces, while very possible, is not very effective. This guide intends to teach you how to make use of what
is already there, ready to use with a minimal coding effort.

This is just the first lesson of the series where I cover basics of the component implementation.

Tigase Development Guide

38

Let’s get started and create the Tigase component:

import java.util.logging.Logger;
import tigase.component.AbstractKernelBasedComponent;
import tigase.server.Packet;

public class TestComponent extends AbstractKernelBasedComponent {

 private static final Logger log = Logger.getLogger(TestComponent.class.getName());

 @Override
 public String getComponentVersion() {
 String version = this.getClass().getPackage().getImplementationVersion();
 return version == null -? -"0.0.0" -: version;
 -}

 @Override
 public boolean isDiscoNonAdmin() {
 return false;
 -}

 @Override
 protected void registerModules(Kernel kernel) {
 -// here we need to register modules responsible for processing packets
 -}

}

As you can see we have 3 mandatory methods when we extends AbstractKernelBasedComponent:

• String getComponentVersion() which returns version of a component for logging purposes

• boolean isDiscoNonAdmin() which decides if component will be visible for users other that server
administrators

• void registerModules(Kernel kernel) which allows you to register component modules responsible
for actual processing of packets

Tip

If you decide you do not want to use modules for processing packets (even though we strongly
suggest to use them, as thanks to modules components are easily extendible) you can implement
one more method void processPacket(Packet packet) which will be called for every packet sent
to a component. This method is actually logical as the main task for your component is processing
packets.

Class name for our new component is TestComponent and we have also initialized a separated logger for
this class. Doing This is very useful as it allows us to easily find log entries created by our class.

With these a few lines of code you have a fully functional Tigase component which can be loaded to
the Tigase server; it can receive and process packets, shows as an element on service discovery list (for
administrators only), responds to administrator ad-hoc commands, supports scripting, generates statistics,
can be deployed as an external component, and a few other things.

Next important step is to create modules responsible for processing packets. For now let’s create module
responsible for handling messages by appending them to log file:

Tigase Development Guide

39

@Bean(name = -"test-module", parent = TestComponent.class, active = true)
public static class TestModule extends AbstractModule {

 private static final Logger log = Logger.getLogger(TestModule.class.getCanonicalName());

 private static final Criteria CRITERIA = ElementCriteria.name("message");

 @Override
 public Criteria getModuleCriteria() {
 return CRITERIA;
 -}

 @Override
 public void process(Packet packet) throws ComponentException, TigaseStringprepException {
 log.finest("My packet: -" + packet.toString());
 -}
}

Instance of Criteria class returned by Criteria getModuleCriteria() is used by component
class to decide if packet should be processed by this module or not. In this case we returned instance which
matches any packet which is a message.

And finally we have a very important method void process(Packet packet) which is main
processing method of a component. If component will receive packet that matches criteria returned by
module - this method will be called.

But how we can send packet from a module? AbstractModule contains method void write(Packet pack-
et) which you can use to send packets from a component.

Before we go any further with the implementation let’s configure the component in Tigase server so it is
loaded next time the server starts. Assuming our init.tdsl file looks like this one:

'config-type' = -'default'
'debug' = ['server']
'default-virtual-host' = [-'devel.tigase.org' -]
admins = [-'admin@devel.tigase.org' -]
dataSource {
 default () {
 uri = -'jdbc:derby:/Tigase/tigasedb'
 -}
}
muc() {}
pubsub() {}

We can see that it already is configured to load two other components: MUC and PubSub. Let’s add a
third - our new component to the configuration file by appending the following line in the properties file:

test(class: TestComponent) {}

Now we have to restart the server.

There are a few ways to check whether our component has been loaded to the server. Probably the easiest
is to connect to the server from an administrator account and look at the service discovery list.

Tigase Development Guide

40

If everything goes well you should see an entry on the list similar to the highlighted one on the screenshot.
The component description is "Undefined description" which is a default description and we can change it
later on, the component default JID is: test@devel.tigase.org, where devel.tigase.org is the server domain
and test is the component name.

Another way to find out if the component has been loaded is by looking at the log files. Getting yourself
familiar with Tigase log files will be very useful thing if you plan on developing Tigase components. So
let’s look at the log file logs/tigase.log.0, if the component has been loaded you should find following
lines in the log:

MessageRouter.setProperties() FINER: Loading and registering message receiver: test
MessageRouter.addRouter() INFO: Adding receiver: TestComponent
MessageRouter.addComponent() INFO: Adding component: TestComponent

If your component did not load you should first check configuration files. Maybe the Tigase could not
find your class at startup time. Make sure your class is in CLASSPATH or copy a JAR file with your
class to Tigase jars/ directory.

Assuming everything went well and your component is loaded by the sever and it shows on the service
discovery list as on the screenshot above you can double click on it to get a window with a list of ad-
hoc commands - administrator scripts. A window on the screenshot shows only two basic commands for
adding and removing script which is a good start.

Tigase Development Guide

41

Moreover, you can browse the server statistics in the service discovery window to find your new test
component on the list. If you click on the component it shows you a window with component statistics,
very basic packets counters.

As we can see with just a few lines of code our new component is quite mighty and can do a lot of things
without much effort from the developer side.

Now, the time has come to the most important question. Can our new component do something useful,
that is can it receive and process XMPP packets?

Let’s try it out. Using you favorite client send a message to JID: test@devel.tigase.org (assuming your
server is configured for devel.tigase.org domain). You can either use kind of XML console in your client
or just send a plain message to the component JID. According to our code in process(…) method it should
log our message. For this test I have sent a message with subject: "test message" and body: "this is a test".
The log file should contain following entry:

TestModule.process() FINEST: My packet: to=null, from=null,
data=<message from="admin@devel.tigase.org/devel"
 to="test@devel.tigase.org" id="abcaa" xmlns="jabber:client">
 <subject>test message</subject>
 <body>this is a test</body>
</message>, XMLNS=jabber:client, priority=NORMAL

If this is a case we can be sure that everything works as expected and all we now have to do is to fill the
process(…) method with some useful code.

Component Implementation - Lesson 2 - Configuration
It might be hard to tell what the first important thing you should do with your new component implemen-
tation. Different developers may have a different view on this. It seems to me however that it is always a
good idea to give to your component a way to configure it and provide some runtime settings.

This guide describes how to add configuration handling to your component.

To demonstrate how to implement component configuration let’s say we want to configure which types of
packets will be logged by the component. There are three possible packet types: message, presence and
iq and we want to be able to configure logging of any combination of the three. Furthermore we also want

Tigase Development Guide

42

to be able to configure the text which is prepended to the logged message and to optionally switch secure
login. (Secure logging replaces all packet CData with text: CData size: NN to protect user privacy.)

Let’s create the following private variables in our component TestModule:

@ConfigField(desc = -"Logged packet types", alias = -"packet-types")
private String[] packetTypes = {"message", -"presence", -"iq"};
@ConfigField(desc = -"Prefix", alias = -"log-prepend")
private String prependText = -"My packet: -";
@ConfigField(desc = -"Secure logging", alias = -"secure-logging")
private boolean secureLogging = false;

And this is it. Tigase Kernel will take care of this fields and will update them when configuration will
change.

The syntax in config.tdsl file is very simple and is described in details in the Admin Guide. To set
the configuration for your component in config.tdsl file you have to append following lines to the
file inside test component configuration block:

test-module {
 log-prepend = -'My packet: -'
 packet-types = [-'message', -'presence', -'iq' -]
 secure-logging = true
}

The square brackets are used to mark that we set a list consisting of a few elements, have a look at the
Admin Guide documentation for more details.

And this is the complete code of the new component module with a modified process(…) method taking
advantage of configuration settings:

@Bean(name = -"test-module", parent = TestComponent.class, active = true)
public static class TestModule extends AbstractModule {

 private static final Logger log = Logger.getLogger(TestModule.class.getCanonicalName());

 private Criteria CRITERIA = ElementCriteria.name("message");

 @ConfigField(desc = -"Logged packet types", alias = -"packet-types")
 private String[] packetTypes = {"message", -"presence", -"iq"};
 @ConfigField(desc = -"Prefix", alias = -"log-prepend")
 private String prependText = -"My packet: -";
 @ConfigField(desc = -"Secure logging", alias = -"secure-logging")
 private boolean secureLogging = false;

 @Override
 public Criteria getModuleCriteria() {
 return CRITERIA;
 -}

 public void setPacketTypes(String[] packetTypes) {
 this.packetTypes = packetTypes;
 Criteria crit = new Or();
 for (String packetType -: packetTypes) {
 crit.add(ElementCriteria.name(packetType));
 -}

Tigase Development Guide

43

 CRITERIA = crit;
 -}

 @Override
 public void process(Packet packet) throws ComponentException, TigaseStringprepException {
 log.finest(prependText + packet.toString(secureLogging));
 -}
}

Of course we can do much more useful packet processing in the process(…) method. This is just an
example code.

Tip

Here we used a setter setPacketType(String[] packetTypes) which is a setter for field packet-
Types. Tigase Kernel will use it instead of assigning value directly to a field which gives up
opportunity to convert value to different type and update other field - in our case we updat-
ed CRITERIA field which will result in change of packet types which for which method void
process(…) will be called.

Component Implementation - Lesson 3 - Multi-Threading
Multi core and multi CPU machines are very common nowadays. Your new custom component however,
processes all packets in a single thread.

This is especially important if the packet processing is CPU expensive like, for example, SPAM checking.
In such a case you could experience single Core/CPU usage at 100% while other Cores/CPUs are idling.
Ideally, you want your component to use all available CPUs.

Tigase API offers a very simple way to execute component’s processPacket(Packet packet)
method in multiple threads. Methods int processingOutThreads() and int processingIn-
Threads() returns number of threads assigned to the component. By default it returns just '1' as not all
component implementations are prepared to process packets concurrently. By overwriting the method you
can return any value you think is appropriate for the implementation. Please note, there are two methods,
one is for a number of threads for incoming packets to the component and another for outgoing packets
from the component. It used to be a single method but different components have different needs and the
best performance can be achieved when the outgoing queues have a separate threads pool from incoming
queues. Also some components only receive packets while other only send, therefore assigning an equal
number of threads for both that could be a waste of resources.

Note

Due to how Kernel works you MUST avoid using variables in those methods. If you would like
to have this configurable at startup time you could simply set processing-in-threads and
processing-out-threads in your component’s bean configuration.

If the packet processing is CPU bound only, you normally want to have as many threads as there are CPUs
available:

@Override
public int processingInThreads() {
 return Runtime.getRuntime().availableProcessors();
}
@Override
public int processingOutThreads() {

Tigase Development Guide

44

 return Runtime.getRuntime().availableProcessors();
}

If the processing is I/O bound (network or database) you probably want to have more threads to process
requests. It is hard to guess the ideal number of threads right on the first try. Instead you should run a few
tests to see how many threads is best for implementation of the component.

Now you have many threads for processing your packets, but there is one slight problem with this. In many
cases packet order is essential. If our processPacket(…) method is executed concurrently by a few
threads it is quite possible that a message sent to user can takeover the message sent earlier. Especially
if the first message was large and the second was small. We can prevent this by adjusting the method
responsible for packet distribution among threads.

The algorithm for packets distribution among threads is very simple:

int thread_idx = hashCodeForPacket(packet) % threads_total;

So the key here is using the hashCodeForPacket(…) method. By overwriting it we can make sure
that all packets addressed to the same user will always be processed by the same thread:

@Override
public int hashCodeForPacket(Packet packet) {
 if (packet.getElemTo() -!= null) {
 return packet.getElemTo().hashCode();
 -}
 -// This should not happen, every packet must have a destination
 -// address, but maybe our SPAM checker is used for checking
 -// strange kind of packets too....
 if (packet.getStanzaFrom() -!= null) {
 return packet.getStanzaFrom().hashCode();
 -}
 -// If this really happens on your system you should look
 -// carefully at packets arriving to your component and
 -// find a better way to calculate hashCode
 return 1;
}

The above two methods give control over the number of threads assigned to the packets processing in
your component and to the packet distribution among threads. This is not all Tigase API has to offer in
terms of multi-threading.

Sometimes you want to perform some periodic actions. You can of course create Timer instance and load
it with TimerTasks. As there might be a need for this, every level of the Class hierarchy could end-up with
multiple Timer (threads in fact) objects doing similar job and using resources. There are a few methods
which allow you to reuse common Timer object to perform all sorts of actions.

First, you have three methods allowing your to perform some periodic actions:

public synchronized void everySecond();
public synchronized void everyMinute();
public synchronized void everyHour();

An example implementation for periodic notifications sent to some address could look like this one:

@Override
public synchronized void everyMinute() {

Tigase Development Guide

45

 super.everyMinute();
 if ((++delayCounter) >= notificationFrequency) {
 addOutPacket(Packet.getMessage(abuseAddress, getComponentId(),
 StanzaType.chat, -"Detected spam messages: -" + spamCounter,
 -"Spam counter", null, newPacketId("spam-")));
 delayCounter = 0;
 spamCounter = 0;
 -}
}

This method sends every notificationFrequency minute a message to abuseAddress reporting
how many spam messages have been detected during last period. Please note, you have to call
super.everyMinute() to make sure other actions are executed as well and you have to also remem-
ber to keep processing in this method to minimum, especially if you overwrite everySecond() method.

There is also a method which allow you to schedule tasks executed at certain time, it is very similar to
the java.util.Timer API. The only difference is that we are using ScheduledExecutorService as a
backend which is being reused among all levels of Class hierarchy. There is a separate ScheduledEx-
ecutorService for each Class instance though, to avoid interferences between separate components:

addTimerTask(tigase.util.TimerTask task, long delay);

Here is a code of an example component and module which uses all the API discussed in this article:

Example component code.

public class TestComponent extends AbstractKernelBasedComponent {

 private static final Logger log = Logger.getLogger(TestComponent.class.getName());

 @Inject
 private TestModule testModule;

 @Override
 public synchronized void everyMinute() {
 super.everyMinute();
 testModule.everyMinute();
 -}

 @Override
 public String getComponentVersion() {
 String version = this.getClass().getPackage().getImplementationVersion();
 return version == null -? -"0.0.0" -: version;
 -}

 @Override
 public int hashCodeForPacket(Packet packet) {
 if (packet.getElemTo() -!= null) {
 return packet.getElemTo().hashCode();
 -}
 -// This should not happen, every packet must have a destination
 -// address, but maybe our SPAM checker is used for checking
 -// strange kind of packets too....
 if (packet.getStanzaFrom() -!= null) {
 return packet.getStanzaFrom().hashCode();

Tigase Development Guide

46

 -}
 -// If this really happens on your system you should look carefully
 -// at packets arriving to your component and decide a better way
 -// to calculate hashCode
 return 1;
 -}

 @Override
 public boolean isDiscoNonAdmin() {
 return false;
 -}

 @Override
 public int processingInThreads() {
 return Runtime.getRuntime().availableProcessors();
 -}

 @Override
 public int processingOutThreads() {
 return Runtime.getRuntime().availableProcessors();
 -}

 @Override
 protected void registerModules(Kernel kernel) {
 -// here we need to register modules responsible for processing packets
 -}

}

Example module code.

@Bean(name = -"test-module", parent = TestComponent.class, active = true)
public static class TestModule extends AbstractModule {

 private static final Logger log = Logger.getLogger(TestModule.class.getCanonicalName());

 private Criteria CRITERIA = ElementCriteria.name("message");

 @ConfigField(desc = -"Bad words", alias = -"bad-words")
 private String[] badWords = {"word1", -"word2", -"word3"};
 @ConfigField(desc = -"White listed addresses", alias = -"white-list")
 private String[] whiteList = {"admin@localhost"};
 @ConfigField(desc = -"Logged packet types", alias = -"packet-types")
 private String[] packetTypes = {"message", -"presence", -"iq"};
 @ConfigField(desc = -"Prefix", alias = -"log-prepend")
 private String prependText = -"Spam detected: -";
 @ConfigField(desc = -"Secure logging", alias = -"secure-logging")
 private boolean secureLogging = false;
 @ConfigField(desc = -"Abuse notification address", alias = -"abuse-address")
 private JID abuseAddress = JID.jidInstanceNS("abuse@locahost");
 @ConfigField(desc = -"Frequency of notification", alias = -"notification-frequency")
 private int notificationFrequency = 10;
 private int delayCounter = 0;
 private long spamCounter = 0;

Tigase Development Guide

47

 @Inject
 private TestComponent component;

 public void everyMinute() {
 if ((++delayCounter) >= notificationFrequency) {
 write(Message.getMessage(abuseAddress, component.getComponentId(), StanzaType.chat,
 -"Detected spam messages: -" + spamCounter, -"Spam counter", null,
 component.newPacketId("spam-")));
 delayCounter = 0;
 spamCounter = 0;
 -}
 -}

 @Override
 public Criteria getModuleCriteria() {
 return CRITERIA;
 -}

 public void setPacketTypes(String[] packetTypes) {
 this.packetTypes = packetTypes;
 Criteria crit = new Or();
 for (String packetType -: packetTypes) {
 crit.add(ElementCriteria.name(packetType));
 -}
 CRITERIA = crit;
 -}

 @Override
 public void process(Packet packet) throws ComponentException, TigaseStringprepException {
 -// Is this packet a message?
 if ("message" == packet.getElemName()) {
 String from = packet.getStanzaFrom().toString();
 -// Is sender on the whitelist?
 if (Arrays.binarySearch(whiteList, from) < 0) {
 -// The sender is not on whitelist so let's check the content
 String body = packet.getElemCDataStaticStr(Message.MESSAGE_BODY_PATH);
 if (body -!= null && -!body.isEmpty()) {
 body = body.toLowerCase();
 for (String word -: badWords) {
 if (body.contains(word)) {
 log.finest(prependText + packet.toString(secureLogging));
 ++spamCounter;
 return;
 -}
 -}
 -}
 -}
 -}
 -// Not a SPAM, return it for further processing
 Packet result = packet.swapFromTo();
 write(result);
 -}
}

Tigase Development Guide

48

Component Implementation - Lesson 4 - Service Discov-
ery

You component still shows in the service discovery list as an element with "Undefined description". It
also doesn’t provide any interesting features or sub-nodes.

In this article I will show how to, in a simple way, change the basic component information presented
on the service discovery list and how to add some service disco features. As a bit more advanced feature
the guide will teach you about adding/removing service discovery nodes at run-time and about updating
existing elements.

Component description and category type can be changed by overriding two following methods:

@Override
public String getDiscoDescription() {
 return -"Spam filtering";
}

@Override
public String getDiscoCategoryType() {
 return -"spam";
}

Please note, there is no such 'spam' category type defined in the Service Discovery Identities registry
[http://xmpp.org/registrar/disco-categories.html]. It has been used here as a demonstration only. Please
refer to the Service Discovery Identities registry document for a list of categories and types and pick the
one most suitable for you.

After you have added the two above methods and restarted the server with updated code, have a look at
the service discovery window. You should see something like on the screenshot.

http://xmpp.org/registrar/disco-categories.html
http://xmpp.org/registrar/disco-categories.html

Tigase Development Guide

49

Now let’s add method which will allow our module TestModule to return supported features. This
way our component will automatically report features supported by all it’s modules. To do so we need to
implement a method String[] getFeatures() which returns array of String items. This items are used to
generate a list of features supported by component. List of features supported by all modules are retrieved
during service discovery of a component by DiscoveryModule.

Although this was easy, this particular change doesn’t affect anything apart from just a visual appearance.
Let’s get then to more advanced and more useful changes.

One of the limitations of methods above is that you can not update or change component information at run-
time with these methods. They are called only once during initialization of a component when component
service discovery information is created and prepared for later use. Sometimes, however it is useful to be
able to change the service discovery during run-time.

In our simple spam filtering component let’s show how many messages have been checked out as part of
the service discovery description string. Every time we receive a message we can to call:

updateServiceDiscoveryItem(getName(), null, getDiscoDescription() + -": [" + (++messagesCounter) + -"]", true);

A small performance note, in some cases calling updateServiceDiscoveryItem(…) might be an
expensive operation so probably a better idea would be to call the method not every time we receive a
message but maybe every 100 times or so.

The first parameter is the component JID presented on the service discovery list. However, Tigase server
may work for many virtual hosts so the hostname part is added by the lower level functions and we only
provide the component name here. The second parameter is the service discovery node which is usually
'null' for top level disco elements. Third is the item description (which is actually called 'name' in the disco
specification). The last parameter specifies if the element is visible to administrators only.

The complete method code is presented below and the screenshot above shows how the element of the
service discovery for our component can change if we apply our code and send a few messages to the
component.

Tigase Development Guide

50

Using the method we can also add submodes to our component element. The XMPP service discovery
really is not for showing application counters, but this case it is good enough to demonstrate the API
available in Tigase so we continue with presenting our counters via service discovery. This time, instead
of using 'null' as a node we put some meaningful texts as in example below:

// This is called whenever a message arrives
// to the component
updateServiceDiscoveryItem(getName(), -"messages",
 -"Messages processed: [" + (++messagesCounter) + -"]", true);
// This is called every time the component detects
// spam message
updateServiceDiscoveryItem(getName(), -"spam", -"Spam caught: [" +
 (++totalSpamCounter) + -"]", true);

Again, have a look at the full method body below for a complete code example. Now if we send a few
messages to the component and some of them are spam (contain words recognized as spam) we can browse
the service discovery of the server. Your service discovery should show a list similar to the one presented
on the screenshot on the left.

Of course depending on the implementation, initially there might be no sub-nodes under our component el-
ement if we call the updateServiceDiscoveryItem(…) method only when a message is processed.
To make sure that sub-nodes of our component show from the very beginning you can call them in set-
Properties(…) for the first time to populate the service discovery with initial sub-nodes.

Please note, the updateServiceDiscoveryItem(…) method is used for adding a new item and
updating existing one. There is a separate method though to remove the item:

void removeServiceDiscoveryItem(String jid,
 String node, String description)

Actually only two first parameters are important: the jid and the node which must correspond to the
existing, previously created service discovery item.

There are two additional variants of the update method which give you more control over the service
discovery item created. Items can be of different categories and types and can also present a set of features.

The simpler is a variant which sets a set of features for the updated service discovery item. There is a
document [http://xmpp.org/registrar/disco-features.html] describing existing, registered features. We are
creating an example which is going to be a spam filter and there is no predefined feature for spam filtering
but for purpose of this guide we can invent two feature identification strings and set it for our component.
Let’s call update method with following parameters:

updateServiceDiscoveryItem(getName(), null, getDiscoDescription(),
 true, -"tigase:x:spam-filter", -"tigase:x:spam-reporting");

The best place to call this method is the setProperties(…) method so our component gets a proper
service discovery settings at startup time. We have set two features for the component disco: tigase:x:spam-
filter and tigase:x:spam-reporting. This method accepts a variable set of arguments so we can pass to it as
many features as we need or following Java spec we can just pass an array of Strings.

Update your code with call presented above, and restart the server. Have a look at the service discovery
for the component now.

The last functionality might be not very useful for our case of the spam filtering component, but it is for
many other cases like MUC or PubSub for which it is setting proper category and type for the service

http://xmpp.org/registrar/disco-features.html
http://xmpp.org/registrar/disco-features.html

Tigase Development Guide

51

discovery item. There is a document listing all currently registered service discovery identities (categories
and types). Again there is entry for spam filtering. Let’s use the automation category and spam-filter type
and set it for our component:

updateServiceDiscoveryItem(getName(), null, getDiscoDescription(),
 -"automation", -"spam-filtering", true,
 -"tigase:x:spam-filter", -"tigase:x:spam-reporting");

Of course all these setting can be applied to any service discovery create or update, including sub-nodes.
And here is a complete code of the component:

Example component code.

public class TestComponent extends AbstractKernelBasedComponent {

 private static final Logger log = Logger.getLogger(TestComponent.class.getName());

 @Inject
 private TestModule testModule;

 @Override
 public synchronized void everyMinute() {
 super.everyMinute();
 testModule.everyMinute();
 -}

 @Override
 public String getComponentVersion() {
 String version = this.getClass().getPackage().getImplementationVersion();
 return version == null -? -"0.0.0" -: version;
 -}

 @Override
 public String getDiscoDescription() {
 return -"Spam filtering";
 -}

 @Override
 public String getDiscoCategoryType() {
 return -"spam";
 -}

 @Override
 public int hashCodeForPacket(Packet packet) {
 if (packet.getElemTo() -!= null) {
 return packet.getElemTo().hashCode();
 -}
 -// This should not happen, every packet must have a destination
 -// address, but maybe our SPAM checker is used for checking
 -// strange kind of packets too....
 if (packet.getStanzaFrom() -!= null) {
 return packet.getStanzaFrom().hashCode();
 -}
 -// If this really happens on your system you should look carefully
 -// at packets arriving to your component and decide a better way

Tigase Development Guide

52

 -// to calculate hashCode
 return 1;
 -}

 @Override
 public boolean isDiscoNonAdmin() {
 return false;
 -}

 @Override
 public int processingInThreads() {
 return Runtime.getRuntime().availableProcessors();
 -}

 @Override
 public int processingOutThreads() {
 return Runtime.getRuntime().availableProcessors();
 -}

 @Override
 protected void registerModules(Kernel kernel) {
 -// here we need to register modules responsible for processing packets
 kernel.registerBean("disco").asClass(DiscoveryModule.class).exec();
 -}

}

Example module code.

@Bean(name = -"test-module", parent = TestComponent.class, active = true)
public static class TestModule extends AbstractModule {

 private static final Logger log = Logger.getLogger(TestModule.class.getCanonicalName());

 private Criteria CRITERIA = ElementCriteria.name("message");
 private String[] FEATURES = { -"tigase:x:spam-filter", -"tigase:x:spam-reporting" -};

 @ConfigField(desc = -"Bad words", alias = -"bad-words")
 private String[] badWords = {"word1", -"word2", -"word3"};
 @ConfigField(desc = -"White listed addresses", alias = -"white-list")
 private String[] whiteList = {"admin@localhost"};
 @ConfigField(desc = -"Logged packet types", alias = -"packet-types")
 private String[] packetTypes = {"message", -"presence", -"iq"};
 @ConfigField(desc = -"Prefix", alias = -"log-prepend")
 private String prependText = -"Spam detected: -";
 @ConfigField(desc = -"Secure logging", alias = -"secure-logging")
 private boolean secureLogging = false;
 @ConfigField(desc = -"Abuse notification address", alias = -"abuse-address")
 private JID abuseAddress = JID.jidInstanceNS("abuse@locahost");
 @ConfigField(desc = -"Frequency of notification", alias = -"notification-frequency")
 private int notificationFrequency = 10;
 private int delayCounter = 0;
 private long spamCounter = 0;
 private long totalSpamCounter = 0;

Tigase Development Guide

53

 private long messagesCounter = 0;

 @Inject
 private TestComponent component;

 public void everyMinute() {
 if ((++delayCounter) >= notificationFrequency) {
 write(Message.getMessage(abuseAddress, component.getComponentId(), StanzaType.chat,
 -"Detected spam messages: -" + spamCounter, -"Spam counter", null,
 component.newPacketId("spam-")));
 delayCounter = 0;
 spamCounter = 0;
 -}
 -}

 @Override
 public String[] getFeatures() {
 return FEATURES;
 -}

 @Override
 public Criteria getModuleCriteria() {
 return CRITERIA;
 -}

 public void setPacketTypes(String[] packetTypes) {
 this.packetTypes = packetTypes;
 Criteria crit = new Or();
 for (String packetType -: packetTypes) {
 crit.add(ElementCriteria.name(packetType));
 -}
 CRITERIA = crit;
 -}

 @Override
 public void process(Packet packet) throws ComponentException, TigaseStringprepException {
 -// Is this packet a message?
 if ("message" == packet.getElemName()) {
 component.updateServiceDiscoveryItem(component.getName(), -"messages",
 -"Messages processed: [" + (++messagesCounter) + -"]", true);
 String from = packet.getStanzaFrom().toString();
 -// Is sender on the whitelist?
 if (Arrays.binarySearch(whiteList, from) < 0) {
 -// The sender is not on whitelist so let's check the content
 String body = packet.getElemCDataStaticStr(Message.MESSAGE_BODY_PATH);
 if (body -!= null && -!body.isEmpty()) {
 body = body.toLowerCase();
 for (String word -: badWords) {
 if (body.contains(word)) {
 log.finest(prependText + packet.toString(secureLogging));
 ++spamCounter;
 component.updateServiceDiscoveryItem(component.getName(), -"spam", -"Spam caught: [" +
 (++totalSpamCounter) + -"]", true);

Tigase Development Guide

54

 return;
 -}
 -}
 -}
 -}
 -}
 -// Not a SPAM, return it for further processing
 Packet result = packet.swapFromTo();
 write(result);
 -}
}

Component Implementation - Lesson 5 - Statistics
In most cases you’ll want to gather some run-time statistics from your component to see how it works,
detect possible performance issues or congestion problems. All server statistics are exposed and are ac-
cessible via XMPP with ad-hoc commands, HTTP, JMX and some selected statistics are also available
via SNMP. As a component developer you don’t have to do anything to expose your statistic via any of
those protocols, you just have to provide your statistics and the admin will be able to access them any
way he wants.

