Tigase Team

Tigase Team

Table of Contents

1. Tigase DeVEOPMENT GUITEoiieiiieeiiii et ettt e et e et e e e er e e eenbaeaees 1
BasiC INFOIMELIONceeiiei ettt e e 1
Tigase ATCRITECIUNEui et 1
Tigase SErVEr EIEMENScooui e 3
1070007 ot (o S PP PRI 4
TiQASE COUE SEYIE ..ttt ettt et e 5
Fg1ugoTo (8 oi (oo RO PP TPPPPTR 5
SOUICE fIl@ DBSICS ...t 5
SOUICE Fil@ SLIUCTUIE ...t 5
FOPMBLLING ..ttt e e et e et e et et eeena s 7

[N =0T o PP PP TPPPTTR 9
Programming PraCtiCeS i 10
JAVAOOC ...t 10
Hack Tigase XMPP Server in ECHPSE ...o.vuuiiiiiieeei et 11
REQUITEIMENTS ...ttt e e e e et e et e e e 11
INSEBITALTION ...ttt 11

RS (0] o I TP UPT R PPPTRPPTRPPN 17
SEVEr COMPITBIION ..ottt ettt e e ettt e ettt e e e eab e e eenbaeaees 22
Distribution PaCkagesioiiiiiieieii e 22
Building Server and Generating Packagescoouvuiiiiiiiiiieiii e 22
RUNNING SEIVES ..t ettt e et e e et e e e e et e eenes 23
THQASE KEIMED oo e et e e et et 23
BSOS .ttt et e e e eee 23
Lifecycle Of @ DEaN oo 24
Registration of @bean ... 26
DefiniNg dePenOenCIeSuu i 28
Nested kernels and exported DEaNS ..o 29
CONFIGUIBLTION ...ttt et et e e e e eenans 31

Data Source and REPOSITONEScceuueiiieii ettt ettt e e e e eenans 33
DELA SOUMCESe ettt ettt ettt et et et e e e 33

User and authentication rePOSITONIESuuiiieruieieii et 34
OthEr TEPOSITONTES ...ttt ettt et e e e aa e e eeens 36
Component DEVEIOPIMENTceuuieeeeit ettt et e et et e e e eaaans 37
Component Implementation - LeSSon 1 - BaSICSuuveviiviiieiiiiiieeceie e 37
Component Implementation - Lesson 2 - Configurationccc.uevveveiineeeeiinnneeennn 41
Component Implementation - Lesson 3 - Multi-Threadingocoiiieiiiinieiinnnnnn. 43
Component Implementation - Lesson 4 - Service DiSCOVENYcoevvvivniiiiieiiineeiieeennn. 48
Component Implementation - Lesson 5 - StatistiCSuuvvveviieviiiiieeiiieeeei e 54
Component Implementation - Lesson 6 - Scripting SUPPOITcovvvviieieiiiiieeeiiiieeeens 59
Component Implementation - Lesson 7 - Data REPOSITOrYuvveviviiiieiiiiineeneninnnn. 65
Component Implementation - Lesson 8 - Lifecycle of acomponentcccceveveenen. 73
Packet Filtering in COMPONENESiiiiiiiee e 74
The Packet FIlter APl ... 74
CONFIGUIBLTION ...ttt ettt et e e e e eeaaas 75
EVENEBUS APl 1N TIOBSE .iiitiieeeiit ettt ettt e e e e 77
EVENTBUS AP oo 7
Distributed EVENTBUS ...t 77
LOCEl EVENTBUSuiiiiiii et 78
ClUStEr MaP INEITACEeeee ettt ettt e e e e e e e eees 79
REQUITEIMENTS ...ttt e e et e et e e e e 79

[N O (= 1 o) o PP PP PPPPTT 79

[=T 0147 o L= N 80

=T I L= 0o 1 o o P 81
Plugin DEVEIOPIMENTiie e e e e e e e e 81
WIHEING PIUGIN COOE .. .cvuiiiii e e e e e e e e e 81
PIugin ConfigUIationocouuieiiicii e e e e e e e e ae s 85

How Packets are Processed by the SM and Pluginsccccooiiiiiiiiii i, 87
SASL Custom Mechanisms and Configurationccovveiieiiiiieiiie e, 91