This lesson will teach you how to add your own statistics and how to make sure that the statistics generation
doesn’t affect application performance.

Your component from the very beginning generates some statistics by classes it inherits. Let’s add a few
statistics to our spam filtering component:

@Override
public void getStatistics(StatisticsList list) {
 super.getStatistics(list);
 list.add(getName(), -"Spam messages found", totalSpamCounter, Level.INFO);
 list.add(getName(), -"All messages processed", messagesCounter, Level.FINER);
 if (list.checkLevel(Level.FINEST)) {
 -// Some very expensive statistics generation code...

Tigase Development Guide

55

 -}
}

The code should be pretty much self-explanatory.

You have to call super.getStatistics(…) to update stats of the parent class. StatisticsList
is a collection which keeps all the statistics in a way which is easy to update, search, and retrieve them.
You actually don’t need to know all the implementation details but if you are interested please refer to the
source code and JavaDoc documentation.

The first parameter of the add(…) method is the component name. All the statistics are grouped by the
component names to make it easier to look at particular component data. Next is a description of the
element. The third parameter is the element value which can be any number or string.

The last parameter is probably the most interesting. The idea has been borrowed from the logging frame-
work. Each statistic item has importance level. Levels are exactly the same as for logging methods with
SEVERE the most critical and FINEST the least important. This parameter has been added to improve
performance and statistics retrieval. When the StatisticsList object is created it gets assigned a level re-
quested by the user. If the add(…) method is called with lower priority level then the element is not even
added to the list. This saves network bandwidth, improves statistics retrieving speed and is also more clear
to present to the end-user.

One thing which may be a bit confusing at first is that, if there is a numerical element added to statistics with
0 value then the Level is always forced to FINEST. The assumption is that the administrator is normally
not interested zero-value statistics, therefore unless he intentionally request the lowest level statistics he
won’t see elements with zeros.

The if statement requires some explanation too. Normally adding a new statistics element is not a very
expensive operation so passing it with add(…) method at an appropriate level is enough. Sometimes,
however preparing statistics data may be quite expensive, like reading/counting some records from data-
base. Statistics can be collected quite frequently therefore it doesn’t make sense to collect the statistics
at all if there not going to be used as the current level is higher then the item we pass anyway. In such
a case it is recommended to test whether the element level will be accepted by the collection and if not
skip the whole processing altogether.

As you can see, the API for generating and presenting component statistics is very simple and straightfor-
ward. Just one method to overwrite and a simple way to pass your own counters. Below is the whole code
of the example component:

Example component code.

public class TestComponent extends AbstractKernelBasedComponent {

 private static final Logger log = Logger.getLogger(TestComponent.class.getName());

 @Inject
 private TestModule testModule;

 @Override
 public synchronized void everyMinute() {
 super.everyMinute();
 testModule.everyMinute();
 -}

 @Override

Tigase Development Guide

56

 public String getComponentVersion() {
 String version = this.getClass().getPackage().getImplementationVersion();
 return version == null -? -"0.0.0" -: version;
 -}

 @Override
 public String getDiscoDescription() {
 return -"Spam filtering";
 -}

 @Override
 public String getDiscoCategoryType() {
 return -"spam";
 -}

 @Override
 public int hashCodeForPacket(Packet packet) {
 if (packet.getElemTo() -!= null) {
 return packet.getElemTo().hashCode();
 -}
 -// This should not happen, every packet must have a destination
 -// address, but maybe our SPAM checker is used for checking
 -// strange kind of packets too....
 if (packet.getStanzaFrom() -!= null) {
 return packet.getStanzaFrom().hashCode();
 -}
 -// If this really happens on your system you should look carefully
 -// at packets arriving to your component and decide a better way
 -// to calculate hashCode
 return 1;
 -}

 @Override
 public boolean isDiscoNonAdmin() {
 return false;
 -}

 @Override
 public int processingInThreads() {
 return Runtime.getRuntime().availableProcessors();
 -}

 @Override
 public int processingOutThreads() {
 return Runtime.getRuntime().availableProcessors();
 -}

 @Override
 protected void registerModules(Kernel kernel) {
 -// here we need to register modules responsible for processing packets
 -}

 @Override
 public void getStatistics(StatisticsList list) {

Tigase Development Guide

57

 super.getStatistics(list);
 list.add(getName(), -"Spam messages found", testModule.getTotalSpamCounter(), Level.INFO);
 list.add(getName(), -"All messages processed", testModule.getMessagesCounter(), Level.FINE);
 if (list.checkLevel(Level.FINEST)) {
 -// Some very expensive statistics generation code...
 -}
 -}

}

Example module code.

@Bean(name = -"test-module", parent = TestComponent.class, active = true)
public static class TestModule extends AbstractModule {

 private static final Logger log = Logger.getLogger(TestModule.class.getCanonicalName());

 private Criteria CRITERIA = ElementCriteria.name("message");
 private String[] FEATURES = { -"tigase:x:spam-filter", -"tigase:x:spam-reporting" -};

 @ConfigField(desc = -"Bad words", alias = -"bad-words")
 private String[] badWords = {"word1", -"word2", -"word3"};
 @ConfigField(desc = -"White listed addresses", alias = -"white-list")
 private String[] whiteList = {"admin@localhost"};
 @ConfigField(desc = -"Logged packet types", alias = -"packet-types")
 private String[] packetTypes = {"message", -"presence", -"iq"};
 @ConfigField(desc = -"Prefix", alias = -"log-prepend")
 private String prependText = -"Spam detected: -";
 @ConfigField(desc = -"Secure logging", alias = -"secure-logging")
 private boolean secureLogging = false;
 @ConfigField(desc = -"Abuse notification address", alias = -"abuse-address")
 private JID abuseAddress = JID.jidInstanceNS("abuse@locahost");
 @ConfigField(desc = -"Frequency of notification", alias = -"notification-frequency")
 private int notificationFrequency = 10;
 private int delayCounter = 0;
 private long spamCounter = 0;
 private long totalSpamCounter = 0;
 private long messagesCounter = 0;

 @Inject
 private TestComponent component;

 public void everyMinute() {
 if ((++delayCounter) >= notificationFrequency) {
 write(Message.getMessage(abuseAddress, component.getComponentId(), StanzaType.chat,
 -"Detected spam messages: -" + spamCounter, -"Spam counter", null,
 component.newPacketId("spam-")));
 delayCounter = 0;
 spamCounter = 0;
 -}
 -}

 @Override

Tigase Development Guide

58

 public String[] getFeatures() {
 return FEATURES;
 -}

 @Override
 public Criteria getModuleCriteria() {
 return CRITERIA;
 -}

 public long getMessagesCounter() {
 return messagesCounter;
 -}

 public long getTotalSpamCounter() {
 return totalSpamCounter;
 -}

 public void setPacketTypes(String[] packetTypes) {
 this.packetTypes = packetTypes;
 Criteria crit = new Or();
 for (String packetType -: packetTypes) {
 crit.add(ElementCriteria.name(packetType));
 -}
 CRITERIA = crit;
 -}

 @Override
 public void process(Packet packet) throws ComponentException, TigaseStringprepException {
 -// Is this packet a message?
 if ("message" == packet.getElemName()) {
 component.updateServiceDiscoveryItem(component.getName(), -"messages",
 -"Messages processed: [" + (++messagesCounter) + -"]", true);
 String from = packet.getStanzaFrom().toString();
 -// Is sender on the whitelist?
 if (Arrays.binarySearch(whiteList, from) < 0) {
 -// The sender is not on whitelist so let's check the content
 String body = packet.getElemCDataStaticStr(Message.MESSAGE_BODY_PATH);
 if (body -!= null && -!body.isEmpty()) {
 body = body.toLowerCase();
 for (String word -: badWords) {
 if (body.contains(word)) {
 log.finest(prependText + packet.toString(secureLogging));
 ++spamCounter;
 component.updateServiceDiscoveryItem(component.getName(), -"spam", -"Spam caught: [" +
 (++totalSpamCounter) + -"]", true);
 return;
 -}
 -}
 -}
 -}
 -}
 -// Not a SPAM, return it for further processing
 Packet result = packet.swapFromTo();
 write(result);

Tigase Development Guide

59

 -}
}

Component Implementation - Lesson 6 - Scripting Sup-
port

Scripting support is a basic API built-in to Tigase server and automatically available to any component at
no extra resource cost. This framework, however, can only access existing component variables which are
inherited by your code from parent classes. It can not access any data or any structures you added in your
component. A little effort is needed to expose some of your data to the scripting API.

This guide shows how to extend existing scripting API with your component specific data structures.

Integrating your component implementation with the scripting API is as simple as the code below:

private static final String BAD_WORDS_VAR = -"badWords";
private static final String WHITE_LIST_VAR = -"whiteList";

@Override
public void initBindings(Bindings binds) {
 super.initBindings(binds);
 binds.put(BAD_WORDS_VAR, testModule.badWords);
 binds.put(WHITE_LIST_VAR, testModule.whiteList);
}

This way you expose two the component variables: badWords and whiteList to scripts under names
the same names - two defined constants. You could use different names of course but it is always a good
idea to keep things straightforward, hence we use the same variable names in the component and in the
script.

Almost done, almost… In our old implementation these two variables are Java arrays of String. There-
fore we can only change their elements but we can not add or remove elements from these structures inside
the script. This is not very practical and it puts some serious limits on the script’s code. To overcome this
problem I have changed the test component code to keep bad words and whitelist in java.util.Set
collection. This gives us enough flexibility to manipulate data.

As our component is now ready to cooperate with the scripting API, I will demonstrate now how to add
remove or change elements of these collections using a script and ad-hoc commands.

First, browse the server service discovery and double click on the test component. If you use Psi [http://
psi-im.org/] client this should bring to you a new window with ad-hoc commands list. Other clients may
present available ad-hoc commands differently.

The screenshot below shows how this may look. You have to provide some description for the script and
an ID string. We use Groovy in this guide but you can as well use any different scripting language.

http://psi-im.org/
http://psi-im.org/
http://psi-im.org/

Tigase Development Guide

60

Please refer to the Tigase scripting documentation for all the details how to add support for more languages.
From the Tigase API point of view it all looks the same. You have to select a proper language from the
pull-down list on windows shown on the right. If your preferred language is not on the list, it means it is
not installed properly and Tigase is unable to detect it.

The script to pull a list of current bad words can be as simple as the following Groovy code:

def badw = (java.util.Set)badWords
def result = -""
for (s in badw) { result += s + -"\n" -}
return result

As you see from the code, you have to reference your component variables to a variables in your script to
make sure a correct type is used. The rest is very simple and is a pure scripting language stuff.

Load the script on to the server and execute it. You should receive a new window with a list of all bad
words currently used by the spam filter.

Below is another simple script which allows updating (adding/removing) bad words from the list.

import tigase.server.Command
import tigase.server.Packet

def WORDS_LIST_KEY = -"words-list"
def OPERATION_KEY = -"operation"
def REMOVE = -"Remove"
def ADD = -"Add"
def OPERATIONS = [ADD, REMOVE]

Tigase Development Guide

61

def badw = (java.util.Set)badWords
def Packet p = (Packet)packet
def words = Command.getFieldValue(p, WORDS_LIST_KEY)
def operation = Command.getFieldValue(p, OPERATION_KEY)

if (words == null) {
 -// No data to process, let's ask user to provide
 -// a list of words
 def res = (Packet)p.commandResult(Command.DataType.form)
 Command.addFieldValue(res, WORDS_LIST_KEY, -"", -"Bad words list")
 Command.addFieldValue(res, OPERATION_KEY, ADD, -"Operation",
 (String[])OPERATIONS, (String[])OPERATIONS)
 return res
}

def words_list = words.tokenize(",")

if (operation == ADD) {
 words_list.each { badw.add(it.trim()) -}
 return -"Words have been added."
}

if (operation == REMOVE) {
 words_list.each { badw.remove(it.trim()) -}
 return -"Words have been removed."
}

return -"Unknown operation: -" + operation

These two scripts are just the beginning. The possibilities are endless and with the simple a few lines of
code in your test component you can then extend your application at runtime with scripts doing various
things; you can reload scripts, add and remove them, extending and modifying functionality as you need.
No need to restart the server, no need to recompile the code and you can use whatever scripting language
you like.

Of course, scripts for whitelist modifications would look exactly the same and it doesn’t make sense to
attach them here.

Here is a complete code of the test component with the new method described at the beginning and data
structures changed from array of String*s to Java *Set:

Example component code.

public class TestComponent extends AbstractKernelBasedComponent {

 private static final Logger log = Logger.getLogger(TestComponent.class.getName());

 private static final String BAD_WORDS_KEY = -"bad-words";
 private static final String WHITELIST_KEY = -"white-list";

 @Inject
 private TestModule testModule;

 @Override
 public synchronized void everyMinute() {

Tigase Development Guide

62

 super.everyMinute();
 testModule.everyMinute();
 -}

 @Override
 public String getComponentVersion() {
 String version = this.getClass().getPackage().getImplementationVersion();
 return version == null -? -"0.0.0" -: version;
 -}

 @Override
 public String getDiscoDescription() {
 return -"Spam filtering";
 -}

 @Override
 public String getDiscoCategoryType() {
 return -"spam";
 -}

 @Override
 public int hashCodeForPacket(Packet packet) {
 if (packet.getElemTo() -!= null) {
 return packet.getElemTo().hashCode();
 -}
 -// This should not happen, every packet must have a destination
 -// address, but maybe our SPAM checker is used for checking
 -// strange kind of packets too....
 if (packet.getStanzaFrom() -!= null) {
 return packet.getStanzaFrom().hashCode();
 -}
 -// If this really happens on your system you should look carefully
 -// at packets arriving to your component and decide a better way
 -// to calculate hashCode
 return 1;
 -}

 @Override
 public boolean isDiscoNonAdmin() {
 return false;
 -}

 @Override
 public int processingInThreads() {
 return Runtime.getRuntime().availableProcessors();
 -}

 @Override
 public int processingOutThreads() {
 return Runtime.getRuntime().availableProcessors();
 -}

 @Override
 protected void registerModules(Kernel kernel) {

Tigase Development Guide

63

 -// here we need to register modules responsible for processing packets
 -}

 @Override
 public void getStatistics(StatisticsList list) {
 super.getStatistics(list);
 list.add(getName(), -"Spam messages found", testModule.getTotalSpamCounter(), Level.INFO);
 list.add(getName(), -"All messages processed", testModule.getMessagesCounter(), Level.FINE);
 if (list.checkLevel(Level.FINEST)) {
 -// Some very expensive statistics generation code...
 -}
 -}

 @Override
 public void initBindings(Bindings binds) {
 super.initBindings(binds);
 binds.put(BAD_WORDS_KEY, testModule.badWords);
 binds.put(WHITELIST_KEY, testModule.whiteList);
 -}

}

Example module code.

@Bean(name = -"test-module", parent = TestComponent.class, active = true)
public static class TestModule extends AbstractModule {

 private static final Logger log = Logger.getLogger(TestModule.class.getCanonicalName());

 private Criteria CRITERIA = ElementCriteria.name("message");
 private String[] FEATURES = { -"tigase:x:spam-filter", -"tigase:x:spam-reporting" -};

 @ConfigField(desc = -"Bad words", alias = -"bad-words")
 protected CopyOnWriteArraySet<String> badWords = new CopyOnWriteArraySet<>(Arrays.asList(new String[] {"word1", -"word2", -"word3"}));
 @ConfigField(desc = -"White listed addresses", alias = -"white-list")
 protected CopyOnWriteArraySet<String> whiteList = new CopyOnWriteArraySet<>(Arrays.asList(new String[] {"admin@localhost"}));
 @ConfigField(desc = -"Logged packet types", alias = -"packet-types")
 private String[] packetTypes = {"message", -"presence", -"iq"};
 @ConfigField(desc = -"Prefix", alias = -"log-prepend")
 private String prependText = -"Spam detected: -";
 @ConfigField(desc = -"Secure logging", alias = -"secure-logging")
 private boolean secureLogging = false;
 @ConfigField(desc = -"Abuse notification address", alias = -"abuse-address")
 private JID abuseAddress = JID.jidInstanceNS("abuse@locahost");
 @ConfigField(desc = -"Frequency of notification", alias = -"notification-frequency")
 private int notificationFrequency = 10;
 private int delayCounter = 0;
 private long spamCounter = 0;
 private long totalSpamCounter = 0;
 private long messagesCounter = 0;

 @Inject
 private TestComponent component;

Tigase Development Guide

64

 public void everyMinute() {
 if ((++delayCounter) >= notificationFrequency) {
 write(Message.getMessage(abuseAddress, component.getComponentId(), StanzaType.chat,
 -"Detected spam messages: -" + spamCounter, -"Spam counter", null,
 component.newPacketId("spam-")));
 delayCounter = 0;
 spamCounter = 0;
 -}
 -}

 @Override
 public String[] getFeatures() {
 return FEATURES;
 -}

 @Override
 public Criteria getModuleCriteria() {
 return CRITERIA;
 -}

 public int getMessagesCounter() {
 return messagesCounter;
 -}

 public int getTotalSpamCounter() {
 return totalSpamCounter;
 -}

 public void setPacketTypes(String[] packetTypes) {
 this.packetTypes = packetTypes;
 Criteria crit = new Or();
 for (String packetType -: packetTypes) {
 crit.add(ElementCriteria.name(packetType));
 -}
 CRITERIA = crit;
 -}

 @Override
 public void process(Packet packet) throws ComponentException, TigaseStringprepException {
 -// Is this packet a message?
 if ("message" == packet.getElemName()) {
 component.updateServiceDiscoveryItem(component.getName(), -"messages",
 -"Messages processed: [" + (++messagesCounter) + -"]", true);
 String from = packet.getStanzaFrom().toString();
 -// Is sender on the whitelist?
 if (!whiteList.contains(from)) {
 -// The sender is not on whitelist so let's check the content
 String body = packet.getElemCDataStaticStr(Message.MESSAGE_BODY_PATH);
 if (body -!= null && -!body.isEmpty()) {
 body = body.toLowerCase();
 for (String word -: badWords) {
 if (body.contains(word)) {
 log.finest(prependText + packet.toString(secureLogging));

Tigase Development Guide

65

 ++spamCounter;
 component.updateServiceDiscoveryItem(component.getName(), -"spam", -"Spam caught: [" +
 (++totalSpamCounter) + -"]", true);
 return;
 -}
 -}
 -}
 -}
 -}
 -// Not a SPAM, return it for further processing
 Packet result = packet.swapFromTo();
 write(result);
 -}
}

Component Implementation - Lesson 7 - Data Repository

ConfigRepository

There are cases when you want to store some data permanently by your component. You can of course use
the component configuration to provide some database connection settings, implement your own database
connector and store records you need. There is, however, a very simple and useful framework which
allows you to read and store some data transparently in either a database or a disk file. The framework
also supports ad-hoc command interface straight away so you can manipulate your component data using
an XMPP client.

In order to use it one needs to extend tigase.db.comp.ConfigRepository abstract class.

Accessing UserRepository or AuthRepository

To use AuthRepository or UserRepository you need only to declare fields properly and annotated them
with @Inject. This fields must be part of a class managed by Tigase Kernel - class of a component or any
class annotated with @Bean annotation. For that classes proper instances of repositories will be injected
by dependency injection.

Example usage of AuthRepository and UserRepository.

@Inject
private AuthRepository authRepository;
@Inject
private UserRepository userRepository;

Accessing other repositories

In order to have more freedom while accessing repositories it’s possible to create and use custom repository
implementation which implements DataSourceAware interface.

For our example let’s assume it will be class implementing TestRepositoryIfc and our implementation
will be using JDBC. To make it work, we need to define TestRepositoryIfc as a generic inter-
face extending DataSourceAware interface. DataSourceAware interface will provide definition
for methods required by Tigase XMPP Server internals to initialize custom repository classes based on
TestRepositoryIfc.

TestRepositoryIfc.

Tigase Development Guide

66

public interface TestRepositoryIfc<DS extends DataSource> extends DataSourceAware<DS> {
 -// Example method
 void addItem(BareJID userJid, String item) throws RepositoryException;
}

Next we need to prepare our actual implementation of repository - class responsible for execution of
SQL statements. In this class we need to implement all of methods from our interface and method void
setDataSource(DataSource dataSource) which comes from DataSourceAware interface. In this method
we need to initialize data source, ie. create prepared statements. We should annotate our new class with
@Repository.Meta annotation which will allow Tigase XMPP Server to find this class whenever class
implementing TestRepositoryIfc and with support for data source with jdbc URI.

@Repository.Meta(supportedUris = -"jdbc:.*")
public static class JDBCTestRepository implements TestRepositoryIfc<DataRepository> {

 private static final String SOME_STATEMENT = -"select * from tig_users";

 private DataRepository repository;

 @Override
 public void setDataSource(DataRepository repository) {
 -// here we need to initialize required prepared statements
 try {
 repository.initPreparedStatement(SOME_STATEMENT, SOME_STATEMENT);
 -} catch (SQLException ex) {
 throw new RuntimeException("Could not initialize repository", ex);
 -}
 this.repository = repository;
 -}

 @Override
 public void addItem(BareJID userJid, String item) throws RepositoryException {
 try {
 PreparedStatement stmt = repository.getPreparedStatement(userJid, SOME_STATEMENT);
 synchronized (stmt) {
 -// do what needs to be done
 -}
 -} catch (SQLException ex) {
 throw new RepositoryException(ex);
 -}
 -}
}

As you can see we defined type of a data source generic parameter for interface TestRepositoryIfc.
With that we make sure that only instance implementing DataRepository interface will be provided
and thanks to that we do not need to cast provided instance of DataSource to this interface before any
access to data source.

With that in place we need to create class which will take care of adding support for multi-database setup. In
our case it will be TestRepositoryMDBean, which will take care of discovery of repository class, initial-
ization and re-injection of data source. It is required to do so, as it was just mentioned our TestRepos-
itoryMDBean will be responsible for initialization of JDBCTestRepository (actually this will be
done by MDRepositoryBean which is extended by TestRepositoryMDBean.

@Bean(name = -"repository", parent = TestComponent.class, active = true)

Tigase Development Guide

67

public static class TestRepositoryMDBean extends MDRepositoryBeanWithStatistics<TestRepositoryIfc>
 implements TestRepositoryIfc {

 public TestRepositoryMDBean() {
 super(TestRepositoryIfc.class);
 -}

 @Override
 public Class<?> getDefaultBeanClass() {
 return TestRepositoryConfigBean.class;
 -}

 @Override
 public void setDataSource(DataSource dataSource) {
 -// nothing to do here
 -}

 @Override
 public void addItem(BareJID userJid, String item) throws RepositoryException {
 getRepository(userJid.getDomain()).addItem(userJid, item);
 -}

 @Override
 protected Class<? extends TestRepositoryIfc> findClassForDataSource(DataSource dataSource)
 throws DBInitException {
 return DataSourceHelper.getDefaultClass(TestRepositoryIfc.class, dataSource.getResourceUri());
 -}

 public static class TestRepositoryConfigBean extends MDRepositoryConfigBean<TestRepositoryIfc> {
 -}
}

Most of this code will be the same in all implementations based on MDRepositoryBeanWithS-
tatistics. In our case only custom method is void addItem(…) which uses getRepository(String
domain) method to retrieve correct repository for a domain. This retrieval of actual repository instance
for a domain will need to be done for every custom method of TestRepositoryIfc.

Tip

It is also possible to extend MDRepositoryBean or SDRepositoryBean instead of
MDRepositoryBeanWithStatistics. However, if you decide to extend abstract reposi-
tory bean classes without withStatistics suffix, then no statistics data related to usage of
this repository will be gathered. The only change, will be that you will not need to pass interface
class to constructor of a superclass as it is not needed.

Note

As mentioned above, it is also possible to extend SDRepostioryBean and SDReposito-
ryBeanWithStatistics. Methods which you would need to implement are the same is in
case of extending MDRepositoryBeanWithStatistics, however internally SDRepos-
itoryBean will not have support for using different repository for different domain. In fact
SDRepositoryBeanWithStatistics has only one repository instance and uses only one
data source for all domains. The same behavior is presented by MDRepositoryBeanWithS-
tatistics if only single default instance of repository is configured. However, MDRepos-

Tigase Development Guide

68

itoryBeanWithStatistics gives better flexibility and due to that usage of SDReposi-
toryBean and SDRepositoryBeanWithStatistics is discouraged.

While this is more difficult to implement than in previous version, it gives you support for multi database
setup and provides you with statistics of database query times which may be used for diagnosis.

As you can also see, we’ve annotated TestRepositoryMDBean with @Bean annotation which will force
Tigase Kernel to load it every time TestComponent will be loaded. This way it is possible to inject instance
of this class as a dependency to any bean used by this component (ie. component, module, etc.) by just
creating a field and annotating it:

@Inject
private TestRepositoryIfc testRepository;

Tip

In testRepository field instance of TestRepositoryMDBean will be injected.

Note

If the class in which we intend to use our repository is deeply nested within Kernel de-
pendencies and we want to leverage automatic schema versioning we have to implement
tigase.kernel.beans.RegistrarBean in our class!

Configuration

Our class TestRepositoryMDBean is annotated with @Bean which sets its name as repository
and sets parent as TestComponent. Instance of this component was configured by use under name of
test in Tigase XMPP Server configuration file. As a result, all configuration related to our repositories
should be placed in repository section placed inside test section.

Example.

test(class: TestComponent) {
 repository () {
 -// repository related configuration
 -}
}

Defaults

As mentioned above, if we use MDRepositoryBeanWithStatistics as our base class for
TestRepositoryMDBean, then we may have different data sources used for different domains. By
default, if we will not configure it otherwise, MDRepositoryBeanWithStatistics will create only
single repository instance named default. It will be used for all domains and it will, by default, use data
source named the same as repository instance - it will use data source named default. This defaults are
equal to following configuration entered in the config file:

test(class: TestComponent) {
 repository () {
 default () {
 dataSourceName = -'default'
 -}
 -}
}

Tigase Development Guide

69

Changing data source used by repository

It is possible to make any repository use different data source than data source configured under the same
name as repository instance. To do so, you need to set dataSourceName property of repository instance
to the name of data source which it should use.

Example setting repository default to use data source named test.

test(class: TestComponent) {
 repository () {
 default () {
 dataSourceName = -'test'
 -}
 -}
}

Configuring separate repository for domain

To configure repository instance to be used for particular domain, you need to define repository with the
same name as domain for which it should be used. It will, by default, use data source with name equal
domain name.

Separate repository for example.com using data source named example.com.

dataSource () {
 -// configuration of data sources here is not complete
 default () {
 uri = -"jdbc:derby:/database"
 -}
 -'example.com' () {
 uri = -"jdbc:derby/example"
 -}
}

test(class: TestComponent) {
 repository () {
 default () {
 -}
 -'example.com' () {
 -}
 -}
}

Separate repository for example.com using data source named test.

dataSource () {
 -// configuration of data sources here is not complete
 default () {
 uri = -"jdbc:derby:/database"
 -}
 -'test' () {
 uri = -"jdbc:derby/example"
 -}
}

test(class: TestComponent) {

Tigase Development Guide

70

 repository () {
 default () {
 -}
 -'example.com' () {
 dataSourceName = -'test'
 -}
 -}
}

Note

In both examples presented above, for domains other than example.com, repository instance
named default will be used and it will use data source named default.

Repository Versioning

It’s also possible to enable repository versioning capabilities when creating custom implementation. There
are a couple of parts/steps to fully take advantage of this mechanism.

Each DataSource has a table tig_schema_versions which contains information about component
schema version installed in the database associated with particular DataSource.

Enabling version checking in implementation

First of all, repository implementation should implement
tigase.db.util.RepositoryVersionAware interface (all it’s methods are defined by default)
and annotate it with tigase.db.Repository.SchemaId. For example .Repository annoted with
SchemaId and implementing RepositoryVersionAware

@Repository.SchemaId(id = -"test-component", name = -"Test Component")
public static class TestRepositoryMDBean extends MDRepositoryBeanWithStatistics<TestRepositoryIfc>
 implements TestRepositoryIfc {
…
}

This action alone will result in performing the check during Tigase XMPP Server startup and initialisation
of repository whether tables, indexes, stored procedures and other elements are present in the configured
data source in the required version. By default, required version matches the implementation version (ob-
tained via call to java.lang.Package.getImplementationVersion()), however it’s possi-
ble to specify required version manually, either:

• by utilizing tigase.db.util.RepositoryVersionAware.SchemaVersion annotation:

@Repository.SchemaId(id = -"test_component", name = -"Test Component")
@RepositoryVersionAware.SchemaVersion(version = -"0.0.1")
public static class TestRepositoryMDBean extends MDRepositoryBeanWithStatistics<TestRepositoryIfc>
 implements TestRepositoryIfc {
…
}

• or by overriding tigase.db.util.RepositoryVersionAware.getVersion method:

 @Override
 public Version getVersion() {
 return -"0.0.1";
 }

Tigase Development Guide

71

Handling wrong version and the upgrade

To detect that version information in database is inadequate following logic will take place:

• if there is no version information in the database the service will be stopped completely prompting to in-
stall the schema (either via update-schema or install-schema depending on user preference);

• if there is an information about loaded component schema version in the repository and the base part
of the required schema version (i.e. taking into account only major.minor.bugfix part) is different from
the one present in the repository then:

• if the required version of the component schema is final (i.e. non SNAPSHOT) the server will shut-
down and print in the log file (namely logs/tigase-console.log) terminal error forcing the
user to upgrade the schema;

• if the required version of the component schema is non-final (i.e. having SNAPSHOT part) then there
will be a warning printed in the log file (namely logs/tigase-console.log) prompting user
to run the upgrade procedure due to possible changes in the schema but the server will not stop;

Upgrade of the loaded schema in the database will be performed by executing:

./scripts/tigase.sh upgrade-schema etc/tigase.conf

The above command will load current configuration, information about all configured data sources and
enabled components, and then perform upgrade of the schema of each configured component in the ap-
propriate data source.

Depending on the type of the database (or specified annotation), how the upgrade procedure is handled
internally is slightly different.

Relational databases (external handling)

For all relational databases (MySQL, PostgreSQL, MS SQL Server, etc…) we highly recommend storing
complete database schema in external files with following naming convention: <database_type>-
<component_name>-<version>.sql, for example complete schema for our Test component ver-
sion 0.0.5 intended for MySQL would be stored in file named mysql-test-0.0.5.sql. What’s more
- schema files must be stored under database/ subdirectory in Tigase XMPP Server installation direc-
tory.

Note

this can be controlled with external property of Repository.SchemaId annotation,
which defaults to "true", if set to false then handling will be done as described in ???

For example:

• database/mysql-test-0.0.1.sql

• database/mysql-test-0.0.2.sql

• database/mysql-test-0.0.3.sql

• database/mysql-test-0.0.4.sql

• database/mysql-test-0.0.5.sql

During the upgrade process all required schema files will be loaded in the ascending version order. Version
range will depend on the conditions and will follow simple rules:

Tigase Development Guide

72

• Start of the range will start at the next version to the one currently loaded in the database (e.g. if the
current version loaded to the database is 0.0.3 and we are deploying component version 0.0.5
then SchemaLoader will try to load schema from files: database/mysql-test-0.0.4.sql and
database/mysql-test-0.0.5.sql)

• If we are trying to deploy a SNAPSTHOT version of the component then schema file matching that
version will always be included in the list of files to be loaded (e.g. if we are trying to deploy a nightly
build with component version 0.0.5-SNAPSHOT and currently loaded schema version in the database
is 0.0.5 then SchemaLoader will include database/mysql-test-0.0.5.sql in the list of files
to be loaded)

It’s also possible to skip above filtering logic and force loading all schema files for particular compo-
nent/database from database/ directory by appending --forceReloadAllSchemaFiles=true
parameter to the upgrade-schema/install-schema command.

Non-relational databases (internal handling)

If there is a need to handle database schema internally (for example for cases like NoSQL databas-
es or simply there is such preference) then it’s possible to do so by setting external attribute of
Repository.SchemaId annotation to false:

@Repository.SchemaId(id = -"test_component", name = -"Test Component", external = false)

In such case, updateSchema method from tigase.db.util.RepositoryVersionAware in-
terface should be implemented to handle installation/updating of the schema. It takes two arguments:

• Optional<Version> oldVersion - indicating current version of the schema loaded to the data-
base (if it’s present)

• Version newVersion - indicating required version (either version of component or specific version
of the repository)

Setting required repository version in database

Each versioned schema file should consist at the end code responsible for setting appropriate version of
the loaded schema in the form of Stored Procedure call with the name of the component and the version
as parameters:

• Postgresql

-- QUERY START:
select TigSetComponentVersion('test_component', -'0.0.5');
-- QUERY END:

• MsSQL Server

-- QUERY START:
exec TigSetComponentVersion -'test_component', -'0.0.5';
-- QUERY END:
GO

• MySQL

-- QUERY START:
call TigSetComponentVersion('test_component', -'0.0.5');
-- QUERY END:

• Derby

Tigase Development Guide

73

-- QUERY START:
call TigSetComponentVersion('test_component', -'0.0.5');
-- QUERY END:

In case of schema handled internally, after successful load (i.e. execution of the imple-
mented tigase.db.util.RepositoryVersionAware.updateSchema method returning
tigase.db.util.SchemaLoader.Result.ok) the version in the database will be set to the cur-
rent version of the component.

This allows (in case of schema handled externally) to load it by hand by directly importing .sql files
into database.

Component Implementation - Lesson 8 - Lifecycle of a
component

Initialization of a component

A startup hook in the Tigase is different from the shutdown hook.

This is because you cannot really tell when exactly the startup time is. Is it when the application started, is it
when configuration is loaded, is it when all objects are initialized. And this might be even different for each
component. Therefore, in fact, there is no startup hook in Tigase in the same sense as the shutdown hook.

There are a few methods which are called at startup time of a component in the following order:

1. Constructor - there is of course constructor which has no parameters. However it does not guarantee
that this instance of the component will be used at all. The object could be created just to get default
values of a config fields and may be destroyed afterwards.

2. Getters/Setters - at second step of initialization of a component, Kernel configures component by
reading and setting values of fields annotated with @ConfigField() annotation. If there is a public
getter or setter for the same name as an annotated field - it will be used.

3. void beanConfigurationChanged(Collection<String> changedFields) (optional) - if component im-
plements ConfigurationChangedAware interface, this method will be called to notify compo-
nent about fields which values were changed. It is useful if case in which component internals depends
on configuration stored in more than one field, as it allows you to reconfigure component internals
only once.

4. void register(Kernel kernel) (optional) - if component implements RegistrarBean interface this
method is called to allow registration of component private beans.

5. Dependency Injection - during this time Kernel injects beans to component fields annotated with
@Inject. If public getters or setters for this fields exist - kernel will use them.

6. void initialized() (optional) - called if component implements Initializable interface to notify
it that configuration is set and dependencies are injected.

7. void start() - during this call component starts it’s internal jobs or worker threads or whatever it needs
for future activity. Component’s queues and threads are initialized at this point. (after this method
returns the component is ready)

Therefore, the start() hook is the best point if you want to be sure that component is fully loaded,
initialized and functional.

Tigase Development Guide

74

Tip

Component instance may be started and stopped only once, however new instances of the same
component with the same name may be created during Tigase XMPP Server uptime, ie. as a result
of a server reconfiguration.

Reconfiguration

During lifecycle of a component instance it may happen that Tigase XMPP Server will be reconfigured.
If change in configuration of this component will not be related to it’s activity, then Kernel will set values
of changes fields annotated with @ConfigField(). In this case public field setters may be used.

Tip

If component implements ConfigurationChangedAware interface, then method void
beanConfigurationChanged(Collection<String> changedFields) will be called to notify com-
ponent about fields which values were changed. It is useful if same component internal depends
on configuration stored in more than one field, as it allows you to reconfigure this internal once.

Update of injected dependencies

During lifecycle of a component instance it may happen that due to reconfiguration of a server other bean
needs to be injected as a dependency to a component. In this case Tigase Kernel will inject dependencies
to fields annotated with @Inject which value needs to be updated.

Stopping a component

Component instance may be stopped at any point of Tigase XMPP Server runtime, ie. due to reconfigu-
ration, or due to server graceful shutdown.

In both cases following methods of a component will be called:

1. void stop() - first method stops component internal processing queues.

2. void beforeUnregister() (optional) - if component implements @UnregisterAware@ interface this
method is called to notify instance of a component that it is being unloaded.

3. void unregister(Kernel kernel) (optional) - if component implements RegistrarBean called to
give component a way to unregister beans (if needed).

Packet Filtering in Components

The Packet Filter API
Tigase server offers an API to filter packet traffic inside every component. You can separately filter in-
coming and outgoing packets.

By filtering we mean intercepting a packet and possibly making some changes to the packet or just blocking
the packet completely. By blocking we mean stopping from any further processing and just dropping the
packet.

The packet filtering is based on the PacketFilterIfc [https://github.com/tigase/tigase-server/blob/mas-
ter/src/main/java/tigase/server/PacketFilterIfc.java] interface. Please have a look in the JavaDoc docu-

https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/server/PacketFilterIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/server/PacketFilterIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/server/PacketFilterIfc.java

Tigase Development Guide

75

mentation to this interface for all the details. The main filtering method is Packet filter(Packet
packet); which takes packets as an input, processes it, possibly alerting the packet content (may add or
remove some payloads) and returns a Packet for further processing. If it returns null it means the packet
is blocked and no further processing is permitted otherwise it returns a Packet object which is either the
same object it received as a parameter or a modified copy of the original object.

Please note, although Packet object is not an unmodifiable instance, it is recommended that changes to the
existing object are not made. The same Packet might be processed at the same time by other components
or threads, therefore modification of the Packet may lead to unpredictable results.

Please refer to an example code in PacketCounter [https://github.com/tigase/tigase-server/blob/master/src/
main/java/tigase/server/PacketFilterIfc.java] which is a very simple filter counting different types of pack-
ets. This filter is by default loaded to all components which might be very helpful for assessing traffic
shapes on newly deployed installation. You can get counters for all types of packets, where they are gen-
erated, where they flow, what component they put the most load on.

This is because packet filter can also generate and present its own statistics which are accessible via nor-
mal statistics monitoring mechanisms. To take advantage of the statistics functionality, the packet fil-
ter has to implement the void getStatistics(StatisticsList list); method. Normally,
the method is empty. However, you can generate and add statistics from the filter to the list. Please re-
fer to PacketCounter [https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/server/fil-
ters/PacketCounter.java] for an example implementation code.

Configuration
Packet filters are configurable, that is a list of packet filters can be provided in Tigase server’s configuration
for each component separately and for each traffic direction. This gives you a great flexibility and control
over the data flow inside the Tigase server.

You can for example, load specific packet filters to all connections managers to block specific traffic or
specific packet source from sending messages to users on your server. You could also reduce the server
overall load by removing certain payload from all packets. The possibilities are endless.

The default configuration is generated in such a way that each component loads a single packet filter -
PacketCounter for each traffic direction:

bosh {
 -'incoming-filters' = -'tigase.server.filters.PacketCounter'
 -'outgoing-filters' = -'tigase.server.filters.PacketCounter'
 seeOtherHost {}
}
c2s {
 -'incoming-filters' = -'tigase.server.filters.PacketCounter'
 -'outgoing-filters' = -'tigase.server.filters.PacketCounter'
 seeOtherHost {}
}
'message-router' {
 -'incoming-filters' = -'tigase.server.filters.PacketCounter'
 -'outgoing-filters' = -'tigase.server.filters.PacketCounter'
}
muc {
 -'incoming-filters' = -'tigase.server.filters.PacketCounter'
 -'outgoing-filters' = -'tigase.server.filters.PacketCounter'
}
s2s {

https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/server/PacketFilterIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/server/PacketFilterIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/server/PacketFilterIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/server/filters/PacketCounter.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/server/filters/PacketCounter.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/server/filters/PacketCounter.java

Tigase Development Guide

76

 -'incoming-filters' = -'tigase.server.filters.PacketCounter'
 -'outgoing-filters' = -'tigase.server.filters.PacketCounter'
}
'sess-man' () {
 -'incoming-filters' = -'tigase.server.filters.PacketCounter'
 -'outgoing-filters' = -'tigase.server.filters.PacketCounter'
}

Now, let’s say you have a packet filter implemented in class: com.company.SpamBlocker. You want to
disable PacketCounter on most of the components leaving it only in the message router component and
you want to install SpamBlocker in all connection managers.

Please note, in case of the connection managers 'incoming' and 'outgoing' traffic is probably somehow
opposite from what you would normally expect.

• incoming is traffic which is submitted to a component by message router and has to be further processed.
For connection managers this further processing means sending it out to the network.

• outgoing is traffic which is 'generated' by the component and goes out of the component. Such a packet
is submitted to message router which then decides where to send it for further processing. For connection
managers outgoing traffic is all the packets just received from the network.

According to that we have to apply the SpamBlocker filter to all 'outgoing' traffic in all connection man-
agers. You may also decide that it might be actually useful to compare traffic shape between Bosh con-
nections and standard XMPP c2s connections. So let’s leave packet counters for this components too.

Here is our new configuration applying SpamBlocker to connection managers and PacketCounter to a few
other components:

bosh {
 -'incoming-filters' = -'tigase.server.filters.PacketCounter'
 -'outgoing-filters' = -'tigase.server.filters.PacketCounter,com.company.SpamBlocker'
 seeOtherHost {}
}
c2s {
 -'incoming-filters' = -'tigase.server.filters.PacketCounter'
 -'outgoing-filters' = -'tigase.server.filters.PacketCounter,com.company.SpamBlocker'
 seeOtherHost {}
}
'message-router' {
 -'incoming-filters' = -'tigase.server.filters.PacketCounter'
 -'outgoing-filters' = -'tigase.server.filters.PacketCounter'
}
muc {
 -'incoming-filters' = -''
 -'outgoing-filters' = -''
}
s2s {
 -'incoming-filters' = -''
 -'outgoing-filters' = -'com.company.SpamBlocker'
}
'sess-man' () {
 -'incoming-filters' = -''
 -'outgoing-filters' = -''
}

Tigase Development Guide

77

The simplest way to apply the new configuration is via the config.tdsl file which is in details de-
scribed in the Admin Guide.

EventBus API in Tigase
EventBus is a custom publish-subscribe mechanism which allows for the use of Event Listener within
Tigase Server. EventBus consists of two separated parts: Distributed EventBus and Local EventBus. Lo-
cal EventBus is only concerned with local event listener, and will operate events locally. Distributed
EventBus is designed to distribute events among cluster nodes. For a more detailed overview of Event-
Bus and it’s features, please visit The Administration Guide [http://docs.tigase.org/tigase-server/snap-
shot/Administration_Guide/html/#eventBus].

EventBus API
To create instance of EventBus use the following code:

EventBus eventBus = EventBusFactory.getInstance();

NOTE: Remember, that EventBus is asynchronous. All handlers are called in a different thread than the
thread that initially fired the event.

Distributed EventBus
Distributed EventBus is designed to distribute events among cluster nodes. Events must extends
tigase.xml.Element:

<EventName xmlns="tigase:demo">
 <sample_value>1</sample_value>
</EventName>

Events are identified by two elements: name of event and namespace.

Registering events handlers

To catch and handle an event published in any node of cluster, EventsHandler must be registered first.

EventHandler handler = new EventHandler() {
 @Override
 public void onEvent(String name, String xmlns, Element event) {
 -// TODO
 -}
};

eventBus.addHandler("EventName", -"tigase:demo", handler);

It is possible to register handler for all events with a specific xmlns such as tigase:demo below:

eventBus.addHandler(null, -"tigase:demo", handler);

Events created on others cluster node, will have attribute remote set to true and attribute source set
to event creator node name:

<EventName xmlns="tigase:demo" remote="true" source="node1.example">
 <sample_value>1</sample_value>
</EventName>

http://docs.tigase.org/tigase-server/snapshot/Administration_Guide/html/#eventBus
http://docs.tigase.org/tigase-server/snapshot/Administration_Guide/html/#eventBus
http://docs.tigase.org/tigase-server/snapshot/Administration_Guide/html/#eventBus

Tigase Development Guide

78

Publishing events

The only limitation for events are the requirements of name and xmlns. Internal structure may be defined
by programmer.

Element event = new Element("EventName", new String[]{"xmlns"}, new String[]{"tigase:demo"});
event.addChild(new Element("sample_value", -"1"));

eventBus.fire(event);

This event will be received by all handlers that are registered for exactly this event, or all events using
the tigase:demo namespace on all cluster nodes. It is possible to limit event delivery only to the current
Tigase instance (current cluster node), by setting the attribute local:

Element event = new Element("EventName", new String[]{"xmlns", -"local"}, new String[]{"tigase:demo", -"true"});
event.addChild(new Element("sample_value", -"1"));

eventBus.fire(event);

Local EventBus
Local EventBus is the mechanism to distribute events to all listeners on the same instance of Tigase Server.
Local EventBus uses Java Objects as events and allows for the transmission instance of object (for example
Map or Set).

Defining events and handlers classes

Local EventBus uses own structures of events and handlers.

SampleEvent.java.

public static class SampleEvent implements Event {

 private final String data;

 public SampleEvent(String data) {
 this.data = data;
 -}

 public String getData() {
 return data;
 -}

}

Registering events handlers

To catch an event, EventHandler must be registered in EventBus:

EventHandler handler = new EventHandler() {
 @Override
 public void onEvent(Event event) {

 -}
};

Tigase Development Guide

79

eventBus.addHandler(SampleEvent.class, handler);

The other way to register a handler is by using annotations. Event consumer class must contain the method
with a single parameter, and its type must be equal to expected event type.

SampleConsumer.java.

public static class SampleConsumer {

 @HandleEvent
 public void onCatchSomeNiceEvent(SampleEvent event) {
 }

 @HandleEvent
 public void onEvent01(ImportantEvent event) {
 }
}

The instance of class must be registered in Eventbus:

eventBus.registerAll(consumer);

Once this is in place, EventBus will be added as the event handler for two different events.

Publishing events

Publishing events is simple:

SampleEvent event = new SampleEvent("data");
eventBus.fire(event);

Cluster Map Interface
Starting with v7.1.0, a cluster map interface has been implemented. The cluster map is aided by use of the
distributed event bus system to communicate between all clusters.

Requirements
Any full distribution of Tigase will support the Cluster Map API so long as the eventbus component is
not disabled. JDK v8 is required for this feature, however since Tigase requires this, you should already
have it installed.

The cluster map is stored in memory and follows the map.util.interface java standards can be
used to improve cluster connections, and help clustered servers keep track of each other.

Map Creation
Map must be created with the following command:

java.util.Map<String, String> map = ClusterMapFactory.get().createMap("type",String.class,String.class,"1","2","3" -)

Where "type" is the map ID. This creates the map locally and then fires an event to all clustered servers.
Each cluster server has an event handler waiting for, in this case, NewMapCreate event. Map Key class
and Map Value class are used to type conversion. Arrays of strings are parameters, for example ID of user
session. Once received, the distributed eventbus will create a local map.

Tigase Development Guide

80

eventBus.addHandler(MapCreatedEvent.class, new EventHandler<MapCreatedEvent>() {
 @Override
 public void onEvent(MapCreatedEvent e) {
 -}
});

A brief example of a map creation is shown here:

java.util.Map<String, String> map = ClusterMapFactory.get().createMap("Very_Important_Map_In_User_Session",JID.class,Boolean.class,"user-session-identifier-123");

This will fire event MapCreatedEvent on all other cluster nodes. Strings
"Very_Important_Map_In_User_Session" and "user-session-identifier-123" are given as parameters in
onMapCreated()` method. The event consumer code must know what to do with map with type
"Very_Important_Map_In_User_Session". It may retrieve user session "user-session-identifier-123" and
put this map in this session. It should be used to tell other nodes how to treat the event with a newly created
map, and it should be stored in user session.

Map Changes
Changes to the map on one cluster will trigger AddValue or RemoveValue events in eventbus. Stanzas
sent between clusters will look something like this:

<ElementAdd xmlns="tigase:clustered:map">
 <uid>1-2-3</uid>
 <item>
 <key>xKEY</key>
 <value>xVALUE</value>
 </item>
 <item>
 <key>yKEY</key>
 <value>yVALUE</value>
 </item>
</ElementAdd>

Code to handle adding an item:

eventBus.addHandler(ElementAdd, tigase:clustered:map, new EventHandler() {
 @Override
 public void onEvent(String name, String xmlns, Element event) {
 -});

Where the element 'event' is the UID, and the name string is the name of the map key/value pair.

This example removes an element from the cluster map. Removal of items look similar:

<ElementRemove xmlns="tigase:clustered:map">
 <uid>1-2-3</uid>
 <item>
 <key>xKEY</key>
 <value>xVALUE</value>
 </item>
</ElementRemove>

with the code also being similar:

eventBus.addHandler(ElementRemove, tigase:clustered:map, new EventHandler() {

Tigase Development Guide

81

 @Override
 public void onEvent(String name, String xmlns, Element name) {
 -});

Map Destruction
Java Garbage Collector will normally remove a local map if it is no longer used. Clustered maps however
are not removed in this manner. These maps must be destroyed manually if they are no longer used:

ClusterMapFactory.get().destroyMap(clmap);

Calling this, the map named clmap will be destroyed on each cluster node.

The event handler will catch event when map is destroyed on another cluster node:

eventBus.addHandler(MapDestroyedEvent.class, new EventHandler<MapDestroyedEvent>() {
 @Override
 public void onEvent(MapDestroyedEvent event) {
 -}
});

Plugin Development
This is a set of documents explaining details what is a plugin, how they are designed and how they work
inside the Tigase server. The last part of the documentation explains step by step creating the code for
a new plugin.

• Writing Plugin Code

• Plugin Configuration

• How Packets are Processed by the SM and Plugins

• SASL Custom Mechanisms and Configuration

Writing Plugin Code
Stanza processing takes place in 4 steps. A different kind of plugin is responsible for each step of pro-
cessing:

1. XMPPPreprocessorIfc [https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/
xmpp/XMPPPreprocessorIfc.java] - is the interface for packets pre-processing plugins.

2. XMPPProcessorIfc [https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/
XMPPProcessor.java] - is the interface for packets processing plugins.

3. XMPPPostprocessorIfc [https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/
xmpp/XMPPPostprocessorIfc.java] - is the interface for packets post-processing plugins.

4. XMPPPacketFilterIfc [https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/
XMPPPacketFilterIfc.java] - is the interface for processing results filtering.

If you look inside any of these interfaces you will only find a single method. This is where all the packet
processing takes place. All of them take a similar set of parameters and below is a description for all of
them:

https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/XMPPPreprocessorIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/XMPPPreprocessorIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/XMPPPreprocessorIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/XMPPProcessor.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/XMPPProcessor.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/XMPPProcessor.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/XMPPPostprocessorIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/XMPPPostprocessorIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/XMPPPostprocessorIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/XMPPPacketFilterIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/XMPPPacketFilterIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/XMPPPacketFilterIfc.java

Tigase Development Guide

82

• Packet packet - packet is which being processed. This parameter may never be null. Even though this
is not an immutable object it mustn’t be altered. None of it’s fields or attributes can be changed during
processing.

• XMPPResourceConnection session - user session which keeps all the user session data and also gives
access to the user’s data repository. It allows for the storing of information in permanent storage or in
memory only during the life of the session. This parameter can be null if there is no online user session
at the time of the packet processing.

• NonAuthUserRepository repo - this is a user data storage which is normally used when the user session
(parameter above) is null. This repository allows for a very restricted access only. It allows for storing
some user private data (but doesn’t allow overwriting existing data) like messages for offline users and
it also allows for reading user public data like VCards.

• Queue<Packet> results - this a collection with packets which have been generated as input packet
processing results. Regardless a response to a user request is sent or the packet is forwarded to it’s
destination it is always required that a copy of the input packet is created and stored in the results queue.

• Map<String, Object> settings - this map keeps plugin specific settings loaded from the Tigase server
configuration. In most cases it is unused, however if the plugin needs to access an external database that
this is a way to pass the database connection string to the plugin.

After a closer look in some of the interfaces you can see that they extend another interface: XMPPIm-
plIfc [https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/XMPPImplIfc.java]
which provides a basic meta information about the plugin implementation. Please refer to JavaDoc [http://
docs.tigase.org/tigase-server/snapshot/javadoc/tigase/xmpp/impl/package-summary.html] documentation
for all details.

For purpose of this guide we are implementing a simple plugin for handling all <message/> packets
that is forwarding packets to the destination address. Incoming packets are forwarded to the user con-
nection and outgoing packets are forwarded to the external destination address. This message plugin
[https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/impl/Message.java] is ac-
tually implemented already and it is available in our Git repository. The code has some comments inside
already but this guide goes deeper into the implementation details.

First of all you have to choose what kind of plugin you want to implement. If this is going to be a packet
processor you have to implement the XMPPProcessorIfc interface, if this is going to be a pre-processor
then you have to implement the XMPPPreprocessorIfc interface. Of course your implementation can
implement more than one interface, even all of them. There are also two abstract helper classes, one of
which you should use as a base for all you plugins XMPPProcessor or use AnnotatedXMPPProcessor
for annotation support.

Using annotation support

The class declaration should look like this (assuming you are implementing just the packet processor):

public class Message extends AnnotatedXMPPProcessor
 implements XMPPProcessorIfc

The first thing to create is the plugin ID. This is a unique string which you put in the configuration file to
tell the server to load and use the plugin. In most cases you can use XMLNS if the plugin wants packets
with elements with a very specific name space. Of course there is no guarantee there is no other packet for
this specific XML element too. As we want to process all messages and don’t want to spend whole day
on thinking about a cool ID, let’s say our ID is: message.

A plugin informs about it’s presence using a static ID field and @Id annotation placed on class:

https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/XMPPImplIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/XMPPImplIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/XMPPImplIfc.java
http://docs.tigase.org/tigase-server/snapshot/javadoc/tigase/xmpp/impl/package-summary.html
http://docs.tigase.org/tigase-server/snapshot/javadoc/tigase/xmpp/impl/package-summary.html
http://docs.tigase.org/tigase-server/snapshot/javadoc/tigase/xmpp/impl/package-summary.html
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/impl/Message.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/impl/Message.java

Tigase Development Guide

83

@Id(ID)
public class Message extends AnnotatedXMPPProcessor
 implements XMPPProcessorIfc {
 protected static final String ID = -"message";
}

As mentioned before, this plugin receives only this kind of packets for processing which it is interested
in. In this example, the plugin is interested only in packets with <message/> elements and only if they
are in the "jabber:client" namespace. To indicate all supported elements and namespaces we have to add
2 more annotations:

@Id(ID)
@Handles({
 @Handle(path={ -"message" -},xmlns="jabber:client")
})
public class Message extends AnnotatedXMPPProcessor
 implements XMPPProcessorIfc {
 private static final String ID = -"message";
}

Using older non-annotation based implementation

The class declaration should look like this (assuming you are implementing just the packet processor):

public class Message extends XMPPProcessor
 implements XMPPProcessorIfc

The first thing to create is the plugin ID like above.

A plugin informs about it’s ID using following code:

private static final String ID = -"message";
public String id() { return ID; -}

As mentioned before this plugin receives only this kind of packets for processing which it is interested
in. In this example, the plugin is interested only in packets with <message/> elements and only if they
are in "jabber:client" namespace. To indicate all supported elements and namespaces we have to add 2
more methods:

public String[] supElements() {
 return new String[] {"message"};
}

public String[] supNamespaces() {
 return new String[] {"jabber:client"};
}

Implementation of processing method

Now we have our plugin prepared for loading in Tigase. The next step is the actual packet processing
method. For the complete code, please refer to the plugin in the Git. I will only comment here on elements
which might be confusing or add a few more lines of code which might be helpful in your case.

@Override
public void process(Packet packet, XMPPResourceConnection session,

Tigase Development Guide

84

 NonAuthUserRepository repo, Queue<Packet> results, Map<String, Object> settings)
 throws XMPPException {

 // For performance reasons it is better to do the check
 // before calling logging method.
 if (log.isLoggable(Level.FINEST)) {
 log.log(Level.FINEST, -"Processing packet: {0}", packet);
 }

 // You may want to skip processing completely if the user is offline.
 if (session == null) {
 return;
 } -// end of if (session == null)

 try {

 // Remember to cut the resource part off before comparing JIDs
 BareJID id = (packet.getStanzaTo() -!= null) -? packet.getStanzaTo().getBareJID() -: null;

 // Checking if this is a packet TO the owner of the session
 if (session.isUserId(id)) {

 // Yes this is message to -'this' client
 Packet result = packet.copyElementOnly();

 // This is where and how we set the address of the component
 // which should receive the result packet for the final delivery
 // to the end-user. In most cases this is a c2s or Bosh component
 // which keep the user connection.
 result.setPacketTo(session.getConnectionId(packet.getStanzaTo()));

 // In most cases this might be skipped, however if there is a
 // problem during packet delivery an error might be sent back
 result.setPacketFrom(packet.getTo());

 // Don't forget to add the packet to the results queue or it
 // will be lost.
 results.offer(result);

 return;
 } -// end of else

 // Remember to cut the resource part off before comparing JIDs
 id = (packet.getStanzaFrom() -!= null) -? packet.getStanzaFrom().getBareJID() -: null;

 // Checking if this is maybe packet FROM the client
 if (session.isUserId(id)) {

 // This is a packet FROM this client, the simplest action is
 // to forward it to its destination:
 // Simple clone the XML element and....
 // -... putting it to results queue is enough
 results.offer(packet.copyElementOnly());

Tigase Development Guide

85

 return;
 }

 // Can we really reach this place here?
 // Yes, some packets don't even have from or to address.
 // The best example is IQ packet which is usually a request to
 // the server for some data. Such packets may not have any addresses
 // And they usually require more complex processing
 // This is how you check whether this is a packet FROM the user
 // who is owner of the session:
 JID jid = packet.getFrom();

 // This test is in most cases equal to checking getStanzaFrom()
 if (session.getConnectionId().equals(jid)) {

 // Do some packet specific processing here, but we are dealing
 // with messages here which normally need just forwarding
 Element el_result = packet.getElement().clone();

 // If we are here it means FROM address was missing from the
 // packet, it is a place to set it here:
 el_result.setAttribute("from", session.getJID().toString());

 Packet result = Packet.packetInstance(el_result, session.getJID(),
 packet.getStanzaTo());

 // -... putting it to results queue is enough
 results.offer(result);
 }
 } catch (NotAuthorizedException e) {
 log.warning("NotAuthorizedException for packet: -" + packet);
 results.offer(Authorization.NOT_AUTHORIZED.getResponseMessage(packet,
 "You must authorize session first.", true));
 } -// end of try-catch
}

Plugin Configuration
Plugin configuration is straightforward.