L0 LS T a0 = Y= o 93
Setting up Maven in WINCOWSoouuiiii e e e s 93

A Very Short Maven GUIGEccuuiiiiiiiii e e e e e 96
1= P 96
1= PPN 96
T2 =S U] (P 100

Test Suite SCripting LanQUaOEvuiiiieiii e e e e e e e e aan s 102
WIting TeSIS fOr PIUGINS .. .ovvniiii e e e e e e e 104

Test Case Parameters DESCIIPLONcvuueiiieiii e e e e e e e e e 106
EXPEIMENTAl ... 110
[N = g T o o = = 110
Mobile OPtIMIZBHONSciui i e r e eaa s 112

BOSN SESSION CACNE ... 113

Lo S 1 U 115
Tigase DB Schema EXplaiNedccouuiiiiiiiiiii e 115

Why the Most reCent JDK?iiiiiiii e e e e e e e 117

API Description for Virtual Domains Management in the Tigase Server 118
Sz = W M 1] = o) PP 120

APl changes in the Tigase SEIVEr 5.X ...iiuiiiiii e 121

R L I 2 = 123
e T o107 0T T)4 0T LF ox 1 o] o IR 123
(0] 0= =P 123
Properties contaiNing ClOSUIESc.uiiiiiiiii e 123
ACCESSING DEANS .. .oviiiii e 124
USAQE EXAMPIES ...t e e e e a e 124
R T TS = - Y - S 124
Retrieving list of available adhoc commandsccocovveiiiiiiiiein e, 125
Retrieving command O ..o 126
Executing example ad-hoC CoMMaNdSooeiviieiiiiiiii e e 128
Operations 0N VHOSLS/DOMAINSccuuuiiiiiiiiieiieeei e e e e e e e e e e e e e eanaeees 131
Sending any XIMPP SEANZAccouuiiiiii e 135
Setting XIMPP USEN SEAEUS ...u.ivvieiiieeie e e e e e e e e e e e e e e et e e et e e eaneeaanees 136
BOSH HTTP Pre-Bindingcoooeeiiiiiiiiiii e e e e e e et e e e e e e eannennnns 138
Bosh (HTTP) Pre-Bindingcc.ooeiiiiiiiiiciie e e e 138
(@011 To 8= 1 (o o 1P 139

Chapter 1. Tigase Development Guide

Tigase Team <team(@tigase.com [mailto:team@tigase.com]> :toc: :numbered: :website: http://tigase.net
Basic Information

Tigase Architecture

The most important thing to understand is that Tigase is very modular and you can have multiple compo-
nents running inside single instance. However one of the most important components is MessageRouter,
which sitsin the centre and serves as a, as hame suggest, packet router directing packets to the appropriate
components.

There is also a group of specialised component responsible for handling users connections. Connec-

ti onManagers (c2s, s2s,ws2s, bosh). They receive packets from the incoming connection, then
subsequently they forward processed packet to MessageRout er . Most of the time, especially for pack-
ets coming from user connections, packet is routed to Sessi onManager component (with the session
object referring to appropriate user in case of client to server connection). After processingin Sessi on-

Manager packet goes back to MessageRout er and then, based on the stanza addressing’ can go to
different component (muc, pubsub) or if it's addressed to another user it can go through:

» Sessi onManager (again), MessageRout er and then (user) Connect i onManager s or,

» s2s (server to server connection manager) if the user or component ison the different, federated, xmpp
server;

In avery broad view this can be depicted with a following graph:

mailto:team@tigase.com
mailto:team@tigase.com
http://tigase.net

Tigase Development Guide

[Not supported by viewer] <€

[Not supported by viewer] <€

[Not supported by viewer] <€

[Not supported by viewer] <€

[Not supported by viewer] <€

[Not supported by viewer] <€

[Not supportec

Y

>

[Not supportec

[Not supported by viewer] <€

Tigase Development Guide

Tigase Server Elements

To makeit easier to get into the code below are defined basic termsin the Tigase server world and thereis
a brief explanation how the server is designed and implemented. This document also points you to basic
interfaces and implementations which can be used as example code reference.

Logicaly all server code can be divided into 3 kinds of modules; components, plug-ins and connectors.

1. Components are the main element of Tigase server. Components are a bigger piece of code which can
have separate address, receive and send stanzas, and be configured to respond to numerous events. Sam-
ple components implemented for Tigase server are: ¢2s connection manager, S2s connection manager,
session manager, XEP-0114 - external component connection manager, MUC - multi user char rooms.