Tell the Tigase server to load or not to load the plugins via the config.tdsl file. Plugins fall within
the 'sess-man' container. To activate a plugin, simply list it among the sess-man plugins.

If you do not wish to use this method to find out what plugins are running, there are two ways you can
identify if a plugin is running. One is the log file: logs/tigase-console.log. If you look inside you can find
following output:

Loading plugin: jabber:iq:register -...
Loading plugin: jabber:iq:auth -...
Loading plugin: urn:ietf:params:xml:ns:xmpp-sasl -...
Loading plugin: urn:ietf:params:xml:ns:xmpp-bind -...
Loading plugin: urn:ietf:params:xml:ns:xmpp-session -...
Loading plugin: roster-presence -...
Loading plugin: jabber:iq:privacy -...

Tigase Development Guide

86

Loading plugin: jabber:iq:version -...
Loading plugin: http://jabber.org/protocol/stats -...
Loading plugin: starttls -...
Loading plugin: vcard-temp -...
Loading plugin: http://jabber.org/protocol/commands -...
Loading plugin: jabber:iq:private -...
Loading plugin: urn:xmpp:ping -...

and this is a list of plugins which are loaded in your installation.

Another way is to look inside the session manager source code which has the default list hardcoded:

private static final String[] PLUGINS_FULL_PROP_VAL =
 {"jabber:iq:register", -"jabber:iq:auth", -"urn:ietf:params:xml:ns:xmpp-sasl",
 -"urn:ietf:params:xml:ns:xmpp-bind", -"urn:ietf:params:xml:ns:xmpp-session",
 -"roster-presence", -"jabber:iq:privacy", -"jabber:iq:version",
 -"http://jabber.org/protocol/stats", -"starttls", -"msgoffline",
 -"vcard-temp", -"http://jabber.org/protocol/commands", -"jabber:iq:private",
 -"urn:xmpp:ping", -"basic-filter", -"domain-filter"};

In you wish to load a plugin outside these defaults, you have to edit the list and add your plugin IDs as a
value to the plugin list under 'sess-man'. Let’s say our plugin ID is message as in our all examples:

'sess-man' () {
 -'jabber:iq:register' () {}
 -'jabber:iq:auth' () {}
 message () {}
}

Assuming your plugin class is in the classpath it will be loaded and used at the runtime. You may specify
class by adding class: class.implementing.plugin within the parenthesis of the plugin.

Note

If your plugin name has any special characters (-,:\|/.) it needs to be encapsulated in single quo-
tation marks.

There is another part of the plugin configuration though. If you looked at the Writing Plugin Code guide
you can remember the Map settings processing parameter. This is a map of properties you can set in the
configuration file and these setting will be passed to the plugin at the processing time.

Again config.tdsl is the place to put the stuff. These kind of properties start under your plugin ID and
each key and value will be a child underneath:

'sess-man' () {
 pluginID {
 key1 = -'val1'
 key2 = -'val2'
 key3 = -'val3'
 -}
}

Note

From v8.0.0 you will no longer be able to specify one value for multiple keys, you must set each
one individually.

Tigase Development Guide

87

Last but not least - in case you have omitted plugin ID:

'sess-man' () {
 key1 = -'val1'
}

then the configured key-value pair will be a global/common plugin setting available to all loaded plugins.

How Packets are Processed by the SM and Plugins
For Tigase server plugin development it is important to understand how it all works. There are different
kind of plugins responsible for processing packets at different stages of the data flow. Please read the
introduction below before proceeding to the actual coding part.

Introduction

In Tigase server plugins are pieces of code responsible for processing particular XMPP stanzas. A separate
plugin might be responsible for processing messages, a different one for processing presences, a separate
plugins responsible for iq roster, and a different one for iq version and so on.

A plugin provides information about what exact XML element(s) name(s) with xmlns it is interested in.
So you can create a plugin which is interested in all packets containing caps child.

There might be no plugin for a particular stanza element, in this case the default action is used which is
simple forwarding stanza to a destination address. There might be also more than one plugin for a specific
XML element and then they all process the same stanza simultaneously in separate threads so there is no
guarantee on the order in which the stanza is processed by a different plugins.

Each stanza goes through the Session Manager component which processes packets in a few steps. Have
a look at the picture below:

The picture shows that each stanza is processed by the session manager in 4 steps:

1. Pre-processing - All loaded pre-processors receive the packet for processing. They work within session
manager thread and they have no internal queue for processing. As they work within Session Manager
thread it is important that they limit processing time to absolute minimum as they may affect the Session

Tigase Development Guide

88

Manager performance. The intention for the pre-processors is to use them for packet blocking. If the
pre-processing result is 'true' then the packet is blocked and no further processing is performed.

2. Processing - This is the next step the packet gets through if it wasn’t blocked by any of the pre-proces-
sors. It gets inserted to all processors queues with requested interest in this particular XML element.
Each processor works in a separate thread and has own internal fixed size processing queue.

3. Post-processing - If there is no processor for the stanza then the packet goes through all post-processors.
The last post-processor that is built into session manager post-processor tries to apply a default action
to a packet which hasn’t been processed in step 2. Normally the default action is just forwarding the
packet to a destination. Most commonly it is applied to <message/> packets.

4. Finally, if any of above 3 steps produced output/result packets all of them go through all filters which
may or may not block them.

An important thing to note is that we have two kinds or two places where packets may be blocked or
filtered out. One place is before packet is processed by the plugin and another place is after processing
where filtering is applied to all results generated by the processor plugins.

It is also important to note that session manager and processor plugins act as packet consumers. The packet
is taken for processing and once processing is finished the packet is destroyed. Therefore to forward a
packet to a destination one of the processor must create a copy of the packet, set all properties and attributes
and return it as a processing result. Of course processor can generate any number of packets as a result.
Result packets can be generated in any of above 4 steps of the processing. Have a look at the picture below:

If the packet P1 is sent from outside of the server, for example to a user on another server or to some
component (MUC, PubSub, transport), then one of the processor must create a copy (P2) of the packet and
set all attributes and destination addresses correctly. Packet P1 has been consumed by the session manager
during processing and a new packet has been generated by one of the plugins.

Tigase Development Guide

89

The same of course happens on the way back from the component to the user:

The packet from the component is processed and one of the plugins must generate a copy of the packet
to deliver it to the user. Of course packet forwarding is a default action which is applied when there is no
plugin for the particular packet.

It is implemented this way because the input packet P1 can be processed by many plugins at the same time
therefore the packet should be in fact immutable and must not change once it got to the session manager
for processing.

The most obvious processing work flow is when a user sends request to the server and expects a response
from the server:

Tigase Development Guide

90

This design has one surprising consequence though. If you look at the picture below showing communica-
tion between 2 users you can see that the packet is copied twice before it is delivered to a final destination:

The packet has to be processed twice by the session manager. The first time it is processed on behalf
of the User A as an outgoing packet and the second time it is processed on behalf of the User B as an
incoming packet.

This is to make sure the User A has permission to send a packet out and all processing is applied to the
packet and also to make sure that User B has permission to receive the packet and all processing is applied.
If, for example, the User B is offline there is an offline message processor which should send the packet
to a database instead of User B.

Tigase Development Guide

91

SASL Custom Mechanisms and Configuration
This API is available from Tigase XMPP Server version 5.2.0 or later on our current master branch.

In version 8.0.0 there was a major change to the API and configuration of custom SASL mechanisms.

Note that API is under active development. This description may be updated at any time.

Basic SASL Configuration

SASL implementation in Tigase XMPP Server is compatible with Java API, the same exact interfaces
are used.

The SASL implementation consists of following parts:

1. mechanism

2. CallbackHandler

Mechanisms Configuration

To add a new mechanism, a new factory for the mechanism has to be implemented and registered.

The simplest way to add register a new factory is to annotate its class with @Bean annotation:

Example of the registration of a SASL mechanism factory with an annotation setting id of the factory
to customSaslFactory.

@Bean(name="customSaslFactory", parent = TigaseSaslProvider.class, active = true)
public class OwnFactory implements SaslServerFactory {}

It can also be done by specifying the class directly for bean customSaslFactory in the
config.tdsl file like in the example below:

Example of the registration of a SASL mechanism factory with TDSL setting id of the factory to
customSaslFactory.

'sess-man' () {
 -'sasl-provider' () {
 customSaslFactory(class: com.example.OwnFactory) {}
 -}
}

The class must implement the SaslServerFactory interface and has public constructor without any
arguments. All mechanisms returned by getMechanismNames() method will be registered automat-
ically.

The default factory that is available and registered by default is
tigase.auth.TigaseSaslServerFactory which provides PLAIN, ANONYMOUS, EXTERNAL,
SCRAM-SHA-1, SCRAM-SHA-256 and SCRAM-SHA-512 mechanisms.

CallbackHandler Configuration

The CallbackHandler is a helper class used for loading/retrieving authentication data from data repos-
itory and providing them to a mechanism.

To register a new callback handler you need to create a new class extending
tigase.auth.CallbackHandlerFactory (if you wish to keep existing SASL callback handlers)

Tigase Development Guide

92

or implementing tigase.auth.CallbackHandlerFactoryIfc. You will need to override cre-
ate() method to return an instance of your custom CallbackHandler when appropriate.

Next you need to register new implementation of CallbackHandlerFactoryIfc. The
config.tdsl file should include:

'sess-man' () {
 -'sasl-provider' () {
 callback-handler-factory(class: com.example.OwnCallbackHandlerFactory) {}
 -}
}

During the authentication process, Tigase server always checks for asks callback handler factory for spe-
cific handler to selected mechanisms, and if there is no specific handler the default one is used.

Selecting Mechanisms Available in the Stream

The tigase.auth.MechanismSelector interface is used for selecting mechanisms available in a
stream. Method filterMechanisms() should return a collection with mechanisms available based
on:

1. all registered SASL factories

2. XMPP session data (from XMPPResourceConnection class)

The default selector returns mechanisms from all mechanism factories registered in sasl-provider
(TigaseSaslProvider).

It is possible to use a custom selector by specifying it’s class int the config.tdsl file:

'sess-man' () {
 -'sasl-provider' () {
 -'mechanism-selector'(class: com.example.OwnSelector) {}
 -}
}

Logging/Authentication

After the XMPP stream is opened by a client, the server checks which SASL mechanisms are available for
the XMPP session. Depending on whether the stream is encrypted or not, depending on the domain, the
server can present different available authentication mechanisms. MechanismSelector is responsible
for choosing mechanisms. List of allowed mechanisms is stored in the XMPP session object.

When the client/user begins the authentication procedure it uses one particular mechanism. It must use one
of the mechanisms provided by the server as available for this session. The server checks whether mecha-
nisms used by the client is on the list of allowed mechanisms. It the check is successful, the server creates
SaslServer class instance and proceeds with exchanging authentication information. Authentication
data is different depending on the mechanism used.

When the SASL authentication is completed without any error, Tigase server should have authorized user
name or authorized BareJID. In the first case, the server automatically builds user’s JID based on the
domain used in the stream opening element in to attribute.

If, after a successful authentication, method call: getNegotiatedProperty("IS_ANONYMOUS")
returns Boolean.TRUE then the user session is marked as anonymous. For valid and registered users
this can be used for cases when we do not want to load any user data such as roster, vcard, privacy lists
and so on. This is a performance and resource usage implication and can be useful for use cases such as

Tigase Development Guide

93

support chat. The authorization is performed based on the client database but we do not need to load any
XMPP specific data for the user’s session.

More details about implementation can be found in the custom mechanisms development section.

Custom Mechanisms Development

Mechanism

getAuthorizationID() method from SaslServer class should return bare JID authorized user.
In case that the method returns only user name such as romeo for example, the server automatically ap-
pends domain name to generate a valid BareJID: romeo@example.com. In case the method returns a full,
valid BareJID, the server does not change anything.

handleLogin() method from SessionManagerHandler will be called with user’s Bare JID pro-
vided by getAuthorizationID() (or created later using stream domain name).

CallbackHandler

For each session authorization, the server creates a new and separate empty handler. Factory which creates
handler instance allows to inject different objects to the handler, depending on interfaces implemented by
the handler class:

• AuthRepositoryAware - injects AuthRepository;

• DomainAware - injects domain name within which the user attempts to authenticate

• NonAuthUserRepositoryAware - injects NonAuthUserRepository

General Remarks

JabberIqAuth used for non-SASL authentication mechanisms uses the same callback as the SASL
mechanisms.

Methods auth in Repository interfaces will be deprecated. These interfaces will be treated as user
details providers only. There will be new methods available which will allow for additional login opera-
tions on the database such as last successful login recording.

Using Maven
Documents Describing Maven Use with the Tigase Projects

Setting up Maven in Windows
Here at Tigase, we employ Apache Maven to download latest builds, compile codes for export, and check
for errors in the code during build. This guide will go over installing and running Maven from a Windows
operating environment. We will consider windows versions 7, 8, and 8.1 for this guide. Because Maven
does not come with an installer, there is a manual install process which might be a bit daunting for the
new user, but setup and use is fairly simple.

Requirements

1. Maven requires Java Development Kit (JDK) 6 or later. As Tigase requires the latest JDK to run, that
will do for our purposes. If you haven’t installed it yet, download the installer from this website [http://
www.oracle.com/technetwork/java/javase/downloads/index.html]. Once you install JDK and restart

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Tigase Development Guide

94

your machine, be sure that you have the JAVA_HOME variable entered into Environment Variables
so calls to Java will work from the command line.

2. Download the Maven package from here [https://maven.apache.org/download.cgi] and unpack it into
a directory of your choice. For this guide we will use C:\Maven\ .

Setting up Environment Variables

The Environment Variables panel is brought up from the Control Panel by clicking System and Security

> System > Advanced System Settings. Now click the button at the
bottom of the panel and the Environment Variables panel will show.

IMPORTANT NOTICE: CHANGING THESE SETTINGS CAN BREAK OTHER FUNCTIONS
IN THE OPERATING SYSTEM. DO NOT FOLLOW THIS GUIDE IF YOU DO NOT KNOW
WHAT YOU ARE DOING!

https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi

Tigase Development Guide

95

We need to first add two variable paths to the System variables to account for Maven’s install location. As
there are some programs that look for M2_HOME, and others that look for MAVEN_HOME, it’s easier
to just add both and have all the bases covered.

Click on New…

For the Name, use M2_HOME, and for the variable enter the path to maven, which in this case is

C:\Maven

Create another new variable with the MAVEN_HOME name and add the same directory. These variable
values just point to where you have unpacked maven, so they do not have to be in the C directory.

Go down to the system variables dialog and select Path, then click on Edit. The Path variables are separated
by semicolons, find the end of the Variable value string, and add the following after the last entry:

;%M2_HOME%\bin;%MAVEN_HOME%\bin;

We have added two variables using the %% wildcards surrounding our Variable names from earlier.

Testing Maven

Now we must test the command line to be sure everything installed correctly. Bring up the command line
either by typing cmd in search, or navigating the start menu.

From the prompt, you do not need to change directory as setting Path allows you to reference it. Type the
following command: mvn -v

something like this should show up

Apache Maven 3.3.3 (7994120775791599e205a5524ec3e0dfe41d4a06; 2015-04-22T04:57:3
7-07:00)
Maven home: C:\Maven
Java version: 1.8.0_45, vendor: Oracle Corporation
Java home: C:\Program Files\Java\jdk1.8.0_45\jre
Default locale: en_US, platform encoding: Cp1252
OS name: -"windows 7", version: -"6.1", arch: -"amd64", family: -"dos"

If you see this message, success! You have finished installation and are ready to use Maven! If not,
go back on your settings and insure that JDK is installed, and the JAVA_HOME, M2_HOME, and
MAVEN_HOME variables are set properly.

Tigase Development Guide

96

A Very Short Maven Guide
If you don’t use Maven [http://maven.apache.org/] at all or use it once a year you may find the document
a useful maven commands reminder:

Snapshot Compilation and Snapshot Package Generation

• mvn compile - compilation of the snapshot package

• mvn package - create snapshot jar file

• mvn install - install in local repository snapshot jar file

• mvn deploy - deploy to the remote repository snapshot jar file

Release Compilation, Generation

• mvn release:prepare prepare the project for a new version release

• mvn release:perform execute new version release generation

Generating tar.gz, tar.bz2 File With Sources Only

• mvn -DdescriptorId=src assembly:assembly

Any of these commands will work when your commandline is in a directory with a pom.xml file. This
file will instruct what Maven will do.

Profiles

Maven uses profiles with the -P switch to tell what to compile and build. Tigase uses two different profiles:

• -Pdist - creates distribution archives

• -Pdoc - creates documentation

Tests

Tests
Tests are very important part of Tigase server development process.

Each release goes through fully automated testing process. All server functions are considered implement-
ed only when they pass the testing cycle. Tigase test suite is used for all our automatic tests which allows
to define different test scenarios.

There is no tweaking on databases for tests. All databases are installed in a standard way and run with
default settings. Databases are cleared each time before the test cycle starts.

There are no modifications needed to be made to Tigase’s configuration file as well. All tests are performed
on a default configuration generated by the configuration wizards.

The server is tested in all supported environments:

http://maven.apache.org/
http://maven.apache.org/

Tigase Development Guide

97

1. XMLDB - tests with built-in simple XML database. This is a simple and efficient solution for small
installations. It is recommended for services with up to 100 user accounts although it has been success-
fully tested with 10,000 user accounts.

2. MySQL - tests with a MySQL [http://www.mysql.com/] database. Much slower than XMLDB but may
handle many more user accounts.

3. PostgreSQL - tests with a PostgreSQL [http://www.postgresql.org/] database. Again it is much slower
than XMLDB but may handle much more user accounts. This is basically exactly the same code as for
MySQL database (SQL Connector) but tests are executed to make sure the code is compatible with all
supported SQL databases and to compare performance.

4. Distributed - is a test for distributed installation where c2s and s2s components run on separated ma-
chine which connects using external an component protocol (XEP-0114 [http://www.xmpp.org/exten-
sions/xep-0114.html]) to another machine with SessionManager running.

Functional Tests

Basic checking to see if all the functions work at correctly. These tests are performed every time the code
is sent to source repository.

Version XMLDB MySQL PGSQL Distributed

3.3.2-b889 00:00:12
[tests/3.3.2-b889/
func/xmldb/func-
tional-tests.html]

00:00:17
[tests/3.3.2-b889/
func/mysql/func-
tional-tests.html]

00:00:17
[tests/3.3.2-b889/
func/pgsql/func-
tional-tests.html]

none

3.3.2-b880 00:00:13
[tests/3.3.2-b880/
func/xmldb/func-
tional-tests.html]

00:00:15
[tests/3.3.2-b880/
func/mysql/func-
tional-tests.html]

00:00:15
[tests/3.3.2-b880/
func/pgsql/func-
tional-tests.html]

None

3.0.2-b700 00:00:22
[tests/3.0.2-b700/
func/xmldb/func-
tional-tests.html]

00:00:24
[tests/3.0.2-b700/
func/mysql/func-
tional-tests.html]

00:00:25
[tests/3.0.2-b700/
func/pgsql/func-
tional-tests.html]

00:00:25
[tests/3.0.2-
b700/func/sm-
mysql/function-
al-tests.html]

2.9.5-b606 00:00:22
[tests/2.9.5-b606/
func/xmldb/func-
tional-tests.html]

00:00:24
[tests/2.9.5-b606/
func/mysql/func-
tional-tests.html]

00:00:24
[tests/2.9.5-b606/
func/pgsql/func-
tional-tests.html]

00:00:24
[tests/2.9.5-
b606/func/sm-
mysql/function-
al-tests.html]

2.9.3-b548 00:00:22
[tests/2.9.3-b548/
func/xmldb/func-
tional-tests.html]

00:00:23
[tests/2.9.3-b548/
func/mysql/func-
tional-tests.html]

00:00:25
[tests/2.9.3-b548/
func/pgsql/func-
tional-tests.html]

00:00:25
[tests/2.9.3-
b548/func/sm-
mysql/function-
al-tests.html]

2.9.1-b528 00:00:21
[tests/2.9.1-b528/
func/xmldb/func-
tional-tests.html]

00:00:23
[tests/2.9.1-b528/
func/mysql/func-
tional-tests.html]

00:00:24
[tests/2.9.1-b528/
func/pgsql/func-
tional-tests.html]

00:00:25
[tests/2.9.1-
b528/func/sm-
mysql/function-
al-tests.html]

2.8.6-b434 00:00:21
[tests/2.8.6-b434/

00:00:24
[tests/2.8.6-b434/

00:00:24
[tests/2.8.6-b434/

00:00:25
[tests/2.8.6-

http://www.mysql.com/
http://www.mysql.com/
http://www.postgresql.org/
http://www.postgresql.org/
http://www.xmpp.org/extensions/xep-0114.html
http://www.xmpp.org/extensions/xep-0114.html
http://www.xmpp.org/extensions/xep-0114.html
tests/3.3.2-b889/func/xmldb/functional-tests.html
tests/3.3.2-b889/func/xmldb/functional-tests.html
tests/3.3.2-b889/func/xmldb/functional-tests.html
tests/3.3.2-b889/func/xmldb/functional-tests.html
tests/3.3.2-b889/func/mysql/functional-tests.html
tests/3.3.2-b889/func/mysql/functional-tests.html
tests/3.3.2-b889/func/mysql/functional-tests.html
tests/3.3.2-b889/func/mysql/functional-tests.html
tests/3.3.2-b889/func/pgsql/functional-tests.html
tests/3.3.2-b889/func/pgsql/functional-tests.html
tests/3.3.2-b889/func/pgsql/functional-tests.html
tests/3.3.2-b889/func/pgsql/functional-tests.html
tests/3.3.2-b880/func/xmldb/functional-tests.html
tests/3.3.2-b880/func/xmldb/functional-tests.html
tests/3.3.2-b880/func/xmldb/functional-tests.html
tests/3.3.2-b880/func/xmldb/functional-tests.html
tests/3.3.2-b880/func/mysql/functional-tests.html
tests/3.3.2-b880/func/mysql/functional-tests.html
tests/3.3.2-b880/func/mysql/functional-tests.html
tests/3.3.2-b880/func/mysql/functional-tests.html
tests/3.3.2-b880/func/pgsql/functional-tests.html
tests/3.3.2-b880/func/pgsql/functional-tests.html
tests/3.3.2-b880/func/pgsql/functional-tests.html
tests/3.3.2-b880/func/pgsql/functional-tests.html
tests/3.0.2-b700/func/xmldb/functional-tests.html
tests/3.0.2-b700/func/xmldb/functional-tests.html
tests/3.0.2-b700/func/xmldb/functional-tests.html
tests/3.0.2-b700/func/xmldb/functional-tests.html
tests/3.0.2-b700/func/mysql/functional-tests.html
tests/3.0.2-b700/func/mysql/functional-tests.html
tests/3.0.2-b700/func/mysql/functional-tests.html
tests/3.0.2-b700/func/mysql/functional-tests.html
tests/3.0.2-b700/func/pgsql/functional-tests.html
tests/3.0.2-b700/func/pgsql/functional-tests.html
tests/3.0.2-b700/func/pgsql/functional-tests.html
tests/3.0.2-b700/func/pgsql/functional-tests.html
tests/3.0.2-b700/func/sm-mysql/functional-tests.html
tests/3.0.2-b700/func/sm-mysql/functional-tests.html
tests/3.0.2-b700/func/sm-mysql/functional-tests.html
tests/3.0.2-b700/func/sm-mysql/functional-tests.html
tests/3.0.2-b700/func/sm-mysql/functional-tests.html
tests/2.9.5-b606/func/xmldb/functional-tests.html
tests/2.9.5-b606/func/xmldb/functional-tests.html
tests/2.9.5-b606/func/xmldb/functional-tests.html
tests/2.9.5-b606/func/xmldb/functional-tests.html
tests/2.9.5-b606/func/mysql/functional-tests.html
tests/2.9.5-b606/func/mysql/functional-tests.html
tests/2.9.5-b606/func/mysql/functional-tests.html
tests/2.9.5-b606/func/mysql/functional-tests.html
tests/2.9.5-b606/func/pgsql/functional-tests.html
tests/2.9.5-b606/func/pgsql/functional-tests.html
tests/2.9.5-b606/func/pgsql/functional-tests.html
tests/2.9.5-b606/func/pgsql/functional-tests.html
tests/2.9.5-b606/func/sm-mysql/functional-tests.html
tests/2.9.5-b606/func/sm-mysql/functional-tests.html
tests/2.9.5-b606/func/sm-mysql/functional-tests.html
tests/2.9.5-b606/func/sm-mysql/functional-tests.html
tests/2.9.5-b606/func/sm-mysql/functional-tests.html
tests/2.9.3-b548/func/xmldb/functional-tests.html
tests/2.9.3-b548/func/xmldb/functional-tests.html
tests/2.9.3-b548/func/xmldb/functional-tests.html
tests/2.9.3-b548/func/xmldb/functional-tests.html
tests/2.9.3-b548/func/mysql/functional-tests.html
tests/2.9.3-b548/func/mysql/functional-tests.html
tests/2.9.3-b548/func/mysql/functional-tests.html
tests/2.9.3-b548/func/mysql/functional-tests.html
tests/2.9.3-b548/func/pgsql/functional-tests.html
tests/2.9.3-b548/func/pgsql/functional-tests.html
tests/2.9.3-b548/func/pgsql/functional-tests.html
tests/2.9.3-b548/func/pgsql/functional-tests.html
tests/2.9.3-b548/func/sm-mysql/functional-tests.html
tests/2.9.3-b548/func/sm-mysql/functional-tests.html
tests/2.9.3-b548/func/sm-mysql/functional-tests.html
tests/2.9.3-b548/func/sm-mysql/functional-tests.html
tests/2.9.3-b548/func/sm-mysql/functional-tests.html
tests/2.9.1-b528/func/xmldb/functional-tests.html
tests/2.9.1-b528/func/xmldb/functional-tests.html
tests/2.9.1-b528/func/xmldb/functional-tests.html
tests/2.9.1-b528/func/xmldb/functional-tests.html
tests/2.9.1-b528/func/mysql/functional-tests.html
tests/2.9.1-b528/func/mysql/functional-tests.html
tests/2.9.1-b528/func/mysql/functional-tests.html
tests/2.9.1-b528/func/mysql/functional-tests.html
tests/2.9.1-b528/func/pgsql/functional-tests.html
tests/2.9.1-b528/func/pgsql/functional-tests.html
tests/2.9.1-b528/func/pgsql/functional-tests.html
tests/2.9.1-b528/func/pgsql/functional-tests.html
tests/2.9.1-b528/func/sm-mysql/functional-tests.html
tests/2.9.1-b528/func/sm-mysql/functional-tests.html
tests/2.9.1-b528/func/sm-mysql/functional-tests.html
tests/2.9.1-b528/func/sm-mysql/functional-tests.html
tests/2.9.1-b528/func/sm-mysql/functional-tests.html
tests/2.8.6-b434/func/xmldb/functional-tests.html
tests/2.8.6-b434/func/xmldb/functional-tests.html
tests/2.8.6-b434/func/mysql/functional-tests.html
tests/2.8.6-b434/func/mysql/functional-tests.html
tests/2.8.6-b434/func/pgsql/functional-tests.html
tests/2.8.6-b434/func/pgsql/functional-tests.html
tests/2.8.6-b434/func/sm-mysql/functional-tests.html
tests/2.8.6-b434/func/sm-mysql/functional-tests.html

Tigase Development Guide

98

func/xmldb/func-
tional-tests.html]

func/mysql/func-
tional-tests.html]

func/pgsql/func-
tional-tests.html]

b434/func/sm-
mysql/function-
al-tests.html]

2.8.5-b422 00:00:21
[tests/2.8.5-b422/
func/xmldb/func-
tional-tests.html]

00:00:24
[tests/2.8.5-b422/
func/mysql/func-
tional-tests.html]

00:00:24
[tests/2.8.5-b422/
func/pgsql/func-
tional-tests.html]

00:00:26
[tests/2.8.5-
b422/func/sm-
mysql/function-
al-tests.html]

2.8.3-b409 00:00:27
[tests/2.8.3-b409/
func/xmldb/func-
tional-tests.html]

00:00:29
[tests/2.8.3-b409/
func/mysql/func-
tional-tests.html]

00:00:29
[tests/2.8.3-b409/
func/pgsql/func-
tional-tests.html]

00:00:32
[tests/2.8.3-
b409/func/sm-
mysql/function-
al-tests.html]