2. Plug-ins are usualy small pieces of code responsible for processing specific XMPP stanzas. They
don’t have their own address. As aresult of stanza processing they can produce new XM PP stanzas.
Plug-ins are loaded by session manager component or the ¢2s connection manager component. Sample
plug-insare: vCard stanza processing, jabber:iq:register to register new user accounts, presence stanza
processing, and jabber:ig:auth for non-sasl authentication.

3. Connector sare modulesresponsible for accessto datarepositorieslike databases or LDAPto store and
retrieve user data. There are 2 kinds of connectors: authentication connectors and user data connectors.
Both of them are independent and can connect to different data sources. Sample connectors are: JDBC
database connector, XMLDB - embedded database connector, Drupal database connector.

Thereisan API defined for each kind of above modulesand all you haveto doisenabletheimplementation
of that specific interface. Then the module can be loaded to the server based on it’ s configuration settings.
Thereis also abstract classes available, implementing these interfaces to make development easier.

Hereisabrief list of all interfacesto look at and for more details you have to refer to the guide for specific
kind of module.

Components
Thisislist of interfacesto look at when you work on a new component:

1. tigase.server.Server Component - Thisisthevery basicinterfacefor component. All components must
implement it.

2. tigase.server .M essageReceiver - This interface extends Ser ver Conrponent and isrequired to im-
plement by components which want to receive data packets like session manager and c2s connection
manager.

3. tigase.conf.Configurable - Implementing this interface is required to make it configurable. For each
object of this type, configuration is pushed to it at any time at runtime. This is necessary to make it
possibleto change configuration at runtime. Be careful to implement this properly asit can causeissues
for modules that cannot be configured.

4. tigase.disco.XM PPService - Objects using this interface can respond to " ServiceDiscovery” requests.

5. tigase.stats.StatisticsContainer - Objects using thisinterface can return runtime statistics. Any object
can collect job statistics and implementing this interface guarantees that statistics will be presented in
consisted way to user who wants to see them.

Instead of implementing above interfaces directly, it is recommended to extend one of existing abstract
classeswhich take care of the most of "dirty and boring" stuff. Hereisalist the most useful abstract classes:

Tigase Development Guide

* tigase.server.AbstractM essageReceiver - Implements 4 basic interfaces:

Ser ver Conponent , MessageRecei ver, Configurable and StatisticsContai ner.
AbstractMessageReceiver also manages internal data queues using it's own threads which prevents
dead-locksfrom resource starvation. It offers even-driven data processing which meanswhenever pack-
et arrives the abstract void processPacket (Packet packet); method is caled to
processit. Y ou have to implement this abstract method in your component, if your component wants to
send a packet (in response to data it received for example).

bool ean addCut Packet (Packet packet)

* tigase.server.ConnectionManager - This is an extension of Abstract MessageRecei ver ab-
stract class. Asthe name says this class takes care of al network connection management stuff. If your
component needsto send and receive datadirectly from the network (like c2s connection, s2s connection
or external component) you should use this implementation as a basic class. It takes care of al things
related to networking, 1/O, reconnecting, listening on socket, connecting and so on. If you extend this
class you have to expect data coming from to sources:

From the MessageRout er and thisiswhentheabstract voi d processPacket (Packet
packet) ; method is called and second, from network connection and then the abst ract Queue
processSocket Dat a(XMPPI CSer vi ce serv); methodiscalled.

Plug-ins

All Tigase plugins currently implemented are located in package: tigase.xmpp.impl. You can use this
code as a sample code base. There are 3 types of plug-ins and they are defined in interfaces located in

ti gase. xnpp package:

1. XMPPProcessorIfc - The most important and basic plug-in. This is the most common plug-in type
which just processes stanzas in normal mode. It receives packets, processes them on behalf of the user
and returns resulting stanzas.

2. XMPPPreprocessorlfc - This plugin performs pre-processing of the packet, intended for the pre-
processors to setup for packet blocking.

3. XM PPPostprocessor | fc - This plugin performs processing of packets for which there was no specific
processor.

Connector

Data, Stanzas, Packets - Data Flow and Processing

Data received from the network are read from the network sockets as bytes by codeintheti gase. i o
package. Bytes then are changed into charactersin classes of t i gase. net package and as characters
they are sent to the XML parser (t i gase. xnl) which turns them to XML DOM structures.

All datainside the server is exchanged in XML DOM form as thisis the format used by XM PP protocol.
For basic XML data processing (parsing characters stream, building DOM, manipulate XML elementsand
attributes) we use Tigase XML parser and DOM builder [https://github.com/tigase/tigase-xmltool).

Each stanzaisstoredinthet i gase. xm . El enent object. Every Element can contain any number of
Child Elements and any number of attributes. Y ou can access al these data through the class API.

To simplify some, most common operations Element is wrapped int i gase. server . Packet class
which offers another level of API for the most common operations like preparation of response stanza
based on the element it contains (swap to/from values, put type=result attribute and others).

https://github.com/tigase/tigase-xmltools
https://github.com/tigase/tigase-xmltools

Tigase Development Guide

Tigase Code Style

Introduction

This documents defines and describes coding style and standard used in Tigase projects source code.

Examples should be considered asnon-nor mative, that isformatting choices should not be treated asrules.

Source file basics

Technicals details

* File name consists of the case-sensitive, camel-cased name of the top-level class it contains plus the
. j ava extension.

» Sourcefilesare encoded in UTF-8.

Source file structure

A sourcefile consists of, in order:

1. License or copyright information, if present
2. Package statement

3. Import statements

4. Exactly onetop-level class

Additionally:

» Exactly one blank line separates sections 2-4;

» The package statement is not line-wrapped (column limit does not apply);

Import statements
» Wildcard imports can be used for:
e morethan 5 class imports;
« more than 3 name imports;
* import statements are not line-wrapped (column limit does not apply);
« following import ordering applies:
« all imports not pertaining to any of the groups listed below
e blank line
e javax. * classes

e java. * classes

Tigase Development Guide

e blank line
« all static importsin single block

* itemsin each block are ordered by namesin ASCII sort order (since; sorts before.)

Class declaration
» Eachtop-level classresidesin asourcefile of its own.
Class contents order
Following order of the elements of the classis mandatory:
« final,static fieldsinfollowing order:
e public
e protected
e package-private
e private
e publicenum
e stati c fiedsin following order:
e public
e protected
e package-private
e private
« stati cinitiaizer block
» final fiedsinfollowing order:
e public
e protected
e package-private
e private
« fields without modifiersin following order:
e public
e protected
e package-private

e private

Tigase Development Guide

* initializer block

» stati c method(s)

* constructor(s)

» methods(s) without modifiers

» enums(s) without modifiers

« interfaces(s) without modifiers

* innerstati c classes

* inner classes

In addition:

» Getters and Setters are kept together

» Overloads are never split - multiple constructors or methods with the same name appear sequentialy.

Formatting

Braces

» Bracesaremandatory in optional cases- for all syntax where braces use can be optional, Tigase mandate
using braces even if the body is empty or contains only single statement.

» Braces follow the Kernighan and Ritchie style (Egyptian brackets [http://www.codinghorror.com/
blog/2012/07/new-programming-jargon.html]):

« No line break before the opening brace.

» Line break after the opening brace.

« Line break before the closing brace.

« Line break after the closing brace, only if that brace terminates a statement or terminates the body

of a method, constructor, or named class. For example, there is no line break after the brace if it is
followed by el se or acomma.

Block indentation: tab

All indentation (opening a new block of block-like construct) must be made with tabs. After the block,
then indent returnsto the previous.

Ideal tab-size: 4
Column limit: 120
Defined column limit is 120 characters and must be line-wrapped as described below Java code has a

column limit of 100 characters. Except as noted below, any line that would exceed thislimit must be line-
wrapped, as explained in section Line-wrapping.

http://www.codinghorror.com/blog/2012/07/new-programming-jargon.html
http://www.codinghorror.com/blog/2012/07/new-programming-jargon.html
http://www.codinghorror.com/blog/2012/07/new-programming-jargon.html

Tigase Development Guide

Line-wrapping
line-wrapping is a process of dividing long lines that would otherwise go over the defined Column Limit
|(ianb;?t\,/e). It's recommended to wrap lines whenever it's possible even if they are not longer than defined
Whitespace
Vertical Whitespace
A single blank line appears:
« after package statement;
* beforeimports;
* after imports;
 around class,
* after class header;
» around field ininterface;
+ around method in interface;
» around method;
 around initializer;
 asrequired by other sections of this document.