2.7.2-b378 00:00:30
[tests/2.7.2-b378/
func/xmldb/func-
tional-tests.html]

00:00:34
[tests/2.7.2-b378/
func/mysql/func-
tional-tests.html]

00:00:33
[tests/2.7.2-b378/
func/pgsql/func-
tional-tests.html]

00:00:35
[tests/2.7.2-
b378/func/sm-
mysql/function-
al-tests.html]

2.6.4-b300 00:00:30
[tests/2.6.4-b300/
func/xmldb/func-
tional-tests.html]

00:00:32
[tests/2.6.4-b300/
func/mysql/func-
tional-tests.html]

00:00:35
[tests/2.6.4-b300/
func/pgsql/func-
tional-tests.html]

00:00:39
[tests/2.6.4-
b300/func/sm-
mysql/function-
al-tests.html]

2.6.4-b295 00:00:29
[tests/2.6.4-b295/
func/xmldb/func-
tional-tests.html]

00:00:32
[tests/2.6.4-b295/
func/mysql/func-
tional-tests.html]

00:00:45
[tests/2.6.4-b295/
func/pgsql/func-
tional-tests.html]

00:00:36
[tests/2.6.4-
b295/func/sm-
mysql/function-
al-tests.html]

2.6.0-b287 00:00:31
[tests/2.6.0-b287/
func/xmldb/func-
tional-tests.html]

00:00:34
[tests/2.6.0-b287/
func/mysql/func-
tional-tests.html]

00:00:47
[tests/2.6.0-b287/
func/pgsql/func-
tional-tests.html]

00:00:43
[tests/2.6.0-
b287/func/sm-
mysql/function-
al-tests.html]

2.5.0-b279 00:00:30
[tests/2.5.0-b279/
func/xmldb/func-
tional-tests.html]

00:00:34
[tests/2.5.0-b279/
func/mysql/func-
tional-tests.html]

00:00:45
[tests/2.5.0-b279/
func/pgsql/func-
tional-tests.html]

00:00:43
[tests/2.5.0-
b279/func/sm-
mysql/function-
al-tests.html]

2.4.0-b263 00:00:29
[tests/2.4.0-b263/
func/xmldb/func-
tional-tests.html]

00:00:33
[tests/2.4.0-b263/
func/mysql/func-
tional-tests.html]

00:00:45
[tests/2.4.0-b263/
func/pgsql/func-
tional-tests.html]

00:00:44
[tests/2.4.0-
b263/func/sm-
mysql/function-
al-tests.html]

2.3.4-b226 None 00:00:48 [tests/
function-
al-tests.html]

None None

Performance Tests

Checking to see whether the function performs well enough.

tests/2.8.6-b434/func/xmldb/functional-tests.html
tests/2.8.6-b434/func/xmldb/functional-tests.html
tests/2.8.6-b434/func/mysql/functional-tests.html
tests/2.8.6-b434/func/mysql/functional-tests.html
tests/2.8.6-b434/func/pgsql/functional-tests.html
tests/2.8.6-b434/func/pgsql/functional-tests.html
tests/2.8.6-b434/func/sm-mysql/functional-tests.html
tests/2.8.6-b434/func/sm-mysql/functional-tests.html
tests/2.8.6-b434/func/sm-mysql/functional-tests.html
tests/2.8.5-b422/func/xmldb/functional-tests.html
tests/2.8.5-b422/func/xmldb/functional-tests.html
tests/2.8.5-b422/func/xmldb/functional-tests.html
tests/2.8.5-b422/func/xmldb/functional-tests.html
tests/2.8.5-b422/func/mysql/functional-tests.html
tests/2.8.5-b422/func/mysql/functional-tests.html
tests/2.8.5-b422/func/mysql/functional-tests.html
tests/2.8.5-b422/func/mysql/functional-tests.html
tests/2.8.5-b422/func/pgsql/functional-tests.html
tests/2.8.5-b422/func/pgsql/functional-tests.html
tests/2.8.5-b422/func/pgsql/functional-tests.html
tests/2.8.5-b422/func/pgsql/functional-tests.html
tests/2.8.5-b422/func/sm-mysql/functional-tests.html
tests/2.8.5-b422/func/sm-mysql/functional-tests.html
tests/2.8.5-b422/func/sm-mysql/functional-tests.html
tests/2.8.5-b422/func/sm-mysql/functional-tests.html
tests/2.8.5-b422/func/sm-mysql/functional-tests.html
tests/2.8.3-b409/func/xmldb/functional-tests.html
tests/2.8.3-b409/func/xmldb/functional-tests.html
tests/2.8.3-b409/func/xmldb/functional-tests.html
tests/2.8.3-b409/func/xmldb/functional-tests.html
tests/2.8.3-b409/func/mysql/functional-tests.html
tests/2.8.3-b409/func/mysql/functional-tests.html
tests/2.8.3-b409/func/mysql/functional-tests.html
tests/2.8.3-b409/func/mysql/functional-tests.html
tests/2.8.3-b409/func/pgsql/functional-tests.html
tests/2.8.3-b409/func/pgsql/functional-tests.html
tests/2.8.3-b409/func/pgsql/functional-tests.html
tests/2.8.3-b409/func/pgsql/functional-tests.html
tests/2.8.3-b409/func/sm-mysql/functional-tests.html
tests/2.8.3-b409/func/sm-mysql/functional-tests.html
tests/2.8.3-b409/func/sm-mysql/functional-tests.html
tests/2.8.3-b409/func/sm-mysql/functional-tests.html
tests/2.8.3-b409/func/sm-mysql/functional-tests.html
tests/2.7.2-b378/func/xmldb/functional-tests.html
tests/2.7.2-b378/func/xmldb/functional-tests.html
tests/2.7.2-b378/func/xmldb/functional-tests.html
tests/2.7.2-b378/func/xmldb/functional-tests.html
tests/2.7.2-b378/func/mysql/functional-tests.html
tests/2.7.2-b378/func/mysql/functional-tests.html
tests/2.7.2-b378/func/mysql/functional-tests.html
tests/2.7.2-b378/func/mysql/functional-tests.html
tests/2.7.2-b378/func/pgsql/functional-tests.html
tests/2.7.2-b378/func/pgsql/functional-tests.html
tests/2.7.2-b378/func/pgsql/functional-tests.html
tests/2.7.2-b378/func/pgsql/functional-tests.html
tests/2.7.2-b378/func/sm-mysql/functional-tests.html
tests/2.7.2-b378/func/sm-mysql/functional-tests.html
tests/2.7.2-b378/func/sm-mysql/functional-tests.html
tests/2.7.2-b378/func/sm-mysql/functional-tests.html
tests/2.7.2-b378/func/sm-mysql/functional-tests.html
tests/2.6.4-b300/func/xmldb/functional-tests.html
tests/2.6.4-b300/func/xmldb/functional-tests.html
tests/2.6.4-b300/func/xmldb/functional-tests.html
tests/2.6.4-b300/func/xmldb/functional-tests.html
tests/2.6.4-b300/func/mysql/functional-tests.html
tests/2.6.4-b300/func/mysql/functional-tests.html
tests/2.6.4-b300/func/mysql/functional-tests.html
tests/2.6.4-b300/func/mysql/functional-tests.html
tests/2.6.4-b300/func/pgsql/functional-tests.html
tests/2.6.4-b300/func/pgsql/functional-tests.html
tests/2.6.4-b300/func/pgsql/functional-tests.html
tests/2.6.4-b300/func/pgsql/functional-tests.html
tests/2.6.4-b300/func/sm-mysql/functional-tests.html
tests/2.6.4-b300/func/sm-mysql/functional-tests.html
tests/2.6.4-b300/func/sm-mysql/functional-tests.html
tests/2.6.4-b300/func/sm-mysql/functional-tests.html
tests/2.6.4-b300/func/sm-mysql/functional-tests.html
tests/2.6.4-b295/func/xmldb/functional-tests.html
tests/2.6.4-b295/func/xmldb/functional-tests.html
tests/2.6.4-b295/func/xmldb/functional-tests.html
tests/2.6.4-b295/func/xmldb/functional-tests.html
tests/2.6.4-b295/func/mysql/functional-tests.html
tests/2.6.4-b295/func/mysql/functional-tests.html
tests/2.6.4-b295/func/mysql/functional-tests.html
tests/2.6.4-b295/func/mysql/functional-tests.html
tests/2.6.4-b295/func/pgsql/functional-tests.html
tests/2.6.4-b295/func/pgsql/functional-tests.html
tests/2.6.4-b295/func/pgsql/functional-tests.html
tests/2.6.4-b295/func/pgsql/functional-tests.html
tests/2.6.4-b295/func/sm-mysql/functional-tests.html
tests/2.6.4-b295/func/sm-mysql/functional-tests.html
tests/2.6.4-b295/func/sm-mysql/functional-tests.html
tests/2.6.4-b295/func/sm-mysql/functional-tests.html
tests/2.6.4-b295/func/sm-mysql/functional-tests.html
tests/2.6.0-b287/func/xmldb/functional-tests.html
tests/2.6.0-b287/func/xmldb/functional-tests.html
tests/2.6.0-b287/func/xmldb/functional-tests.html
tests/2.6.0-b287/func/xmldb/functional-tests.html
tests/2.6.0-b287/func/mysql/functional-tests.html
tests/2.6.0-b287/func/mysql/functional-tests.html
tests/2.6.0-b287/func/mysql/functional-tests.html
tests/2.6.0-b287/func/mysql/functional-tests.html
tests/2.6.0-b287/func/pgsql/functional-tests.html
tests/2.6.0-b287/func/pgsql/functional-tests.html
tests/2.6.0-b287/func/pgsql/functional-tests.html
tests/2.6.0-b287/func/pgsql/functional-tests.html
tests/2.6.0-b287/func/sm-mysql/functional-tests.html
tests/2.6.0-b287/func/sm-mysql/functional-tests.html
tests/2.6.0-b287/func/sm-mysql/functional-tests.html
tests/2.6.0-b287/func/sm-mysql/functional-tests.html
tests/2.6.0-b287/func/sm-mysql/functional-tests.html
tests/2.5.0-b279/func/xmldb/functional-tests.html
tests/2.5.0-b279/func/xmldb/functional-tests.html
tests/2.5.0-b279/func/xmldb/functional-tests.html
tests/2.5.0-b279/func/xmldb/functional-tests.html
tests/2.5.0-b279/func/mysql/functional-tests.html
tests/2.5.0-b279/func/mysql/functional-tests.html
tests/2.5.0-b279/func/mysql/functional-tests.html
tests/2.5.0-b279/func/mysql/functional-tests.html
tests/2.5.0-b279/func/pgsql/functional-tests.html
tests/2.5.0-b279/func/pgsql/functional-tests.html
tests/2.5.0-b279/func/pgsql/functional-tests.html
tests/2.5.0-b279/func/pgsql/functional-tests.html
tests/2.5.0-b279/func/sm-mysql/functional-tests.html
tests/2.5.0-b279/func/sm-mysql/functional-tests.html
tests/2.5.0-b279/func/sm-mysql/functional-tests.html
tests/2.5.0-b279/func/sm-mysql/functional-tests.html
tests/2.5.0-b279/func/sm-mysql/functional-tests.html
tests/2.4.0-b263/func/xmldb/functional-tests.html
tests/2.4.0-b263/func/xmldb/functional-tests.html
tests/2.4.0-b263/func/xmldb/functional-tests.html
tests/2.4.0-b263/func/xmldb/functional-tests.html
tests/2.4.0-b263/func/mysql/functional-tests.html
tests/2.4.0-b263/func/mysql/functional-tests.html
tests/2.4.0-b263/func/mysql/functional-tests.html
tests/2.4.0-b263/func/mysql/functional-tests.html
tests/2.4.0-b263/func/pgsql/functional-tests.html
tests/2.4.0-b263/func/pgsql/functional-tests.html
tests/2.4.0-b263/func/pgsql/functional-tests.html
tests/2.4.0-b263/func/pgsql/functional-tests.html
tests/2.4.0-b263/func/sm-mysql/functional-tests.html
tests/2.4.0-b263/func/sm-mysql/functional-tests.html
tests/2.4.0-b263/func/sm-mysql/functional-tests.html
tests/2.4.0-b263/func/sm-mysql/functional-tests.html
tests/2.4.0-b263/func/sm-mysql/functional-tests.html
tests/functional-tests.html
tests/functional-tests.html
tests/functional-tests.html
tests/functional-tests.html

Tigase Development Guide

99

Version XMLDB MySQL PGSQL Distributed

3.3.2-b889 00:12:17
[tests/3.3.2-
b889/perf/
xmldb/perfor-
mance-tests.html]

00:13:42
[tests/3.3.2-
b889/perf/
mysql/perfor-
mance-tests.html]

00:17:10
[tests/3.3.2-
b889/perf/
pgsql/perfor-
mance-tests.html]

none

3.3.2-b880 00:13:39
[tests/3.3.2-
b880/perf/
xmldb/perfor-
mance-tests.html]

00:14:09
[tests/3.3.2-
b880/perf/
mysql/perfor-
mance-tests.html]

00:17:39
[tests/3.3.2-
b880/perf/
pgsql/perfor-
mance-tests.html]

None

3.0.2-b700 00:10:26
[tests/3.0.2-
b700/perf/
xmldb/perfor-
mance-tests.html]

00:11:00
[tests/3.0.2-
b700/perf/
mysql/perfor-
mance-tests.html]

00:12:08
[tests/3.0.2-
b700/perf/
pgsql/perfor-
mance-tests.html]

00:24:05
[tests/3.0.2-
b700/perf/sm-
mysql/perfor-
mance-tests.html]

2.9.5-b606 00:09:54
[tests/2.9.5-
b606/perf/
xmldb/perfor-
mance-tests.html]

00:11:18
[tests/2.9.5-
b606/perf/
mysql/perfor-
mance-tests.html]

00:37:08
[tests/2.9.5-
b606/perf/
pgsql/perfor-
mance-tests.html]

00:16:20
[tests/2.9.5-
b606/perf/sm-
mysql/perfor-
mance-tests.html]

2.9.3-b548 00:10:00
[tests/2.9.3-
b548/perf/
xmldb/perfor-
mance-tests.html]

00:11:29
[tests/2.9.3-
b548/perf/
mysql/perfor-
mance-tests.html]

00:36:43
[tests/2.9.3-
b548/perf/
pgsql/perfor-
mance-tests.html]

00:16:47
[tests/2.9.3-
b548/perf/sm-
mysql/perfor-
mance-tests.html]

2.9.1-b528 00:09:46
[tests/2.9.1-
b528/perf/
xmldb/perfor-
mance-tests.html]

00:11:15
[tests/2.9.1-
b528/perf/
mysql/perfor-
mance-tests.html]

00:36:12
[tests/2.9.1-
b528/perf/
pgsql/perfor-
mance-tests.html]

00:16:36
[tests/2.9.1-
b528/perf/sm-
mysql/perfor-
mance-tests.html]

2.8.6-b434 00:10:02
[tests/2.8.6-
b434/perf/
xmldb/perfor-
mance-tests.html]

00:11:45
[tests/2.8.6-
b434/perf/
mysql/perfor-
mance-tests.html]

00:36:36
[tests/2.8.6-
b434/perf/
pgsql/perfor-
mance-tests.html]

00:17:36
[tests/2.8.6-
b434/perf/sm-
mysql/perfor-
mance-tests.html]

2.8.5-b422 00:12:37
[tests/2.8.5-
b422/perf/
xmldb/perfor-
mance-tests.html]

00:14:40
[tests/2.8.5-
b422/perf/
mysql/perfor-
mance-tests.html]

00:38:59
[tests/2.8.5-
b422/perf/
pgsql/perfor-
mance-tests.html]

00:21:40
[tests/2.8.5-
b422/perf/sm-
mysql/perfor-
mance-tests.html]

2.8.3-b409 00:12:32
[tests/2.8.3-
b409/perf/
xmldb/perfor-
mance-tests.html]

00:14:26
[tests/2.8.3-
b409/perf/
mysql/perfor-
mance-tests.html]

00:37:57
[tests/2.8.3-
b409/perf/
pgsql/perfor-
mance-tests.html]

00:21:26
[tests/2.8.3-
b409/perf/sm-
mysql/perfor-
mance-tests.html]

2.7.2-b378 00:12:28
[tests/2.7.2-
b378/perf/

00:14:57
[tests/2.7.2-
b378/perf/

00:37:09
[tests/2.7.2-
b378/perf/

00:22:20
[tests/2.7.2-
b378/perf/sm-

tests/3.3.2-b889/perf/xmldb/performance-tests.html
tests/3.3.2-b889/perf/xmldb/performance-tests.html
tests/3.3.2-b889/perf/xmldb/performance-tests.html
tests/3.3.2-b889/perf/xmldb/performance-tests.html
tests/3.3.2-b889/perf/xmldb/performance-tests.html
tests/3.3.2-b889/perf/mysql/performance-tests.html
tests/3.3.2-b889/perf/mysql/performance-tests.html
tests/3.3.2-b889/perf/mysql/performance-tests.html
tests/3.3.2-b889/perf/mysql/performance-tests.html
tests/3.3.2-b889/perf/mysql/performance-tests.html
tests/3.3.2-b889/perf/pgsql/performance-tests.html
tests/3.3.2-b889/perf/pgsql/performance-tests.html
tests/3.3.2-b889/perf/pgsql/performance-tests.html
tests/3.3.2-b889/perf/pgsql/performance-tests.html
tests/3.3.2-b889/perf/pgsql/performance-tests.html
tests/3.3.2-b880/perf/xmldb/performance-tests.html
tests/3.3.2-b880/perf/xmldb/performance-tests.html
tests/3.3.2-b880/perf/xmldb/performance-tests.html
tests/3.3.2-b880/perf/xmldb/performance-tests.html
tests/3.3.2-b880/perf/xmldb/performance-tests.html
tests/3.3.2-b880/perf/mysql/performance-tests.html
tests/3.3.2-b880/perf/mysql/performance-tests.html
tests/3.3.2-b880/perf/mysql/performance-tests.html
tests/3.3.2-b880/perf/mysql/performance-tests.html
tests/3.3.2-b880/perf/mysql/performance-tests.html
tests/3.3.2-b880/perf/pgsql/performance-tests.html
tests/3.3.2-b880/perf/pgsql/performance-tests.html
tests/3.3.2-b880/perf/pgsql/performance-tests.html
tests/3.3.2-b880/perf/pgsql/performance-tests.html
tests/3.3.2-b880/perf/pgsql/performance-tests.html
tests/3.0.2-b700/perf/xmldb/performance-tests.html
tests/3.0.2-b700/perf/xmldb/performance-tests.html
tests/3.0.2-b700/perf/xmldb/performance-tests.html
tests/3.0.2-b700/perf/xmldb/performance-tests.html
tests/3.0.2-b700/perf/xmldb/performance-tests.html
tests/3.0.2-b700/perf/mysql/performance-tests.html
tests/3.0.2-b700/perf/mysql/performance-tests.html
tests/3.0.2-b700/perf/mysql/performance-tests.html
tests/3.0.2-b700/perf/mysql/performance-tests.html
tests/3.0.2-b700/perf/mysql/performance-tests.html
tests/3.0.2-b700/perf/pgsql/performance-tests.html
tests/3.0.2-b700/perf/pgsql/performance-tests.html
tests/3.0.2-b700/perf/pgsql/performance-tests.html
tests/3.0.2-b700/perf/pgsql/performance-tests.html
tests/3.0.2-b700/perf/pgsql/performance-tests.html
tests/3.0.2-b700/perf/sm-mysql/performance-tests.html
tests/3.0.2-b700/perf/sm-mysql/performance-tests.html
tests/3.0.2-b700/perf/sm-mysql/performance-tests.html
tests/3.0.2-b700/perf/sm-mysql/performance-tests.html
tests/3.0.2-b700/perf/sm-mysql/performance-tests.html
tests/2.9.5-b606/perf/xmldb/performance-tests.html
tests/2.9.5-b606/perf/xmldb/performance-tests.html
tests/2.9.5-b606/perf/xmldb/performance-tests.html
tests/2.9.5-b606/perf/xmldb/performance-tests.html
tests/2.9.5-b606/perf/xmldb/performance-tests.html
tests/2.9.5-b606/perf/mysql/performance-tests.html
tests/2.9.5-b606/perf/mysql/performance-tests.html
tests/2.9.5-b606/perf/mysql/performance-tests.html
tests/2.9.5-b606/perf/mysql/performance-tests.html
tests/2.9.5-b606/perf/mysql/performance-tests.html
tests/2.9.5-b606/perf/pgsql/performance-tests.html
tests/2.9.5-b606/perf/pgsql/performance-tests.html
tests/2.9.5-b606/perf/pgsql/performance-tests.html
tests/2.9.5-b606/perf/pgsql/performance-tests.html
tests/2.9.5-b606/perf/pgsql/performance-tests.html
tests/2.9.5-b606/perf/sm-mysql/performance-tests.html
tests/2.9.5-b606/perf/sm-mysql/performance-tests.html
tests/2.9.5-b606/perf/sm-mysql/performance-tests.html
tests/2.9.5-b606/perf/sm-mysql/performance-tests.html
tests/2.9.5-b606/perf/sm-mysql/performance-tests.html
tests/2.9.3-b548/perf/xmldb/performance-tests.html
tests/2.9.3-b548/perf/xmldb/performance-tests.html
tests/2.9.3-b548/perf/xmldb/performance-tests.html
tests/2.9.3-b548/perf/xmldb/performance-tests.html
tests/2.9.3-b548/perf/xmldb/performance-tests.html
tests/2.9.3-b548/perf/mysql/performance-tests.html
tests/2.9.3-b548/perf/mysql/performance-tests.html
tests/2.9.3-b548/perf/mysql/performance-tests.html
tests/2.9.3-b548/perf/mysql/performance-tests.html
tests/2.9.3-b548/perf/mysql/performance-tests.html
tests/2.9.3-b548/perf/pgsql/performance-tests.html
tests/2.9.3-b548/perf/pgsql/performance-tests.html
tests/2.9.3-b548/perf/pgsql/performance-tests.html
tests/2.9.3-b548/perf/pgsql/performance-tests.html
tests/2.9.3-b548/perf/pgsql/performance-tests.html
tests/2.9.3-b548/perf/sm-mysql/performance-tests.html
tests/2.9.3-b548/perf/sm-mysql/performance-tests.html
tests/2.9.3-b548/perf/sm-mysql/performance-tests.html
tests/2.9.3-b548/perf/sm-mysql/performance-tests.html
tests/2.9.3-b548/perf/sm-mysql/performance-tests.html
tests/2.9.1-b528/perf/xmldb/performance-tests.html
tests/2.9.1-b528/perf/xmldb/performance-tests.html
tests/2.9.1-b528/perf/xmldb/performance-tests.html
tests/2.9.1-b528/perf/xmldb/performance-tests.html
tests/2.9.1-b528/perf/xmldb/performance-tests.html
tests/2.9.1-b528/perf/mysql/performance-tests.html
tests/2.9.1-b528/perf/mysql/performance-tests.html
tests/2.9.1-b528/perf/mysql/performance-tests.html
tests/2.9.1-b528/perf/mysql/performance-tests.html
tests/2.9.1-b528/perf/mysql/performance-tests.html
tests/2.9.1-b528/perf/pgsql/performance-tests.html
tests/2.9.1-b528/perf/pgsql/performance-tests.html
tests/2.9.1-b528/perf/pgsql/performance-tests.html
tests/2.9.1-b528/perf/pgsql/performance-tests.html
tests/2.9.1-b528/perf/pgsql/performance-tests.html
tests/2.9.1-b528/perf/sm-mysql/performance-tests.html
tests/2.9.1-b528/perf/sm-mysql/performance-tests.html
tests/2.9.1-b528/perf/sm-mysql/performance-tests.html
tests/2.9.1-b528/perf/sm-mysql/performance-tests.html
tests/2.9.1-b528/perf/sm-mysql/performance-tests.html
tests/2.8.6-b434/perf/xmldb/performance-tests.html
tests/2.8.6-b434/perf/xmldb/performance-tests.html
tests/2.8.6-b434/perf/xmldb/performance-tests.html
tests/2.8.6-b434/perf/xmldb/performance-tests.html
tests/2.8.6-b434/perf/xmldb/performance-tests.html
tests/2.8.6-b434/perf/mysql/performance-tests.html
tests/2.8.6-b434/perf/mysql/performance-tests.html
tests/2.8.6-b434/perf/mysql/performance-tests.html
tests/2.8.6-b434/perf/mysql/performance-tests.html
tests/2.8.6-b434/perf/mysql/performance-tests.html
tests/2.8.6-b434/perf/pgsql/performance-tests.html
tests/2.8.6-b434/perf/pgsql/performance-tests.html
tests/2.8.6-b434/perf/pgsql/performance-tests.html
tests/2.8.6-b434/perf/pgsql/performance-tests.html
tests/2.8.6-b434/perf/pgsql/performance-tests.html
tests/2.8.6-b434/perf/sm-mysql/performance-tests.html
tests/2.8.6-b434/perf/sm-mysql/performance-tests.html
tests/2.8.6-b434/perf/sm-mysql/performance-tests.html
tests/2.8.6-b434/perf/sm-mysql/performance-tests.html
tests/2.8.6-b434/perf/sm-mysql/performance-tests.html
tests/2.8.5-b422/perf/xmldb/performance-tests.html
tests/2.8.5-b422/perf/xmldb/performance-tests.html
tests/2.8.5-b422/perf/xmldb/performance-tests.html
tests/2.8.5-b422/perf/xmldb/performance-tests.html
tests/2.8.5-b422/perf/xmldb/performance-tests.html
tests/2.8.5-b422/perf/mysql/performance-tests.html
tests/2.8.5-b422/perf/mysql/performance-tests.html
tests/2.8.5-b422/perf/mysql/performance-tests.html
tests/2.8.5-b422/perf/mysql/performance-tests.html
tests/2.8.5-b422/perf/mysql/performance-tests.html
tests/2.8.5-b422/perf/pgsql/performance-tests.html
tests/2.8.5-b422/perf/pgsql/performance-tests.html
tests/2.8.5-b422/perf/pgsql/performance-tests.html
tests/2.8.5-b422/perf/pgsql/performance-tests.html
tests/2.8.5-b422/perf/pgsql/performance-tests.html
tests/2.8.5-b422/perf/sm-mysql/performance-tests.html
tests/2.8.5-b422/perf/sm-mysql/performance-tests.html
tests/2.8.5-b422/perf/sm-mysql/performance-tests.html
tests/2.8.5-b422/perf/sm-mysql/performance-tests.html
tests/2.8.5-b422/perf/sm-mysql/performance-tests.html
tests/2.8.3-b409/perf/xmldb/performance-tests.html
tests/2.8.3-b409/perf/xmldb/performance-tests.html
tests/2.8.3-b409/perf/xmldb/performance-tests.html
tests/2.8.3-b409/perf/xmldb/performance-tests.html
tests/2.8.3-b409/perf/xmldb/performance-tests.html
tests/2.8.3-b409/perf/mysql/performance-tests.html
tests/2.8.3-b409/perf/mysql/performance-tests.html
tests/2.8.3-b409/perf/mysql/performance-tests.html
tests/2.8.3-b409/perf/mysql/performance-tests.html
tests/2.8.3-b409/perf/mysql/performance-tests.html
tests/2.8.3-b409/perf/pgsql/performance-tests.html
tests/2.8.3-b409/perf/pgsql/performance-tests.html
tests/2.8.3-b409/perf/pgsql/performance-tests.html
tests/2.8.3-b409/perf/pgsql/performance-tests.html
tests/2.8.3-b409/perf/pgsql/performance-tests.html
tests/2.8.3-b409/perf/sm-mysql/performance-tests.html
tests/2.8.3-b409/perf/sm-mysql/performance-tests.html
tests/2.8.3-b409/perf/sm-mysql/performance-tests.html
tests/2.8.3-b409/perf/sm-mysql/performance-tests.html
tests/2.8.3-b409/perf/sm-mysql/performance-tests.html
tests/2.7.2-b378/perf/xmldb/performance-tests.html
tests/2.7.2-b378/perf/xmldb/performance-tests.html
tests/2.7.2-b378/perf/xmldb/performance-tests.html
tests/2.7.2-b378/perf/mysql/performance-tests.html
tests/2.7.2-b378/perf/mysql/performance-tests.html
tests/2.7.2-b378/perf/mysql/performance-tests.html
tests/2.7.2-b378/perf/pgsql/performance-tests.html
tests/2.7.2-b378/perf/pgsql/performance-tests.html
tests/2.7.2-b378/perf/pgsql/performance-tests.html
tests/2.7.2-b378/perf/sm-mysql/performance-tests.html
tests/2.7.2-b378/perf/sm-mysql/performance-tests.html
tests/2.7.2-b378/perf/sm-mysql/performance-tests.html

Tigase Development Guide

100

xmldb/perfor-
mance-tests.html]

mysql/perfor-
mance-tests.html]

pgsql/perfor-
mance-tests.html]

mysql/perfor-
mance-tests.html]

2.6.4-b300 00:12:46
[tests/2.6.4-
b300/perf/
xmldb/perfor-
mance-tests.html]

00:14:59
[tests/2.6.4-
b300/perf/
mysql/perfor-
mance-tests.html]

00:36:56
[tests/2.6.4-
b300/perf/
pgsql/perfor-
mance-tests.html]

00:35:00
[tests/2.6.4-
b300/perf/sm-
mysql/perfor-
mance-tests.html]

2.6.4-b295 00:12:23
[tests/2.6.4-
b295/perf/
xmldb/perfor-
mance-tests.html]

00:14:59
[tests/2.6.4-
b295/perf/
mysql/perfor-
mance-tests.html]

00:42:24
[tests/2.6.4-
b295/perf/
pgsql/perfor-
mance-tests.html]

00:30:18
[tests/2.6.4-
b295/perf/sm-
mysql/perfor-
mance-tests.html]

2.6.0-b287 00:13:50
[tests/2.6.0-
b287/perf/
xmldb/perfor-
mance-tests.html]

00:16:53
[tests/2.6.0-
b287/perf/
mysql/perfor-
mance-tests.html]

00:48:17
[tests/2.6.0-
b287/perf/
pgsql/perfor-
mance-tests.html]

00:49:06
[tests/2.6.0-
b287/perf/sm-
mysql/perfor-
mance-tests.html]

2.5.0-b279 00:13:29
[tests/2.5.0-
b279/perf/
xmldb/perfor-
mance-tests.html]

00:16:58
[tests/2.5.0-
b279/perf/
mysql/perfor-
mance-tests.html]

00:47:15
[tests/2.5.0-
b279/perf/
pgsql/perfor-
mance-tests.html]

00:41:52
[tests/2.5.0-
b279/perf/sm-
mysql/perfor-
mance-tests.html]

2.4.0-b263 00:13:20
[tests/2.4.0-
b263/perf/
xmldb/perfor-
mance-tests.html]

00:16:21
[tests/2.4.0-
b263/perf/
mysql/perfor-
mance-tests.html]

00:43:56
[tests/2.4.0-
b263/perf/
pgsql/perfor-
mance-tests.html]

00:42:08
[tests/2.4.0-
b263/perf/sm-
mysql/perfor-
mance-tests.html]

2.3.4-b226 None 01:23:30
[tests/perfor-
mance-tests.html]

None None

Stability Tests

Checking to see whether the function behaves well in long term run. It must handle hundreds of requests
a second in a several hour server run.

Version XMLDB MySQL PGSQL Distributed

2.3.4-b226 None 16:06:31
[tests/stabili-
ty-tests.html]

None None

Tigase Test Suite
Tigase Test Suite is an engine which allows you to run tests. Essentially it just executes TestCase imple-
mentations. The tests may depend on other tests which means they are executed in specific order. For
example authentication test is executed after the stream open test which in turn is executed after network
socket connection test.

Each TestCase implementation may have it’s own set of specific parameters. There is a set of common
parameters which may be applied to any TestCase. As an example of the common parameter you can take

tests/2.7.2-b378/perf/xmldb/performance-tests.html
tests/2.7.2-b378/perf/xmldb/performance-tests.html
tests/2.7.2-b378/perf/mysql/performance-tests.html
tests/2.7.2-b378/perf/mysql/performance-tests.html
tests/2.7.2-b378/perf/pgsql/performance-tests.html
tests/2.7.2-b378/perf/pgsql/performance-tests.html
tests/2.7.2-b378/perf/sm-mysql/performance-tests.html
tests/2.7.2-b378/perf/sm-mysql/performance-tests.html
tests/2.6.4-b300/perf/xmldb/performance-tests.html
tests/2.6.4-b300/perf/xmldb/performance-tests.html
tests/2.6.4-b300/perf/xmldb/performance-tests.html
tests/2.6.4-b300/perf/xmldb/performance-tests.html
tests/2.6.4-b300/perf/xmldb/performance-tests.html
tests/2.6.4-b300/perf/mysql/performance-tests.html
tests/2.6.4-b300/perf/mysql/performance-tests.html
tests/2.6.4-b300/perf/mysql/performance-tests.html
tests/2.6.4-b300/perf/mysql/performance-tests.html
tests/2.6.4-b300/perf/mysql/performance-tests.html
tests/2.6.4-b300/perf/pgsql/performance-tests.html
tests/2.6.4-b300/perf/pgsql/performance-tests.html
tests/2.6.4-b300/perf/pgsql/performance-tests.html
tests/2.6.4-b300/perf/pgsql/performance-tests.html
tests/2.6.4-b300/perf/pgsql/performance-tests.html
tests/2.6.4-b300/perf/sm-mysql/performance-tests.html
tests/2.6.4-b300/perf/sm-mysql/performance-tests.html
tests/2.6.4-b300/perf/sm-mysql/performance-tests.html
tests/2.6.4-b300/perf/sm-mysql/performance-tests.html
tests/2.6.4-b300/perf/sm-mysql/performance-tests.html
tests/2.6.4-b295/perf/xmldb/performance-tests.html
tests/2.6.4-b295/perf/xmldb/performance-tests.html
tests/2.6.4-b295/perf/xmldb/performance-tests.html
tests/2.6.4-b295/perf/xmldb/performance-tests.html
tests/2.6.4-b295/perf/xmldb/performance-tests.html
tests/2.6.4-b295/perf/mysql/performance-tests.html
tests/2.6.4-b295/perf/mysql/performance-tests.html
tests/2.6.4-b295/perf/mysql/performance-tests.html
tests/2.6.4-b295/perf/mysql/performance-tests.html
tests/2.6.4-b295/perf/mysql/performance-tests.html
tests/2.6.4-b295/perf/pgsql/performance-tests.html
tests/2.6.4-b295/perf/pgsql/performance-tests.html
tests/2.6.4-b295/perf/pgsql/performance-tests.html
tests/2.6.4-b295/perf/pgsql/performance-tests.html
tests/2.6.4-b295/perf/pgsql/performance-tests.html
tests/2.6.4-b295/perf/sm-mysql/performance-tests.html
tests/2.6.4-b295/perf/sm-mysql/performance-tests.html
tests/2.6.4-b295/perf/sm-mysql/performance-tests.html
tests/2.6.4-b295/perf/sm-mysql/performance-tests.html
tests/2.6.4-b295/perf/sm-mysql/performance-tests.html
tests/2.6.0-b287/perf/xmldb/performance-tests.html
tests/2.6.0-b287/perf/xmldb/performance-tests.html
tests/2.6.0-b287/perf/xmldb/performance-tests.html
tests/2.6.0-b287/perf/xmldb/performance-tests.html
tests/2.6.0-b287/perf/xmldb/performance-tests.html
tests/2.6.0-b287/perf/mysql/performance-tests.html
tests/2.6.0-b287/perf/mysql/performance-tests.html
tests/2.6.0-b287/perf/mysql/performance-tests.html
tests/2.6.0-b287/perf/mysql/performance-tests.html
tests/2.6.0-b287/perf/mysql/performance-tests.html
tests/2.6.0-b287/perf/pgsql/performance-tests.html
tests/2.6.0-b287/perf/pgsql/performance-tests.html
tests/2.6.0-b287/perf/pgsql/performance-tests.html
tests/2.6.0-b287/perf/pgsql/performance-tests.html
tests/2.6.0-b287/perf/pgsql/performance-tests.html
tests/2.6.0-b287/perf/sm-mysql/performance-tests.html
tests/2.6.0-b287/perf/sm-mysql/performance-tests.html
tests/2.6.0-b287/perf/sm-mysql/performance-tests.html
tests/2.6.0-b287/perf/sm-mysql/performance-tests.html
tests/2.6.0-b287/perf/sm-mysql/performance-tests.html
tests/2.5.0-b279/perf/xmldb/performance-tests.html
tests/2.5.0-b279/perf/xmldb/performance-tests.html
tests/2.5.0-b279/perf/xmldb/performance-tests.html
tests/2.5.0-b279/perf/xmldb/performance-tests.html
tests/2.5.0-b279/perf/xmldb/performance-tests.html
tests/2.5.0-b279/perf/mysql/performance-tests.html
tests/2.5.0-b279/perf/mysql/performance-tests.html
tests/2.5.0-b279/perf/mysql/performance-tests.html
tests/2.5.0-b279/perf/mysql/performance-tests.html
tests/2.5.0-b279/perf/mysql/performance-tests.html
tests/2.5.0-b279/perf/pgsql/performance-tests.html
tests/2.5.0-b279/perf/pgsql/performance-tests.html
tests/2.5.0-b279/perf/pgsql/performance-tests.html
tests/2.5.0-b279/perf/pgsql/performance-tests.html
tests/2.5.0-b279/perf/pgsql/performance-tests.html
tests/2.5.0-b279/perf/sm-mysql/performance-tests.html
tests/2.5.0-b279/perf/sm-mysql/performance-tests.html
tests/2.5.0-b279/perf/sm-mysql/performance-tests.html
tests/2.5.0-b279/perf/sm-mysql/performance-tests.html
tests/2.5.0-b279/perf/sm-mysql/performance-tests.html
tests/2.4.0-b263/perf/xmldb/performance-tests.html
tests/2.4.0-b263/perf/xmldb/performance-tests.html
tests/2.4.0-b263/perf/xmldb/performance-tests.html
tests/2.4.0-b263/perf/xmldb/performance-tests.html
tests/2.4.0-b263/perf/xmldb/performance-tests.html
tests/2.4.0-b263/perf/mysql/performance-tests.html
tests/2.4.0-b263/perf/mysql/performance-tests.html
tests/2.4.0-b263/perf/mysql/performance-tests.html
tests/2.4.0-b263/perf/mysql/performance-tests.html
tests/2.4.0-b263/perf/mysql/performance-tests.html
tests/2.4.0-b263/perf/pgsql/performance-tests.html
tests/2.4.0-b263/perf/pgsql/performance-tests.html
tests/2.4.0-b263/perf/pgsql/performance-tests.html
tests/2.4.0-b263/perf/pgsql/performance-tests.html
tests/2.4.0-b263/perf/pgsql/performance-tests.html
tests/2.4.0-b263/perf/sm-mysql/performance-tests.html
tests/2.4.0-b263/perf/sm-mysql/performance-tests.html
tests/2.4.0-b263/perf/sm-mysql/performance-tests.html
tests/2.4.0-b263/perf/sm-mysql/performance-tests.html
tests/2.4.0-b263/perf/sm-mysql/performance-tests.html
tests/performance-tests.html
tests/performance-tests.html
tests/performance-tests.html
tests/stability-tests.html
tests/stability-tests.html
tests/stability-tests.html

Tigase Development Guide

101

-loop = 10 which specified that the TestCase must be executed 10 times. The test specific parameter might
be -user-name = tester which may set the user name for authentication test.

The engine is very generic and allows you to write any kind of tests but for the Tigase projects the current
TestCase implementations mimic an XMPP client and are designed to test XMPP servers.

The suite contains a kind of scripting language which allows you to combine test cases into a test scenarios.
The test scenario may contain full set of functional tests for example, another test scenario may contain
performance tests and so on.

Running Tigase Test Suite (TTS)

To obtain TTS, you will first need to clone the repository

git clone https://repository.tigase.org/git/tigase-testsuite.git

Once cloning is finished, navigate to the TTS root directory and compile with maven:

mvn clean install

Maven will compile TTS and place jars in the necessary locations. From the same directory, you can begin
running TTS using the following command:

./scripts/all-tests-runner.sh

You should see the following, which outlines the possible options to customize your test run

Run selected or all tests for Tigase server

Author: Artur Hefczyc <artur_hefczyc@vnu.co.uk>
Version: 2.0.0

 ---help|-h This help message
 ---func [mysql|pgsql|derby|mssql|mongodb]
 Run all functional tests for a single database configuration
 ---lmem [mysql|pgsql|derby|mssql|mongodb]
 Run low memory tests for a single database configuration
 ---perf [mysql|pgsql|derby|mssql|mongodb]
 Run all performance tests for a single database configuration
 ---stab [mysql|pgsql|derby|mssql|mongodb]
 Run all stability tests for a single database
 configuration
 ---func-all Run all functional tests for all database
 configurations
 ---lmem-all Run low memory tests for all database
 configurations
 ---perf-all Run all performance tests for all database
 configurations
 ---stab-all Run all stability tests for all database
 configurations
 ---all-tests Run all functionality and performance tests for
 database configurations
 ---single test_file.cot
 ---other script_file.xmpt

 Special parameters only at the beginning of the parameters list

Tigase Development Guide

102

 ---debug|-d Turns on debug mode
 ---skip-db-relad|-no-db Turns off reloading database
 ---skip-server|-no-serv Turns off Tigase server start
 ---small-mem|-sm Run in small memory mode

 Other possible parameters are in following order:
 [server-dir] [server-ip]

Customizing Tigase Test Suite

You may run the tests from a command line like above, however you may create and edit the /scripts/tests-
runner-settings.sh file to fit your Tigase installation and avoid having to have long complex commands
as this template shows:

#!/bin/bash

func_rep="func-rep.html"
perf_rep="perf-rep.html"
db_name="tigasetest"
db_user="tigase"
db_pass="tigase"
root_user="root"
root_pass="root"

TESTS=("derby" -"mysql" -"pgsql" -"mssql")
IPS=("127.0.0.1" -"127.0.0.1" -"127.0.0.1" -"127.0.0.1")

server_timeout=10

server_dir="/home/tigase/tigase-server"
database="derby"
#database="mysql"
server_ip="127.0.0.1"

MS_MEM=100
MX_MEM=1000

SMALL_MS_MEM=10
SMALL_MX_MEM=50

This will allow you to maintain identical settings through multiple runs of TTS. See the next section for
learning how the scripting language works and how you can create and run your own custom tests.

Test Suite Scripting Language
The test suite contains scripting language which allows you to combine test cases into a test scenarios.
On the lowest level, however the language is designed to allow you to describe the test by setting test
parameters, test comments, identification and so on.

Let’s look at the example test description.

Short name@test-id-1;test-id-2: Short description for the test case
{
 --loop = 10

Tigase Development Guide

103

 --user-name = Frank
 # This is a comment which is ignored
}
>> Long, detailed description of the test case <<

Meaning of all elements:

1. Short name is any descriptive name you want. It doesn’t need to be unique, just something which tells
you what this test is about. @ is a separator between the short name and the test ids.

2. test-id-1;test-id-2 is a semicolon separated of the test cases IDs. The tests cases are executed in the
listed order. And listing them there means that the test-id-2 depends on test-id-1. Normally you don’t
have to list all the dependencies because all mandatory dependencies are included automatically. Which
means if you have an authentication test case the suite adds the network socket connection and stream
opening tests automatically. Sometimes however, there are dependencies which are optional or multiple
mandatory dependencies and you need to select which one has to be executed. As a good example is the
authentications test case. There are many authentication tests: PLAIN-AUTH, SASL-DIGESTMD5,
SASL-PLAIN, DIGEST-AUTH and they are all mandatory for most of other tests like roster, presence
and so on. One of the authentication tests is a default dependency but if you put on the list different
authentication it will be used instead of default one.

3. : is a separator between test cases ids list and the short test description.

4. Short test description is placed between : - colon and opening { - curly bracket. This is usually quite
brief, single line test description.

5. { } curly brackets contain all the test parameters, like how many times the test has to be executed or run
the test in a separate thread, user name, host IP address for the network connection and many others.

6. >> << inside the double greater than and double less than you put a very long, multiple line test de-
scription.

As for the testing script between open curly brackets { and close one } you can put all the test case para-
meters you wish. The format for it is:

-parameter-name = value

Parameter names always start with -. Note, some parameters don’t require any value. They can exist on
their own without any value assigned:

-debug-on-error

This imitates if you were to put yes or true as the value.

The scripting language includes also support for variables which can be assigned any value and used
multiple times later on. You assign a value to the variable the same way as you assign it to the parameter:

$(variable-name) = value

The variable name must be always enclosed with brackets () and start with $.

The value may be enclosed within double quotes "" or double quotes may be omitted. If this is a simple
string like a number or character string consisting only of digits, letters, underscore _ and hyphen - then
you can omit double quotes otherwise you must enclose the value.

The test case descriptions can be nested inside other test case descriptions. Nested test case descriptions
inherit parameters and variables from outer test case description.

Tigase Development Guide

104

Writing Tests for Plugins
You can write tests in a simple text file which is loaded during test suite runtime.

You simply specify what should be send to the server and what response should be expected from the
server. No need to write Java code and recompile the whole test suite for new tests. It means new test cases
can be now written easily and quickly which hopefully means more detailed tests for the server.

How it works:

Let’s take XEP-0049 [http://www.xmpp.org/extensions/xep-0049.html] Private XML Storage. Looking
into the spec we can see the first example:

Example: Client Stores Private Data

CLIENT:

<iq type="set" id="1001">
 <query xmlns="jabber:iq:private">
 <exodus xmlns="exodus:prefs">
 <defaultnick>Hamlet</defaultnick>
 </exodus>
 </query>
</iq>

SERVER:

<iq type="result" id="1001"/>

This is enough for the first simple test. I have to create text file JabberIqPrivate.test looking
like this:

send: {

<iq type="set" id="1001">
 <query xmlns="jabber:iq:private">
 <exodus xmlns="exodus:prefs">
 <defaultnick>Hamlet</defaultnick>
 </exodus>
 </query>
</iq>
}

expect: {
<iq type="result" id="1001"/>
}

And now I can execute the test:

testsuite $ -./scripts/all-tests-runner.sh ---single JabberIqPrivate.test

Tigase server home directory: -../server
Version: 2.8.5-b422
Database: xmldb
Server IP: 127.0.0.1

http://www.xmpp.org/extensions/xep-0049.html
http://www.xmpp.org/extensions/xep-0049.html

Tigase Development Guide

105

Extra parameters: JabberIqPrivate.test
Starting Tigase:
Tigase running pid=6751

Running: 2.8.5-b422-xmldb test, IP 127.0.0.1...
Script name: scripts/single-xmpp-test.xmpt
Common test: Common test -... failure!
FAILURE, (Received result doesnt match expected result.,
Expected one of: [<iq id="1001" type="result"/>],
received:
[<iq id="1001" type="error">
 <query xmlns="jabber:iq:private">
 <exodus xmlns="exodus:prefs">
 <defaultnick>Hamlet</defaultnick>
 </exodus>
 </query>
 <error type="cancel">
 <feature-not-implemented xmlns="urn:ietf:params:xml:ns:xmpp-stanzas"/>
 <text xml:lang="en" xmlns="urn:ietf:params:xml:ns:xmpp-stanzas">
 Feature not supported yet.</text>
 </error>
</iq>]),

Total: 100ms
Test time: 00:00:02
Shutting down Tigase: 6751

If I just started working on this XEP and there is no code on the server side, the result is perfectly expected
although maybe this is not what we want. After a while of working on the server code I can execute the
test once again:

testsuite $ -./scripts/all-tests-runner.sh ---single JabberIqPrivate.test

Tigase server home directory: -../server

Version: 2.8.5-b422

Database: xmldb

Server IP: 127.0.0.1

Extra parameters: JabberIqPrivate.test

Starting Tigase:

Tigase running pid=6984

Running: 2.8.5-b422-xmldb test, IP 127.0.0.1...

Script name: scripts/single-xmpp-test.xmpt

Common test: Common test -... success, Total: 40ms

Test time: 00:00:01

Tigase Development Guide

106

Shutting down Tigase: 6984

This is it. The result we want in a simple and efficient way. We can repeat it as many times we want which
is especially important in longer term trials. Every time we change the server code we can re-run tests to
make sure we get correct responses from the server.

You can have a look in the current build, with more complete test cases, file for JabberIqPrivate [https://
github.com/tigase/tigase-testsuite/tree/master/tests/data/JabberIqPrivate.cot].

Now my server tests are no longer outdated. Of course not all cases are so simple. Some XEPs require
calculations to be done before stanza is sent or to compare received results. A good example for this case is
user authentication like SASL and even NON-SASL. But still, there are many cases which can be covered
by simple tests: roster management, privacy lists management, vCard, private data storage and so on.

Test Case Parameters Description
There is long list of parameters which can be applied to any test case. Here is the description of all possible
parameters which can be used to build test scenarios.

Test Report Configuration

There are test report parameters which must be set in the main script file in order to generate HTML report
from the test. These parameters have no effect is they are set inside the test case description.

1. -version = 2.0.0 sets the test script version. This is used to easily detect incompatibility issues when
the test suite loads a script created for more recent version of the suite and may not work properly for
this version.

2. -output-format = (html | html-content) sets the output format for the test report. There is actually
only one format possible right now - HTML. The only difference between these 2 options is that the
html format creates full HTML page with HTML header and body. The html-content format on the
other hand creates only what is inside <body/> element. And is used to embed test result inside other
HTML content.

3. -output-file = "report-file.html" sets the file name for the test report.

4. -output-history = (yes | no) sets logging of the all protocol data sent between test suite and the XMPP
server. Normally for functional tests it is recommended to set it to yes but for all other tests like per-
formance or load tests it should be set to no.

5. -history-format = separate-file sets protocol data logging to a separate file. Currently this is the only
possible option.

6. -output-cols = (5 | 7) Only valid values are:

5: -"Test name", -"Result", -"Test time", -"Description" [, -"History" -]
7: -"Test name", -"Result", -"Total time", -"OK", -"Average", -"Description" [, -"History" -]

7. -title = "The title of the report page" This parameter sets the test report title which is placed in the
HTML page in the <title/> element as well as in the first page header.

Basic Test Parameters

These parameters can be set on per-test case basis but usually they are set in the main script file to apply
them to all test cases.

https://github.com/tigase/tigase-testsuite/tree/master/tests/data/JabberIqPrivate.cot
https://github.com/tigase/tigase-testsuite/tree/master/tests/data/JabberIqPrivate.cot
https://github.com/tigase/tigase-testsuite/tree/master/tests/data/JabberIqPrivate.cot

Tigase Development Guide

107

1. -base-ns = "jabber:client" sets the XML name space used for the XML stream in the XMPP connec-
tion. Some test cases can be used to test client to server protocol as well as server to server protocol
and possibly different protocols added in the future.

2. -debug switches debugging mode on. All the communication between the test suite and the server
is printed out to the text console and all other debugging information including java exceptions are
displayed as well. It is especially useful when some test fails and you want to find out why.

3. -debug-on-error switches on debugging mode on error detection. Normally debug output generates
lots of message which makes the output very hard to read. Especially in the performance tests not only
you can read fast scrolling lines of the protocol data but also it slows the test down. This option however
turns debugging off if everything is working well and then generates debug output if any test error us
detected.

4. -def-auth = (auth-plain | auth-digest | auth-sasl) sets the default authentication method for the user
connection.

5. -def-stream = (stream-client | stream-server | stream-component | stream-bosh) sets the connection
stream to be tested and the name space for the connection.

6. -host = "host.name" the vhost name the tested server runs for. It may be the real DNS name or just
configured for testing purposes hostname. It must match however the server configuration.

7. -keys-file = "certs/keystore" sets the location of the keys store file. No need to touch it.

8. -keys-file-password = keystore sets the password for the keystore file. Normally you don’t have to
touch it.

9. -serverip = "127.0.0.1" defines the XMPP server IP address. You may omit this parameter and then
the IP address will be determined automatically based on the server DNS address. However if the DNS
address can not be correctly resolved or if you run tests on the localhost you can use this parameter
to enforce the IP address.

10.-socket-wait = 10000 sets the network socket timeout in milliseconds that is maximum time the test
suite will wait for the response from the server. You may want to increase the timeout for some specific
tests which require lots of computation or database activity on the server. Normally 10 seconds is
enough for most cases.

11.-stop-on-fail = true causes the script to terminate all actions on the first failed test case. It helps diag-
nosing the server state at the failure point.

12.-trust-file = "certs/client_truststore" sets the file name for the client trust store file. No need to change
it.

13.-trust-file-password = truststore sets the password for the trust store file. Normally you don’t have
to touch it.

14.-user-name = tester sets the user name used for the XMPP connections between the test suite and the
XMPP server. It is usually set globally the same for all tests and for some tests like receiving the server
configuration you may want to use a different account (with admin permissions). Then you can set a
different user for this specific test case.

15.-user-pass = tester-password sets the password for the user used for the XMPP connection between
the test suite and the XMPP server.

16.-user-resr = resource sets the user JID resource part for the XMPP connection between the test suite
and the XMPP server.

Tigase Development Guide

108

Test Case Parameters

Test parameters which are normally set on per-test case basis and apply only to the test they are set for
and all inherited tests. Some of the parameters though are applied only to inherited test cases. Please look
in the description below to find more details.

1. -active-connection is a similar parameter to -on-one-socket option. If set the suite doesn’t close the
network socket and if the test is run in loop each loop run re-uses the network connection. Unlike in
the -on-one-socket mode the whole test is executed on each run including XMPP stream initialization
and user authentication. This option is currently not recommended in a normal use. It is useful only to
debug the server behavior in very special use cases.

2. -background executes the test in a separate thread in background and immediately returns control to
the test suite program without waiting for the test to complete. Default behavior is to execute all tests
sequentially and run next test when previous one has been completed. This parameter however allows
to run tests concurrently. This a bit similar option to the -daemon parameter. The daemon test/task
however is ignored completely and results from the daemon are not collected where the background
test is a normal test which is run concurrently with another one or possibly many other tests.

3. -daemon creates a task running in background in a separate thread. Such a test runs infinitely as a
daemon, it is not recorded in the test report and it’s result is not calculated. The purpose of such test/task
is to work as a helper for other test cases. A good example of such daemon test is message responder -
the test which runs under a different user name and waits for messages and responding to the sender.

4. -delay = 1000 sets the waiting time in milliseconds after the test case is completed. You may use it
if you want to introduce short delay between each test cases run in the loop or if you start the helper
daemon thread and you have to add the delay to make sure it is ready to work before next real test starts
sending requests to the daemon.

5. -expect-type = error sets the type for a packet expected as a response. Some test cases like message
sender expects sometimes response with the same type it has sent the packet (chat) but in some other
cases when it sends a message to a user who has privacy lists set to block messages the response should
be with an error. This way we can use the same test cases for testing different responses scenarios.

6. -loop = 10 sets the number of times the test (and all inherited tests) are repeated. You can use a $(loop)
pseudo-variable to obtain and use the current loop run number. This is useful if you want to run every
loop run for a different user name like registering 10 different user accounts. To do this you stick the
$(loop) variable to the user name string: -user-name = "nick_name_$(loop)".

7. -loop-delay = 10 sets a delay in milliseconds between each individual loop run for the tests which is
run multiple times. This is similar parameter to the -delay one but the -delay option introduces a delay
after the whole test (or all loop runs) has been completed. The loop delay options adds waiting time
between each run of the looped test.

8. -loop-start = 5 sets the loop starting value. It doesn’t affect number of loop runs in a any way. It only
affects the value of the $(loop) variable. Let’s say you want to run a load test for the server with 100k
concurrent users and you want to run the test from 3 different machines. To make sure each machine
uses distinct user accounts you have to set a different -loop-start parameter on each to prevent from
overlapping.

9. -messages = 10 sets the number of messages to send to the server. This is another way of looping the
test. Instead of repeating the whole test with opening network connection, XMPP stream, authentication
and so on it causes only to send the message this many times. This parameters is accepted by some test
cases only which send messages. For the messages listeners - test cases which is supposed to respond
to the messages the number set here specifies how many times the the response must be sent before
the test successfully terminates it’s work.

Tigase Development Guide

109

10.-multi-thread option causes to run the test case and all inherited in all levels test cases in separate
threads. Normally the test case where you put the parameter doesn’t have a test ID (what you put
between '@' and ':' characters so it doesn’t run a test on it’s own. Instead it contains a series of test
cases inside which are then run in a separate thread each. This is a key parameter to run tests for
many concurrent users. (Not a load tests though.) For example you can see whether the server behaves
correctly when 5 simultaneous modifies their roster. The execution time all inherited tests run in a
separate threads is added together and also results from each individual test is calculated and added to
the total main test results.

11.-no-record is used for kind of configuration tests (tasks) which are used to prepare the XMPP server or
database for later tests. As an example can be creation of the test user account which is later on used for
the roster tests. Usually you don’t want to include such tests in the test report and using this parameter
you essentially exclude the test from the report. The test and the result however shows in the command
line output so you can still track what is really going on.

12.-on-one-socket is a modifier for a looped test case. Normally when we switch looping on using -loop
parameter the suite resets the state, closes the network socket and runs the test from the very beginning
including opening network socket, XMPP stream, authentication and so on. This parameter however
changes this behavior. The network socket is not closed when the test run is completed (successfully)
and next run executes only the last part of the test omitting the XMPP stream initialization, authentica-
tion and all others but last. This is useful when you want to send many messages to the server (although
this effect may be accomplished using -messages parameter as well) or registering many user accounts
on the server, unregistering user accounts and any other which might make sense repeating many times.

13.-port = 5223 this parameter is similar to the IP address setting and can be also set globally for all tests.
Normally however you set it for a selected tests only to check SSL connection. For all other tests default
port number is used. Therefore this parameters has been included in this section instead of "Basic test
parameters".

14.-presence this parameter enables sending initial presence with positive priority after connection and
binding the session.

15.-repeat-script = 100 and -repeat-wait = 10 are 2 parameters are specific to the common test cases.
(The test cases which reads the test input/output data from the pseudo-xml text file. The first parameter
is another variation of test looping. It sets how many times the test has to be repeated. It works very
much like the -on-one-socket parameter. The only difference is that the common test can preserve
some internal states between runs and therefore it has more control over the data. The second parameter
sets the timeout in milliseconds to wait/delay between each individual test run and it is a very similar
parameter to the -delay one but it sets a timeout inside the common test instead.

16.-source-file = "dir/path/to/file.cot" is a parameter to set the "common test" script file. The common
test is a test cases which depends on the authentication test case and can read data to send and responses
to expect from the text file. The "cot" file is a pseudo-xml file with stanzas to send and stanzas to expect.
The the test cases compares the received packets with those in the text file and reports the test result.
This is usually a more convenient way to write a new test cases than coding them in Java.

17.-time-out-ok is set for a test case when we expect socket timeout as a correct result from the test case.
Normally the timeout means that the test failed and there was no response from the server at all or the
response was incorrect. For some tests however (like sending a message to the user who is blocking
messages through privacy lists) the timeout is the desired correct test result.

18.-to-jid = "user_name@host.name [mailto:user_name@host.name]" sets the destination address for
packets sending packets somewhere. As an example is the test case sending <message/> packet. You
can set the destination address for the packet. Mind, normally every test expects some response for the
data sent so make sure the destination end-point will send back the data expected by the test case.

mailto:user_name@host.name
mailto:user_name@host.name

Tigase Development Guide

110

Experimental
The guide contains description of non-standard or experimental functionality of the server. Some of them
are based on never published extensions, some of them are just test implementation for new ideas or
performance improvements.

• Dynamic Rosters

• Mobile Optimizations

• Bosh Session Cache

Dynamic Rosters

Problem Description

Normal roster contacts stored and created as dynamic roster parts are delivered to the end user trans-
parently. The XMPP client doesn’t really know what contacts come from its own static roster created
manually by the user and what contacts come from a dynamic roster part; contacts and groups generated
dynamically by the server logic.

Some specialized clients need to store extra bits of information about roster contacts. For the normal user
static roster information can be stored as private data and is available only to this single user. In some cases
however, clients need to store information about contacts from the dynamic roster part and this information
must be available to all users accessing dynamic roster part.

The protocol defined here allows the exchange of information, saving and retrieving extra data about the
contacts.

Syntax and Semantics

Extra contact data is accessed using IQ stanzas, specifically by means of a child element qualified by
the jabber:iq:roster-dynamic namespace. The child element MAY contain one or more children, each
describing a unique contact item. Content of the element is not specified and is implementation dependent.
From Tigase’s point of view it can contain any valid XML data. Whole element is passed to the Dynami-
cRoster implementation class as is and without any verification. Upon retrieving the contact extra data the
DynamicRoster implementation is supposed to provide a valid XML element with all the required data
for requested jid.

The jid attribute specifies the Jabber Identifier (JID) that uniquely identifies the roster item. Inclusion of
the jid attribute is REQUIRED.

Following actions on the extra contact data are allowed:

• set - stores extra information about the contact

• get - retrieves extra information about the contact

Retrieving Contact Data

Upon connecting to the server and becoming an active resource, a client can request the extra contact data.
This request can be made either before or after requesting the user roster. The client’s request for the extra
contact data is OPTIONAL.

Tigase Development Guide

111

Example: Client requests contact extra data from the server using get request:

<iq type='get' id='rce_1'>
<query xmlns='jabber:iq:roster-dynamic'>
<item jid='archimedes@eureka.com'/>
</query>
</iq>

Example: Client receives contact extra data from the server, but there was either no extra information for
the user, or the user was not found in the dynamic roster:

<iq type='result' id='rce_1'>
<query xmlns='jabber:iq:roster-dynamic'>
<item jid='archimedes@eureka.com'/>
</query>
</iq>

Example: Client receives contact extra data from the server, and there was some extra information found
about the contact:

<iq type='result' id='rce_1'>
<query xmlns='jabber:iq:roster-dynamic'>
<item jid='archimedes@eureka.com'>
<phone>+12 3234 322342</phone>
<note>This is short note about the contact</note>
<fax>+98 2343 3453453</fax>
</item>
</query>
</iq>

Updating/Saving Extra Information About the Contact

At any time, a client MAY update extra contact information on the server.

Example: Client sends contact extra information using set request.

<iq type='set' id='a78b4q6ha463'>
<query xmlns='jabber:iq:roster-dynamic'>
<item jid='archimedes@eureka.com'>
<phone>+22 3344 556677</phone>
<note>he is a smart guy, he knows whether the crown is made from pure gold or not.</note>
</item>
</query>
</iq>

Client responds to the server:

<iq type='result' id='a78b4q6ha463'/>

A client MAY update contact extra information for more than a single item in one request:

Example: Client sends contact extra information using set request with many <item/> elements.

<iq type='set' id='a78b4q6ha464'>
<query xmlns='jabber:iq:roster-dynamic'>
<item jid='archimedes@eureka.com'>

Tigase Development Guide

112

<phone>+22 3344 556677</phone>
<note>he is a smart guy, he knows whether the crown is made from pure gold or not.</note>
</item>
<item jid='newton@eureka.com'>
<phone>+22 3344 556688</phone>
<note>He knows how heavy I am.</note>
</item>
<item jid='pascal@eureka.com'>
<phone>+22 3344 556699</phone>
<note>This guy helped me cure my sickness!</note>
</item>
</query>
</iq>

Client responds to the server:

<iq type='result' id='a78b4q6ha464'/>

Configuration

DynamicRoster implementation class should be configured in the config.tdsl file:

'sess-man' () {
 -'dynamic-rosters' () {
 class (class: package.custom.DynamicRosterImplementation) {}
 -}
}

If you want to pass configuration to your implementation simply use @ConfigField annotation on your
variable (see Component implementation - Lesson 2 - Configuration for more details).

Mobile Optimizations

Problem Description

In default configuration stanzas are sent to the client when processing is finished, but in mobile environ-
ment sending or receiving data drains battery due to use of the radio.

To save energy data should be sent to client only if it is important or client is waiting for it.

Solution

When mobile client is entering inactive state it notifies server about it by sending following stanza:

<iq type="set" id="xx">
<mobile
 xmlns="http://tigase.org/protocol/mobile#v3"
 enable="true"/>
</iq>

After receiving stanza server starts queuing stanza which should be send to mobile client. What kind of
queued stanzas depends on the plugins used and in case of Mobile v3 presence stanzas are queued as well
as message stanzas which are Message Carbons. Any other stanza (such as iq or plain message) is sent
immediately to the client and every stanza from queue is also sent at this time.

Tigase Development Guide

113

When mobile client is entering active state it notifies server by sending following stanza:

<iq type="set" id="xx">
<mobile
 xmlns="http://tigase.org/protocol/mobile#v3"
 enable="false"/>
</iq>

After receiving stanza server sends all queued stanzas to the client.

Also all stanzas from queue will be sent if number of stanzas in queue will reach queue size limit. By
default this limit is set to 50.

Queuing Algorithms

There are three mobile optimization plugins for Tigase:

• Mobile v1 - all presence stanzas are kept in queue

• Mobile v2 - only last presence from each source is kept in queue

• Mobile v3 - only last presence from each source is kept in queue, also Message Carbons are queued

If you wish to activate you Mobile v1 plugin you need to send presented above with xmlns attribute value
replaced with http://tigase.org/protocol/mobile#v1

If you wish to activate you Mobile v2 plugin you need to send presented above with xmlns attribute value
replaced with http://tigase.org/protocol/mobile#v2

Configuration

Mobile plugins are not activated by default thus additional entry in the config.tdsl is required:

'sess-man' () {
 mobile_v1 () {}
}

You may substitute mobile_v1 with mobile_v2 or mobile_v3 depending on which algorithm you
wish to use.

Note

USE ONLY ONE PLUGIN AT A TIME!

Bosh Session Cache

Problem Description

Web clients have no way to store any data locally, on the client side. Therefore after a web page reload
the web clients loses all the context it was running in before the page reload.

Some elements of the context can be retrieved from the server like the roster and all contacts presence
information. Some other data however, can not be restored easily like opened chat windows and the chat
windows contents. Even if the roster restoring is possible, this operation is very expensive in terms of time
and resources on the server side.

http://tigase.org/protocol/mobile#v1
http://tigase.org/protocol/mobile#v2

Tigase Development Guide

114

On of possible solutions is to allow web client to store some data in the Bosh component cache on the
server side for the time while the Bosh session is active. After the page reloads, if the client can somehow
retrieve SID (stored in cookie or provided by the web application running the web client) it is possible to
reload all the data stored in the Bosh cache to the client.

Bosh session context data are: roster, contacts presence information, opened chat windows, chat windows
content and some other minor data. Ideally the web client should be able to store any data in the Bosh
component cache it wants.

Bosh Session Cache Description

The Bosh Session Cache is divided into 2 parts - automatic cache and dynamic cache.

The reason for splitting the cache into 2 parts is that some data can be collected automatically by the Bosh
component and it would be very inefficient to require the client to store the data in the Bosh cache. The
best example for such data is the Roster and contacts presence information.

• automatic cache - is the cache part which is created automatically by the Bosh component without any
interaction with the client. The client, however, can access the cache at any time. I would say this is
a read-only cache but I don’t want to stop client from manipulating the cache if it needs. The client
usually, only retrieves data from this part of the cache as all changes should be automatically updated by
the Bosh component. The general idea for the automatic cache is that the data stored there are accessible
in the standard XMPP form. So no extra code is needed for processing them.

• dynamic cache - is the cache part which is or can be modified at any time by the client. Client can store,
retrieve, delete and modify data in this part of the cache.

Cache Protocol

All the Bosh Session Cache actions are executed using additional <body/> element attributes: cache
and cache-id. Attribute cache stores the action performed on the Bosh cache and the cache-id
attribute refers to the cache element if the action attribute needs it. cache-id is optional. There is a
default cache ID (empty one) associated with the elements for which the cache-id is not provided.

If the <body/> element contains the cache attribute it means that all data included in the <body/> refer
to the cache action. It is not allowed, for example to send a message in the body and have the cache action
set to get. The <body/> element with cache action get, get_all, on, off, remove must be empty. The
<body/> element with actions set or add must contain data to store in the cache.

Cache Actions

• on or off - the client can switch the cache on or off at any time during the session. It is recommended,
however that the client switches the cache on in the first body packet, otherwise some information from
the automatic cache may be missing. The automatic cache is created from the stream of data passing the
Bosh component. Therefore if the cache is switched on after the roster retrieval is completed then the
roster information will be missing in the cache. If the cache is set to off (the default value) all requests to
the cache are ignored. This is to ensure backward compatibility with the original Bosh specification and
to make sure that in a default environment the Bosh component doesn’t consume any extra resources
for cache processing and storing as the cache wouldn’t be used by the client anyway.

• get - retrieves the cache element pointing by the cache-id from the Bosh cache. Note there is no result
cache action. The <body/> sent as a response from the server to the client may contain cache results
for a given cache-id and it may also contain other data received by the Bosh component for the client. It
may also happen that large cached data are split into a few parts and each part can be sent in a separate
<body/> element. It may usually happen for the Roster data.

Tigase Development Guide

115

• get_all - retrieves all the elements kept in the Bosh cache. That action can can be performed after the
page reload. The client doesn’t have to request every single cached item one by one. It can retrieve all
cache items in one go. It doesn’t mean however the whole cache is sent to the client in a single <body/
> element. The cache content will be divided into a smaller parts of a reasonable size and will be sent to
the client in a separate <body/> elements. It may also happen that the <body/> element contain the
cache elements as well as the new requests sent to the user like new messages or presence information.

• set - sends data to the Bosh Session cache for later retrieval. The client can store any data it wants in the
cache. The Bosh components stores in the cache under the selected ID all the data inside the <body/>
element. The only restriction is that the cached data must be a valid XML content. The data are returned
to the client in exactly the same form as they were received from the server. The set action replaces any
previously stored data under this ID.

• add - adds new element to the cache under the given ID. This action might be useful for storing data
for the opened chat window. The client can add new elements for the chat window, like new messages,
icons and so on…

• remove - removes the cached element for the given cache ID.

Cache ID

Cache ID can be an any character string. There might be some IDs reserved for a special cases, like for
the Roster content. To avoid any future ID conflicts reserved ID values starts with: bosh - string.

There is a default cache ID - en empty string. Thus cache-id attribute can be omitted and then the requests
refers to data stored under the default (empty) ID.

Reserved Cache ID Names

Here is a list of reserved Cache IDs:

• bosh-roster - The user roster is cached in the Bosh component in exactly the same form as it was
received from the core server. The Bosh Cache might or might not do optimizations on the roster like
removing elements from the cached roster if the roster remove has been received or may just store all
the roster requests and then send them all to the client. There is a one mandatory optimization the Bosh
Cache must perform. It must remember the last (and only the last) presence status for each roster item.
Upon roster retrieving from the cache the Bosh component must send the roster item first and then the
presence for the item. If the presence is missing it means an offline presence. If the roster is small it
can be sent to the client in a single packet but for a large roster it is recommended to split contact lists
to batches of max 100 elements. The Bosh component may send all roster contacts first and then all
presences or it can send a part of the roster, presences for sent items, next part of the roster, presences
for next items and so on.

• bosh-resource-bind - The user resource bind is also cached to allow the client quickly retrieve infor-
mation about the full JID for the established Bosh session.

Old Stuff
This contains sections on old features, or information pertaining to old builds of Tigase. It is kept here
for archival purposes.

Tigase DB Schema Explained
The schema basics, how it looks like and brief explanation to all rows can be found in the list of schema files
[https://github.com/tigase/tigase-server/tree/master/src/main/database]. However, this is hardly enough to

https://github.com/tigase/tigase-server/tree/master/src/main/database
https://github.com/tigase/tigase-server/tree/master/src/main/database

Tigase Development Guide

116

understand how it works and how all the data is accessed. There are only 3 basic tables which actually
keep all the Tigase server users' data: tig_users, tig_nodes and tig_pairs. Therefore it is not clear at first
how Tigase’s data is organized.

Before you can understand the Tigase XMPP Server database schema, how it works and how to use it, is
it essential to know what were the goals of it’s development and why it works that way. Let’s start with
the API as this gives you the best introduction.

Simplified access can be made through methods:

void setData(BareJID user, String key, String value);
String getData(BareJID user, String key);

And more a complex version:

void setData(BareJID user, String subnode, String key, String value);
String getData(BareJID user, String subnode, String key, String def);

Even though the API contains more methods, the rest is more or less a variation of presented above. A
complete API description for all access methods is available in JavaDoc documentation in the UserReposi-
tory [https://github.com/tigase/tigase-server/tree/master/src/main/java/tigase/db/UserRepository.java] in-
terface. So we are not going into too much detail here except for the main idea.

Tigase operates on <*key*, value> pairs for the individual user data. The idea behind this was to make the
API very simple and also at the same time very flexible, so adding a new plugin or component would not
require a database schema change, adding new tables, or conversion of the DB schema to a new version.

As a result the UserRepository interface is exposed to all of Tigase’s code, mainly the components and
plugins (let’s call all of them modules). These modules simply call set/get methods to store or access
module specific data.

As plugins or components are developed independently it may easily happen that developer choses the
same key name to store some information. To avoid key name conflicts in the database a 'node' concept
has been introduced. Therefore, most modules when set/get key value they also provide a subnode part,
which in most cases is just XMLNS or some other unique string.

The 'node' thing is a little bit like directory in a file system, it may contain subnodes which makes the
Tigase database behave like a hierarchical structure. And the notation is also similar to file systems, you
use just / to separate node levels. In practice you can have the database organized like this:

user-name@domain ---> (key, value) pairs
 -|
 roster --->
 -|
 item1 ---> (key1, value1) pairs.
 -|
 item2 ---> (key1, value1) pairs.

So to access item’s 1 data from the roster you could call method like this:

getData("user-name@domain", -"roster/item1", key1, def1);

This is huge convenience for the developer, as he can focus on the module logic instead of worrying about
data storage implementation and organization. Especially at the prototype phase it speeds development up
and allows for a quick experiments with different solutions. In practice, accessing user’s roster in such a
way would be highly inefficient so the roster is stored a bit differently but you get the idea. Also there is

https://github.com/tigase/tigase-server/tree/master/src/main/java/tigase/db/UserRepository.java
https://github.com/tigase/tigase-server/tree/master/src/main/java/tigase/db/UserRepository.java
https://github.com/tigase/tigase-server/tree/master/src/main/java/tigase/db/UserRepository.java

Tigase Development Guide

117

a more complex API used in some places allowing for more direct access to the database and store data
in any format optimized for the scenario.

Right now such a hierarchical structure is implemented on top of SQL databases but initially Tigase’s
database was implemented as an XML structure, so it was natural and simple.

In the SQL database we simulate hierarchical structure with three tables:

1. tig_users - with main users data, user id (JID), optional password, active flag, creation time and some
other basic properties of the account. All of them could be actually stored in tig_pairs but for perfor-
mance reasons they are in one place to quickly access them with a single, simple query.

2. tig_nodes - is a table where the hierarchy is implemented. When Tigase was storing data in XML
database the hierarchy was quite complex. However, in a SQL database it resulted in a very slow access
to the data and a now more flat structure is used by most components. Please note, every user’s entry
has something called root node, which is represented by 'root' string;

3. tig_pairs - this is the table where all the user’s information is stored in form of the <key, value> pairs.

So we now know how the data is organized. Now we are going to learn how to access the data directly
in the database using SQL queries.

Let’s assume we have a user 'admin@test-d' for whom we want to retrieve the roster. We could simply
execute query:

select pval
 from tig_users, tig_pairs
 where user_id = -'admin@test-d' and
 tig_users.uid = tig_pairs.uid and
 pkey = -'roster';

However, if multiple modules store data under the key 'roster' for a single user, we would receive multiple
results. To access the correct 'roster' we also have to know the node hierarchy for this particular key. The
main users roster is stored under the 'root' node, so the query would look like:

select pval
 from tig_users, tig_nodes, tig_pairs
 where user_id = -'admin@test-d' and
 tig_users.uid = tig_nodes.uid and
 node = -'root' and
 tig_users.uid = tig_pairs.uid and
 pkey = -'roster';

How exactly the information is stored in the tig_pairs table depends on the particular module. For the
roster it looks a bit like XML content:

<contact jid="all-xmpp-test@test-d" subs="none" preped="simple" name="all-xmpp-test"/>

Why the most recent JDK?
There are many reasons but the main is that we are a small team working on source code. So the whole
approach is to make life easier for us, make the project easier to maintain, and development more efficient.

Here is the list:

• Easy to maintain - No third-party libraries are used for the project which makes this project much
easier to maintain. This simplifies issues of compatibility between particular versions of libraries. This

Tigase Development Guide

118

also unifies coding with a single library package without having to rely on specific versions that may
not be supported.

• Easy to deploy - Another reason to not use third-party tools is to make it easier for end-users to install
and use the server.

• Efficient development - As no third-party libraries are used, Tigase needs either to implement many
things on its own or use as much as possible of JDK functionality. We try to use as much as possible of
existing library provided with JDK and the rest is custom coded.

What features of JDKv5 are critical for Tigase development? Why I can’t simply re-implement some code
to make it compatible with earlier JDK versions?

• Non-blocking I/O for SSL/TLS - This is functionality which can’t be simply re-implemented in
JDK-1.4. As the whole server uses NIO it doesn’t make sense to use blocking I/O for SSL and TLS.

• SASL - This could be re-implemented for JDK-1.4 without much effort.

• Concurrent package - This could be re-implemented for JDK-1.4 but takes a lot of work. This is a
critical part of the server as it uses multi-threading and concurrent processing.

• Security package - There number of extensions to the security package which otherwise would not
work as easily with earlier versions of JDK.

• LinkedHashMap - in JDKv6 is a basement for the Tigase cache implementation.

• Light HTTP server - JDKv6 offers built-in light HTTP server which is needed to implement HTTP
binding (JEP-0124) and HTTP user interface to monitor server activity and work with the server con-
figuration.

As the JDK improves, so does our programming as we gain the ability to use new methods, efficiencies,
and sometimes shortcuts.

Currently Tigase requires JDKv8 and we recommend updating it as often as needed!

API Description for Virtual Domains Management in the
Tigase Server

The purpose of this guide is to introduce vhost management in Tigase server. Please refer to the JavaDoc
documentation for all specific details not covered in this guide. All interfaces are well documented and you
can use existing implementation as an example code base and reference point. The VHost management
files are located in the repository and you can browse them using the source viewer [https://github.com/
tigase/tigase-server/blob/master/src/main/java/tigase/vhosts].

Virtual hosts management in Tigase can be adjusted in many ways through the flexible API. The
core elements of the virtual domains management is interface VHostManager [https://github.com/tigase/
tigase-server/blob/master/src/main/java/tigase/vhosts/VHostManager.java] class. They are responsible
for providing the virtual hosts information to the rest of the Tigase server components. In particu-
lar to the MessageRouter [https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/serv-
er/MessageRouter.java] class which controls how XMPP packets flow inside the server.

The class you most likely want to re-implement is VHostJDBCRepository [https://github.com/tigase/
tigase-server/blob/master/src/main/java/tigase/vhosts/VHostJDBCRepository.java] used as a default vir-
tual hosts storage and implementing the VHostRepository [https://github.com/tigase/tigase-server/blob/
master/src/main/java/tigase/vhosts/VHostRepository.java] interface. You might need to have your own

https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostManager.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostManager.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostManager.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/server/MessageRouter.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/server/MessageRouter.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/server/MessageRouter.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostRepository.java

Tigase Development Guide

119

implementation in order to store and access virtual hosts in other than Tigase’s own data storage. This is
especially important if you are going to modify the virtual domains list through systems other than Tigase.

The very basic virtual hosts storage is provided by VHostItem [https://github.com/tigase/tigase-serv-
er/blob/master/src/main/java/tigase/vhosts/VHostItem.java] class. This is read only storage and provides
the server a bootstrap vhosts data at the first startup time when the database with virtual hosts is empty or
is not accessible. Therefore it is advised that all VHostItem [https://github.com/tigase/tigase-server/blob/
master/src/main/java/tigase/vhosts/VHostItem.java] implementations extend this class. The example code
is provided in the VHostJDBCRepository [https://github.com/tigase/tigase-server/blob/master/src/main/
java/tigase/vhosts/VHostJDBCRepository.java] file.

All components which may need virtual hosts information or want to interact with virtual hosts manage-
ment subsystem should implement the VHostListener [https://github.com/tigase/tigase-server/blob/mas-
ter/src/main/java/tigase/vhosts/VHostListener.java] interface. In some cases implementing this interface
is necessary to receive packets for processing.

Virtual host information is carried out in 2 forms inside the Tigase server:

1. As a String value with the domain name

2. As a VHostItem [https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/
vhosts/VHostItem.java] which contains all the domain information including the domain name, max-
imum number of users for this domain, whether the domain is enabled or disabled and so on. The
JavaDoc documentation contains all the details about all available fields and usage.

Here is a complete list of all interfaces and classes with a brief description for each of them:

1. VHostManagerIfc [https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/
VHostManagerIfc.java] - is an interface used to access virtual hosts information in all other server
components. There is one default implementation of the interface: VHostManager.

2. VHostListener [https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/
VHostListener.java] - is an interface which allows components to interact with the VHostManager. The
interaction is in both ways. The VHostManager provides virtual hosts information to components and
components provide some control data required to correctly route packets to components.

3. VHostRepository [https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/
VHostRepository.java] - is an interface used to store and load virtual domains list
from the database or any other storage media. There are 2 implementations for this
interface: VHostConfigRepository [https://github.com/tigase/tigase-server/blob/master/src/main/ja-
va/tigase/vhosts/VhostConfigRepository.java] which loads vhosts information for the con-
figuration file and provides read-only storage and - VHostJDBCRepository class which
extends VHostConfigRepository [https://github.com/tigase/tigase-server/blob/master/src/main/ja-
va/tigase/vhosts/VhostConfigRepository.java] and allows for both - reading and saving virtual domains
list. VHostJDBCRepository is loaded as a default repository by Tigase server.

4. VHostItem [https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/
VHostItem.java] - is an interface which allows for accessing all the virtual domain properties. Some-
times the domain name is not sufficient for data processing. The domain may be temporarily disabled,
may have a limited number of users and so on. Instances of this class keep all the information about
the domain which might be needed by the server components.

5. VHostManager [https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/
VHostManager.java] - the default implementation of the VHostManagerIfc interface. It provides com-
ponents with the virtual hosts information and manages the virtual hosts list. Processes ad-hoc com-
mands for reloading, updating and removing domains.

https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostItem.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostItem.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostItem.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostItem.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostItem.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostItem.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostListener.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostListener.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostListener.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostItem.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostItem.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostItem.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostManagerIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostManagerIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostManagerIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostListener.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostListener.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostListener.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VhostConfigRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VhostConfigRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VhostConfigRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VhostConfigRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VhostConfigRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VhostConfigRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostItem.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostItem.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostItem.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostManager.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostManager.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostManager.java

Tigase Development Guide

120

6. VHostConfirRepository [https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/
vhosts/VhostConfigRepository.java] - a very basic implementation of the VHostRepository [https://
github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostRepository.java] for
loading domains list from the configuration file.

7. VHostJDBCRepository [https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/
vhosts/VHostJDBCRepository.java] - the default implementation of the
VHostRepository [https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/
VHostRepository.java] loaded by Tigase server. It allows to read and store virtual domains list in the
database accessible through UserRepository.

Extending Virtual Domain settings

In some cases it is desired to extend Virtual Domain to add some additional settings. Since version 8.1.0
it is possible with use of VHostItemExtension and VHostItemExtensionProvider`.

To do so, you need to create a class implementing VHostItemExtension. This class will hold values
of settings for each virtual host. It is required to make it serializable to Element and deserializable from
Element. Moreover, it is required to make values of this class modifiable by ad-hoc commands.

It is recommended to provide additional methods allowing you to access values of this class.

Additionally, you need to implement VHostItemExtensionProvider interface as a bean and return
a class of your implementation of VHostItemExtension.

Example VHostItemExtensionProvider` implementation for SeeOtherHostVHostItemExten-
sion.

@Bean(name = SeeOtherHostVHostItemExtension.ID, parent = VHostItemExtensionManager.class, active = true)
public static class SeeOtherHostVHostItemExtensionProvider implements VHostItemExtensionProvider<SeeOtherHostVHostItemExtension> {

 @Override
 public String getId() {
 return SeeOtherHostVHostItemExtension.ID;
 }

 @Override
 public Class<SeeOtherHostVHostItemExtension> getExtensionClazz() {
 return SeeOtherHostVHostItemExtension.class;
 }
}

Stanza Limitations
Although XMPP is robust and can process stanzas of any size in bytes, there are some limitations to keep
in mind for Tigase server.

Please keep these in mind when using default Tigase settings and creating custom stanzas.

• Limit to number of attributes of single element = 50 attributes

• Limit to number of elements = 1024 elements

• Limit to length of element name = 1024 characters

• Limit to length of attribute name = 1024 characters

https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VhostConfigRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VhostConfigRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VhostConfigRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostRepository.java

Tigase Development Guide

121

• Limit to length of attribute value = 10240 characters

• Limit to length of content of single element CDATA = 1048576b or 1Mb

These values may be changed.

Note that these limitations are to elements and attributes that may be within a stanza, but do not
limit the overall stanza length.

Escape Characters

There are special characters that need to be escaped if they are included in the stanza to avoid conflicts.
The rules are similar to normal XML escaping. The following is a list of characters that need to be escaped
and what to use to escape them:

& &
< <
> >
" "
' '

API changes in the Tigase Server 5.x
THIS INFORMATION IS FOR OLDER VERSIONS OF TIGASE

The API changes can effect you only if you develop own code to run inside Tigase server. The changes
are not extensive but in some circumstances may require many simple changes in a few files.

All the changes are related to introducing tigase.xmpp.JID and tigase.xmpp.BareJID classes. It is recom-
mended to use them for all operations performed on the user JID instead of the String class which was
used before changes.

There are a few advantages to using the new classes. First of all they do all the user JID checking and
parsing, they also perform stringprep processing. Therefore if you use data kept by instance of the JID or
BareJID you can be sure they are valid and correct.

These are not all advantages however. JID parsing code appears to use a lot of CPU power to conduct it’s
operations. JIDs and parts of the JIDs are used in many places of the stanza processing and the parsing
is performed over and over again in all these places, wasting CPU cycles, memory and time. Therefore,
great performance benefits can be gained from these new class are in if, once parsed, JIDs are reused in
all further stanza processing.

This is where the tigase.server.Packet class comes in handy. Instances of the Packet class encloses XML
stanza and pre-parses some, the most commonly used elements of the stanza, stanza source and destination
addresses among them. As an effect there are all new methods available in the class:

JID getStanzaFrom();
JID getStanzaTo();
JID getFrom();
JID getTo();
JID getPacketFrom();
JID getPacketTo();

Whereas following methods are still available but have been deprecated:

String getStanzaFrom();

Tigase Development Guide

122

String getStanzaTo();

Please refer to the JavaDoc documentation for the Packet [http://docs.tigase.org/tigase-server/snap-
shot/javadoc/tigase/server/Packet.html] class and methods to learn all the details of these methods and
difference between them.

Another difference is that you can no longer create the Packet instance using a constructor. Instead there
are a few factory methods available:

static Packet packetInstance(Element elem);
static Packet packetInstance(Element elem,
 JID stanzaFrom, JID stanzaTo);

Again, please refer to the JavaDoc documentation for all the details. The main point of using these methods
is that they actually return an instance of one of the following classes instead of the Packet class: Iq,
Presence or Message.

There is also a number of utility methods helping with creating a copy of the Packet instance preserving
as much pre-parsed data as possible:

Packet copyElementOnly();
Packet errorResult(...);
Packet okResult(...);
Packet swapFromTo();
Packet swapStanzaFromTo();

We try to keep the JavaDoc [http://docs.tigase.org/tigase-server/snapshot/javadoc/] documentation as
complete as possible. Please contact us if you find missing or incorrect information.

The main point is to reuse JID or BareJID instances in your code as much as possible. You never know,
your code may run in highly loaded systems with throughput of 100k XMPP packets per second.

Another change. This one a bit risky as it is very difficult to find all places where this could be used. There
are several utility classes and methods which accept source and destination address of a stanza and produce
something. There was a great confusion with them, as in some of them the first was the source address and
in others the destination address. All the code has been re-factored to keep the parameter order the same in
all places. Right now the policy is: source address first. Therefore in all places where there was a method:

Packet method(String to, String from);

it has been changed to:

Packet method(JID from, JID to);

As far as I know most of these method were used only by myself so I do not expect much trouble for
other developers.

http://docs.tigase.org/tigase-server/snapshot/javadoc/tigase/server/Packet.html
http://docs.tigase.org/tigase-server/snapshot/javadoc/tigase/server/Packet.html
http://docs.tigase.org/tigase-server/snapshot/javadoc/tigase/server/Packet.html
http://docs.tigase.org/tigase-server/snapshot/javadoc/
http://docs.tigase.org/tigase-server/snapshot/javadoc/

123

Chapter 2. REST API
Tigase’s HTTP API component uses the REST module and Groovy scripts responsible for handling and
processing incoming HTTP. The end result is Tigase’s REST API. This API may be useful for various
integration scenarios.

In these sections we will describe the basic REST endpoints provided by Tigase HTTP API and explain
the basics of creating new custom endpoints.

Other endpoints, specific to particular Tigase XMPP Server modules, are described in documentation for
the modules providing them. You may also look at http://localhost:8080/rest/ on your local
Tigase XMPP Server installation at HTTP API, which will provide you with basic usage examples for
REST endpoints available at your installation.

For more informations about configuration of REST module please see section about ???.

Scripting introduction
Scripts in the HTTP API component are used for processing all of requests.

To add a new action to the HTTP API component, you will need to create a script written in Groovy
for which there will be implementation of class extending tigase.http.rest.Handler class. The
URI of script will be created from the file’s location of in the scripts folder. For example, if script
TestHandler with regular expression will be set to /test and will be placed in scripts/rest/
tested, the handler will be called for using the following URI: /rest/tested/test.

Properties
If you are extending classes you will need to set following properties:

• regex - Regular expression which is used to match the request URI and parse parameters embedded in
the URI. For example: /\/()@([^@\/])/

• requiredRole - Required role of user in order to be able to access this URI. Available values are: null,
"user", and "admin". If requiredRole is not null, authentication will be required.

• isAsync - If set to true, it will be possible to wait for results, for example waiting for an response IQ
stanza.

• decodeContent - If set to false, then content of the request will not be parsed and your script will receive
instance of HttpServletRequest to handle incoming content.

Properties containing closures
Extended class should also set closures for one or more of following properties: execGet, execPut, exec-
Post, and execDelete depending on which HTTP action or actions you need to support for the URI. Each
closure has a dynamic arguments list. Below is list of arguments passed to closure which describes how
and when the list of arguments changes:

1. service - Implementation of Service interface. This is used to access the server database or send/receive
XMPP stanzas.

2. callback - The callback closure needs to be called to return data. callback accepts only one ar-
gument of type String,byte[],Map. If data is type of Map it will be encoded to JSON or XML depending
of 'Content-Type' header.

http://localhost:8080/rest/

REST API

124

3. user - Will be passed only if requiredRole is not null. In all other cases this argument will not
be in arguments list!

4. request - Will be passed only if declared as instance of HttpServletRequest and it will be in-
stance of HttpServletRequest of the current HTTP request.

5. content - Parsed content of request. This closure will not be in arguments list if Content-Length of re-
quest is empty. If Content-Type is XML or JSON returned as Map, otherwise (or if decodeContent
is set to false) it will be an instance of HttpServletRequest.

6. x - Additional arguments passed to callback are groups from regular expression matching the URI.
Groups are not passed as a list, but are added to list of arguments as next arguments.

If property for corresponding HTTP action is not set, then the component will return a 404 HTTP error.

Accessing beans
It is possible to gain access to beans managed by Tigase XMPP Server from within groovy script imple-
menting REST handler. To achieve that implementation of the handler class within groovy script needs to
be annotated with @Bean annotation. In this annotation, you need to pass at least one parameter name,
which should contain desired name of the bean under which this handler will be available within the REST
module kernel scope.

With that in place, it is possible to use @Inject annotation on any field of the Handler implementa-
tion class to tell Tigase Kernel to inject instance of a particular class (or instance of class implementing
particular interface).

For more details about Tigase Kernel and beans please check Tigase Kernel section of the Tigase
XMPP Server Development Guide.

Example.

@Bean(name = -"test-bean", active = true)
class TestHandler
 extends tigase.http.rest.Handler {

 @Inject
 private UserRepository userRepo;

 -// implementation of the handler...
}

Warning

Please remember that your bean is created and registered within the scope of the REST module
kernel. So other beans needs to be accessible there for you to access them.

Usage Examples
Retrieving user avatar

Request using GET method for url /rest/avatar/admin@test-domain.com will return an avatar image
for user admin@test-domain.com [mailto:admin@test-domain.com] if an avatar is set in user vCard
or will otherwise return a http error 404. Example of full url for avatar of user admin@domain.com
[mailto:admin@domain.com]

mailto:admin@test-domain.com
mailto:admin@test-domain.com
mailto:admin@domain.com
mailto:admin@domain.com

REST API

125

http://localhost:8080/rest/avatar/admin@domain.com

Entering this url in will execute GET request. It may be possible to use the url in your browser.

Retrieving list of available adhoc commands

Using XML format

To retrieve a list of available adhoc commands, make a request using GET method for /rest/
adhoc/sess-man@domain.com where sess-man@domain.com is jid of component you wish
to see commands for. For example, entering the following url: http://localhost:8080/rest/adhoc/sess-
man@domain.com in your browser will retrieve a list of all ad-hoc commands available at sess-
man@domain.com. This action is protected by authentication done using HTTP Basic Authenti-
cation. Valid credentials will be those of users available in user database of this Tigase XMPP Server
installation (username in barejid form).

Below is example result of that request:

<items>
 <item>
 <jid>sess-man@domain.com</jid>
 <node>http://jabber.org/protocol/admin#get-active-users</node>
 <name>Get list of active users</name>
 </item>
 <item>
 <jid>sess-man@domain.com</jid>
 <node>del-script</node>
 <name>Remove command script</name>
 </item>
 <item>
 <jid>sess-man@domain.com</jid>
 <node>add-script</node>
 <name>New command script</name>
 </item>
</items>

Using JSON format

To retrieve a list of available adhoc commands in JSON, we need to pass Content-Type: applica-
tion/json to HTTP header of request or add type parameter set to application/json. Example
result below:

{
 -"items": [
 {
 -"jid": -"sess-man@domain.com",
 -"node": -"http://jabber.org/protocol/admin#get-active-users",
 -"name": -"Get list of active users"
 -},
 {
 -"jid": -"sess-man@domain.com",
 -"node": -"del-script",
 -"name": -"Remove command script"
 -},
 {

http://localhost:8080/rest/adhoc/sess-man@domain.com
http://localhost:8080/rest/adhoc/sess-man@domain.com

REST API

126

 -"jid": -"sess-man@domain.com",
 -"node": -"add-script",
 -"name": -"New command script"
 -}
 -]
}

Retrieving command form
In order to retrieve form with required fields for particular command, you have to sent POST request with
only jid and name from the list with all available commands (returned using above command)

Using XML

For example, to get form for adding VHost item make a request using POST method for /rest/ad-
hoc/vhost-man@domain.com sending the following content (request requires authentication using
Basic HTTP Authentication):

<command>
 <node>comp-repo-item-add</node>
</command>

Below is example result for request presented above:

<command>
 <jid>vhost-man@domain.com</jid>
 <node>comp-repo-item-add</node>
 <fields>
 <item>
 <var>Domain name</var>
 <value/>
 </item>
 <item>
 <var>Enabled</var>
 <type>boolean</type>
 <value>true</value>
 </item>
 <item>
 <var>Anonymous enabled</var>
 <type>boolean</type>
 <value>true</value>
 </item>
 <item>
 <var>In-band registration</var>
 <type>boolean</type>
 <value>true</value>
 </item>
 <item>
 <var>TLS</var>
 <type>fixed</type>
 <value>This installation forces VHost to require TLS. If you need to use unencrypted connections set &apos;vhost-tls-required&apos;
 property to &apos;false&apos; in the installation configuration file
 </value>
 </item>
 <item>

REST API

127

 <var>Max users</var>
 <value>0</value>
 </item>
 …
 </fields>
 <instructions>â##NOTE: Options without value set will use configuration defined in -'DEFAULT' VHostâ##</instructions>
</command>

Using JSON

For example, to get form for adding VHost item make a request using POST method for /rest/ad-
hoc/vhost-man@domain.com using Content-Type: application/json and sending the
following content (request requires authentication using Basic HTTP Authentication) :

{
 -"command": {
 -"node" -: -"comp-repo-item-add"
 -}
}

Below is an example result for request presented above:

{
 -"command": {
 -"jid": -"vhost-man@domain.com",
 -"node": -"comp-repo-item-add",
 -"fields": [
 {
 -"var": -"Domain name",
 -"value": null
 -},
 {
 -"var": -"Enabled",
 -"type": -"boolean",
 -"value": -"true"
 -},
 {
 -"var": -"Anonymous enabled",
 -"type": -"boolean",
 -"value": -"true"
 -},
 {
 -"var": -"In-band registration",
 -"type": -"boolean",
 -"value": -"true"
 -},
 {
 -"var": -"TLS",
 -"type": -"fixed",
 -"value": -"This installation forces VHost to require TLS. If you need to use unencrypted connections set 'vhost-tls-required' property to 'false' in the installation configuration file"
 -},
 {
 -"var": -"Max users",
 -"value": -"0"
 -}

REST API

128

 …
 -],
 -"instructions": -"#NOTE: Options without value set will use configuration defined in -'DEFAULT' VHost#"
 -}
}

Executing example ad-hoc commands

Retrieving list of active users

Using XML

To execute the command to get a list of active users, make a request using POST method for /rest/
adhoc/sess-man@domain.com sending the following content (request requires authentication using
Basic HTTP Authentication):

<command>
 <node>http://jabber.org/protocol/admin#get-active-users</node>
 <fields>
 <item>
 <var>domainjid</var>
 <value>domain.com</value>
 </item>
 <item>
 <var>max_items</var>
 <value>25</value>
 </item>
 </fields>
</command>

In this request we passed all the parameters needed to execute adhoc command. We passed the node of
the adhoc command and values for fields required by that command. We passed values of "domain.com"
for "domainjid" field and "25" for "max_items" field. We also need to pass Content-Type: text/
xml to HTTP header of request or add type parameter set to text/xml.

Note

In case of multi value fields use following format:

<value>
 <item>first-value</item>
 <item>second-value</item>
</value>

Below is example result for request presented above:

<command>
 <jid>sess-man@domain.com</jid>
 <node>http://jabber.org/protocol/admin#get-active-users</node>
 <fields>
 <item>
 <var>Users: 2</var>
 <label>text-multi</label>
 <value>admin@domain.com</value>
 <value>user1@domain.com</value>

REST API

129

 </item>
 </fields>
</command>

Using JSON

To execute the command to get active users in JSON format, make a request using POST method for /
rest/adhoc/sess-man@domain.com sending the following content (this request also requires authentication
using Basic HTTP Authentication):

{
 -"command" -: {
 -"node" -: -"http://jabber.org/protocol/admin#get-active-users",
 -"fields" -: [
 {
 -"var" -: -"domainjid",
 -"value" -: -"domain.com"
 -},
 {
 -"var" -: -"max_items",
 -"value" -: -"25"
 -}
 -]
 -}
}

In this request we passed all parameters needed to execute adhoc command. We passed the node of adhoc
command and values for fields required by adhoc command. In this case we passed value of "domain.com"
for "domainjid" field and "25" for "max_items" field.

Below is an example result for request presented above:

{
 -"command": {
 -"jid": -"sess-man@domain.com",
 -"node": -"http://jabber.org/protocol/admin#get-active-users",
 -"fields": [
 {
 -"var": -"Users: 1",
 -"label": -"text-multi",
 -"value": [
 -"admin@domain.com",
 -"user1@domain.com"
 -]
 -}
 -]
 -}
}

Ending a user session
To execute the end user session command, make a request using POST method for /rest/ad-
hoc/sess-man@domain.com. The Context of what is sent, may differ depending on circumstance.
For example, it may require authentication using Basic HTTP Authentication with admin credentials. sess-
man@domain.com in URL is the JID of session manager component which usually is in form of sess-
man@domain where domain is hosted domain name.

REST API

130

Using XML

To execute the command using XML content you need to set HTTP header Content-Type to appli-
cation/xml

<command>
 <node>http://jabber.org/protocol/admin#end-user-session</node>
 <fields>
 <item>
 <var>accountjids</var>
 <value>
 <item>test@domain.com</item>
 </value>
 </item>
 </fields>
</command>

Where test@domain.com is JID of user which should be disconnected.

As a result server will return following XML:

<command>
 <jid>sess-man@domain.com</jid>
 <node>http://jabber.org/protocol/admin#end-user-session</node>
 <fields>
 <item>
 <var>Notes</var>
 <type>text-multi</type>
 <value>Operation successful for user test@domain.com/resource</value>
 </item>
 </fields>
</command>

This will confirm that user test@domain.com with resource resource was connected and has been
disconnected.

If the user was not connected server will return following response:

<command>
 <jid>sess-man@domain.com</jid>
 <node>http://jabber.org/protocol/admin#end-user-session</node>
 <fields -/>
</command>

Using JSON

To execute the command using JSON you will need to set HTTP header Content-Type to appli-
cation/json

{
 -"command" -: {
 "node": -"http://jabber.org/protocol/admin#end-user-session",
 "fields": [
 {
 "var" -: -"accountjids",
 "value" -: [
 "test@domain.com"

REST API

131

]
 }
]
 -}
}

Where test@domain.com is JID of user who will be disconnected

As a result, the server will return following JSON:

{
 -"command" -: {
 -"jid" -: -"sess-man@domain.com",
 -"node" -: -"http://jabber.org/protocol/admin#end-user-session",
 -"fields" -: [
 {
 -"var" -: -"Notes",
 -"type" -: -"text-multi",
 -"value" -: [
 -"Operation successful for user test@domain.com/resource"
 -]
 -}
 -]
 -}
}

To confirm that user test@domain.com with resource resource was connect and it was disconnect-
ed.

If user was not connected server will return the following response:

{
 -"command" -: {
 -"jid" -: -"sess-man@domain.com",
 -"node" -: -"http://jabber.org/protocol/admin#end-user-session",
 -"fields" -: []
 -}
}

Operations on VHosts/Domains
All operations on VHosts are done by making a POST request to /rest/adhoc/vhost-
man@domain.com (it may require authentication using Basic HTTP Authentication with admin creden-
tials). When deciding to use XML or JSON set relevant Content-Type header.

Adding VHost

Adding domain is done using comp-repo-item-add command sent with all required and desired
fields (if something is missing form-to-fill-out will be returned). For the instructions how to retrieve the
form/available fields please see the section called “Retrieving command form”.

Using XML

To execute the command using XML content you need to set HTTP header Content-Type to appli-
cation/xml and the filled out form (below is trimmed example, see the section called “Retrieving com-
mand form” for details how to get complete form):

REST API

132

Note

It’s essential to include command-marker in the request, otherwise the form will be returned
without adding the VHost.

<command>
 <jid>vhost-man@domain.com</jid>
 <node>comp-repo-item-add</node>
 <fields>
 <item>
 <var>Domain name</var>
 <value>my-new-domain.com</value>
 </item>
 <item>
 <var>Enabled</var>
 <value>true</value>
 </item>
 <item>
 <var>command-marker</var>
 <value>command-marker</value>
 </item>
 …
 </fields>
</command>

If the domain was added correctly you will receive response with Operation successful. Note
field:

<command>
 <jid>vhost-man@domain.com</jid>
 <node>comp-repo-item-add</node>
 <fields>
 <item>
 <var>Note</var>
 <type>fixed</type>
 <value>Operation successful.</value>
 </item>
 </fields>
</command>

Using JSON

To execute the command using XML content you need to set HTTP header Content-Type to appli-
cation/json and the filled out form (below is trimmed example, see the section called “Retrieving
command form” for details how to get complete form):

Note

It’s essential to include command-marker in the request, otherwise the form will be returned
without adding the VHost.

{
 -"command": {
 -"jid": -"vhost-man@domain.com",
 -"node": -"comp-repo-item-add",

REST API

133

 -"fields": [
 {
 -"var": -"Domain name",
 -"value": -"my-new-awesome-domain.com"
 -},
 {
 -"var": -"Enabled",
 -"value": -"true"
 -},
 {
 -"var": -"command-marker",
 -"value": -"command-marker"
 -}
 …
 -]
 -}
}

If the domain was added correctly you will receive response with Operation successful. Note
field:

{
 -"command": {
 -"jid": -"vhost-man@domain.com",
 -"node": -"comp-repo-item-add",
 -"fields": [
 {
 -"var": -"Note",
 -"type": -"fixed",
 -"value": -"Operation successful."
 -}
 -]
 -}
}

Configuring VHost

Modifying domain configuration is done using comp-repo-item-update command sent with all
required and desired fields (if something is missing form-to-fill-out will be returned). For the instructions
how to retrieve the form/available fields please see the section called “Retrieving command form”.

Using XML

To execute the command using XML content you need to set HTTP header Content-Type to appli-
cation/xml and the filled out form (below is trimmed example, see the section called “Retrieving com-
mand form” for details how to get complete form):

Note

It’s essential to include command-marker in the request (otherwise the form will be returned
without adding the VHost) and item-list with value set to the name of the VHost that’s being
configured.

<command>
 <jid>vhost-man@domain.com</jid>

REST API

134

 <node>comp-repo-item-update</node>
 <fields>
 <item>
 <var>Domain name</var>
 <value>my-vhost.com</value>
 </item>
 <item>
 <var>Enabled</var>
 <value>true</value>
 </item>
 …
 <item>
 <var>command-marker</var>
 <value>command-marker</value>
 </item>
 <item>
 <var>item-list</var>
 <value>my-vhost.com</value>
 </item>
 </fields>
</command>

If the domain was added correctly you will receive response with Operation successful. Note
field:

<command>
 <jid>vhost-man@domain.com</jid>
 <node>comp-repo-item-update</node>
 <fields>
 <item>
 <var>Note</var>
 <type>fixed</type>
 <value>Operation successful.</value>
 </item>
 </fields>
</command>

Using JSON

To execute the command using XML content you need to set HTTP header Content-Type to appli-
cation/json and the filled out form (below is trimmed example, see the section called “Retrieving
command form” for details how to get complete form):

Note

It’s essential to include command-marker in the request (otherwise the form will be returned
without adding the VHost) and item-list with value set to the name of the VHost that’s being
configured.

{
 -"command": {
 -"jid": -"vhost-man@domain.com",
 -"node": -"comp-repo-item-update",
 -"fields": [
 {

REST API

135

 -"var": -"Domain name",
 -"value": -"my-domain.com"
 -},
 {
 -"var": -"Enabled",
 -"value": -"true"
 -},
 …
 {
 -"var": -"command-marker",
 -"value": -"command-marker"
 -},
 {
 -"var": -"item-list",
 -"value": -"my-domain.com"
 -}
 -]
 -}
}

If the domain was added correctly you will receive response with Operation successful. Note
field:

{
 -"command": {
 -"jid": -"vhost-man@domain.com",
 -"node": -"comp-repo-item-update",
 -"fields": [
 {
 -"var": -"Note",
 -"type": -"fixed",
 -"value": -"Operation successful."
 -}
 -]
 -}
}

To confirm that user test@domain.com with resource resource was connect and it was disconnect-
ed.

If user was not connected server will return the following response:

{
 -"command" -: {
 -"jid" -: -"sess-man@domain.com",
 -"node" -: -"http://jabber.org/protocol/admin#end-user-session",
 -"fields" -: []
 -}
}

Sending any XMPP Stanza
XMPP messages or any other XMPP stanza can be sent using this API by sending an HTTP POST request
to (by default) http://localhost:8080/rest/stream/?api-key=API_KEY with serialized

http://localhost:8080/rest/stream/?api-key=API_KEY

REST API

136

XMPP stanza as a content, where API_KEY is the API key for HTTP API. This key is set in etc/config.tdsl.
Also, each request needs to be authorized by sending a valid administrator JID and password as user and
password of BASIC HTTP authorization method. Content of HTTP request should be encoded in UTF-8
and Content-Type should be set to application/xml.

Handling of request

If the sent XMPP stanza does not contain a from attribute, then the HTTP API component will provide
it’s own JID. If iq stanza is being sent, and no from attribute is set then the received response will be
returned as the content of the HTTP response. Successful requests will return HTTP response code 200.

Examples

Sending an XMPP message with from set to HTTP API component to full JID. Data needs to be
sent as a HTTP POST request content to /rest/stream/?api-key=API_KEY URL of the HTTP
API component to deliver the message Example message 1 to test@example.com/resource-1.

<message xmlns="jabber:client" type="chat" to="test@example.com/resource-1">
 <body>Example message 1</body>
</message>

Sending an XMPP message with from set to HTTP API component to a bare JID. Data needs to
be sent as a HTTP POST request content to /rest/stream/?api-key=API_KEY URL of the HTTP
API component to deliver message Example message 2 to test@example.com.

<message xmlns="jabber:client" type="chat" to="test@example.com">
 <body>Example message 2</body>
</message>

Sending an XMPP message with from set to specified JID and to a recipients' full JID. Data
needs to be sent as a HTTP POST request content to /rest/stream/?api-key=API_KEY URL of
the HTTP API component to deliver message Example message 3 to test@example.com/resource-1 with
sender of message set to sender@example.com.

<message xmlns="jabber:client" type="chat" from="sender@example.com" to="test@example.com/resource-1">
 <body>Example message 1</body>
</message>

Setting XMPP user status
By default XMPP user is visible as unavailable when his client is disconnected. However in some cases
we may want to present user a active with some particular presence being set. To control this presence of
unavailable XMPP user we can use this feature.

Example contents shown below needs to be sent to (by default) http://localhost:8080/rest/
user/{user-jid}/status?api-key=API_KEY, where:

• API_KEY is the API key for HTTP API

• {user-jid} is a bare jid of the user for which you want to set presence.

Tip

You may add /{resource} to the URL after /status part, where {resource} is name
of the resource for which you want to set presence.

http://localhost:8080/rest/user/{user-jid}/status?api-key=API_KEY
http://localhost:8080/rest/user/{user-jid}/status?api-key=API_KEY

REST API

137

Warning

You need to add 'user-status-endpoint@http.{clusterNode}' to the list of trust-
ed jids to allow UserStatusEndpoint module to properly integrate with Tigase XMPP Server.

Using XML

To set user status you need to set HTTP header Content-Type to application/xml

<command>
 <available>true</available>
 <priority>-1</priority>
 <show>xa</show>
 <status>On the phone</status>
</command>

where:

• available - may be:

• true - user is available/connected (default)

• false - user is unavailable/disconnected

• priority - an integer of presence priority. (It should be always set as a negative value to make sure
that messages are not dropped) (default: -1)

• show - may be one of presence/show element values (optional)

• chat

• away

• xa

• dnd

• status - message which should be sent as a presence status message (optional)

As a result server will return following XML:

<status>
 <user>test@domain.com/tigase-external</user>
 <available>true</available>
 <priority>priority</priority>
 <show>xa</show>
 <status>On the phone</status>
 <success>true</success>
</status>

This will confirm that user test@domain.com with resource tigase-external has it presence
changed (look for success element value).

Using JSON

To set user status you need to set HTTP header Content-Type to application/json

REST API

138

{
 -"available": -"true",
 -"priority": -"-1",
 -"show": -"xa",
 -"status": -"On the phone"
}

where:

• available - may be:

• true - user is available/connected (default)

• false - user is unavailable/disconnected

• priority - an integer of presence priority. (It should be always set as a negative value to make sure
that messages are not dropped) (default: -1)

• show - may be one of presence/show element values (optional)

• chat

• away

• xa

• dnd

• status - message which should be sent as a presence status message (optional)

As a result, the server will return following JSON:

{
 -"status": {
 -"user": -"test@domain.com/tigase-external",
 -"available": -"true",
 -"priority": -"-1",
 -"show": -"xa",
 -"status": -"On the phone",
 -"success": true
 -}
}

This will confirm that user test@domain.com with resource tigase-external has it presence
changed (look for success element value).

BOSH HTTP Pre-Binding

Bosh (HTTP) Pre-Binding
Binding a user session is done by sending a request using HTTP POST method for /rest/ad-
hoc/bosh@domain.com with the following content:

Note

Request requires authentication using Basic HTTP Authentication

REST API

139

<command>
 <node>pre-bind-bosh-session</node>
 <fields>
 <item>
 <var>from</var>
 <value>user_jid@domain/resource</value>
 </item>
 <item>
 <var>hold</var>
 <value>1</value>
 </item>
 <item>
 <var>wait</var>
 <value>60</value>
 </item>
 </fields>
</command>

Configuration
The Following parameters can be adjusted:

• from This will be the JID of the user. You may change the <value/> node of the item identified by
the from variable; this can be either a FullJID or a BareJID. In the latter case, a random resource will
be generated for the session being bound.

• hold value. By changing value of <value/> node of the item identified by hold variable. This value
matches the hold attribute specified in XEP-0124: Session Creation Response [http://xmpp.org/exten-
sions/xep-0124.html#session-request]

• wait value. By changing value of <value/> node of the item identified by wait variable. This value
matches the wait attribute specified in XEP-0124: Session Creation Response [http://xmpp.org/exten-
sions/xep-0124.html#session-request]

As a response one will receive and XML with the result containing additionally available session and RID
that can be used in the client to attach to the session, e.g.:

<command>
 <jid>bosh@vhost</jid>
 <node>pre-bind-bosh-session</node>
 <fields>
 <item>
 <var>from</var>
 <label>jid-single</label>
 <value>user_jid@domain/resource</value>
 </item>
 <item>
 <var>hostname</var>
 <label>jid-single</label>
 <value>node_hostname</value>
 </item>
 <item>
 <var>rid</var>
 <label>text-single</label>

http://xmpp.org/extensions/xep-0124.html#session-request
http://xmpp.org/extensions/xep-0124.html#session-request
http://xmpp.org/extensions/xep-0124.html#session-request
http://xmpp.org/extensions/xep-0124.html#session-request
http://xmpp.org/extensions/xep-0124.html#session-request
http://xmpp.org/extensions/xep-0124.html#session-request

REST API

140

 <value>9929332</value>
 </item>
 <item>
 <var>sid</var>
 <label>text-single</label>
 <value>3f1b6e70-8528-44bb-8f23-77e7c4a8cf1a</value>
 </item>
 <item>
 <var>hold</var>
 <label>text-single</label>
 <value>1</value>
 </item>
 <item>
 <var>wait</var>
 <label>text-single</label>
 <value>60</value>
 </item>
 </fields>
</command>

For example, having the above XML request stored in prebind file, one can execute the request using
$curl:

>curl --X POST --d @prebind http://admin%40domain:pass@domain:8080/rest/adhoc/bosh@domain ---header -"Content-Type:text/xml"

Using JSON

To execute the command to pre-bind BOSH session in JSON format, make a request using POST method
to /rest/adhoc/bosh@domain.com sending the following content:

{
 -"command" -: {
 -"node" -: -"pre-bind-bosh-session"",
 -"fields" -: [
 {
 -"var" -: -"from",
 -"value" -: -"user_jid@domain/resource"
 -},
 {
 -"var" -: -"hold",
 -"value" -: -"1"
 -},
 {
 -"var" -: -"wait",
 -"value" -: -"60"
 -}
 -]
 -}
}

This example replicates the same request presented above in XML format.