Multiple blank lines are not permitted.
Horizontal whitespace

Beyond whererequired by the language or other stylerules, and apart from literals, comments and Javadoc,
asingle ASCII space also appears in the following places only.

1. Separating any reserved word, such asi f ,f or ,whi | e,swi tch,try,catchorsynchroni zed,
from an open parenthesis (() that follows it on that line

2. Separating any reserved word, such as el se or cat ch, from aclosing curly brace (}) that precedes
it onthat line

3. Before any open curly brace ({), with two exceptions:
e @oneAnnotation({a, b}) (nospaceis used)
e String[][1 x = {{"foo"}}; (nospaceisrequired between {{, by item 8 below)

4. On both sides of any binary or ternary operator. This aso appliesto the following "operator-like" sym-
bols:

* the ampersand in a conjunctive type bound: <T ext ends Foo & Bar>

Tigase Development Guide

» thepipefor acatch block that handles multiple exceptions: cat ch (FooExcepti on | Bar Ex-
ception e)

» thecolon (:) inan enhanced f or ("foreach") statement
» thearrow in alambdaexpression: (String str) # str.length()
but not:

 thetwo colons (: :) of amethod reference, which iswritten like Cbj ect: : toStri ng
* thedot separator (.), which iswritten likeobj ect . t oSt ri ng()

5. After, : ; ortheclosing parenthesis ()) of acast

6. Between the type and variable of adeclaration: Li st <Stri ng> |i st

Horizontal alignment: never required

Horizontal alignment is the practice of adding a variable number of additional spacesin your code with
the goal of making certain tokens appear directly below certain other tokens on previous lines.

This practice is permitted, but isnever required. It isnot even required to maintain horizontal alignment
in places where it was already used.

Specific constructs

Enum classes
After each commathat follows an enum constant, aline break is mandatory.
Variable declarations

» One variable per declaration - Every variable declaration (field or local) declares only one variable:
declarationssuch asi nt a, b; arenot used.

» Declared when needed -L ocal variables are not habitually declared at the start of their containing block
or block-like construct. Instead, local variables are declared close to the point they arefirst used (within
reason), to minimizetheir scope. Local variable declarationstypically haveinitiaizers, or areinitialized
immediately after declaration.

Arrays
Any array initializer may optionally be formatted as if it were a "block-like construct." (especially when
line-wrapping need to be applied).

Naming

Rules common to all identifiers

Identifiers use only ASCII letters and digits, and, in a small number of cases noted below, underscores.
Thus each valid identifier name is matched by the regular expression \ w+ .

Tigase Development Guide

Specific Rules by identifier type

» Packagenamesareall lowercase, with consecutive words simply concatenated together (no underscores,
not camel-case).

* Class names are written in Upper CamelCase.

* Method names are written in lower CamelCase.

 Constant names use CONSTANT _CASE: all uppercase letters, with words separated by underscores.
* Non-constant field names (static or otherwise) are written in lower CamelCase.

» Parameter names are written in lower Camel Case (one-character parameter names in public methods
should be avoided).

» Loca variable names are written in lower CamelCase.

Programming Practices

» A methodismarked withthe @ver r i de annotation whenever itislegal. Thisincludesaclass method
overriding a superclass method, a class method implementing an interface method, and an interface
method re-specifying a super-interface method.

 Caught exceptions should not be ignored (and if thisisamust then alog entry is required).

Javadoc

* blank lines should be inserted after:
* description,
e parameter description,
e returntag;
» empty tag should be included for following tags:
e @ar ans
e @eturn

¢« @hrows

Usage

At the minimum, Javadoc is present for every publ i c class, and every publ i ¢ or pr ot ect ed member
of such aclass, with afew exceptions:

* isoptiona for "simple, obvious' methodslike get Foo, in caseswhere there really and truly is nothing
else worthwhile to say but "Returns the foo".

 in methods that overrides a supertype method.

10

Tigase Development Guide

Hack Tigase XMPP Server in Eclipse

If you want to write code for Tigase server we recommend using Eclipse | DE [//https://eclipse.org/down-
loads/]. Either the IDE for Java or Java EE developers will work.

Requirements

Eclipse IDE currently requiresthe use of Java Development Kit 8 [http://www.oracle.com/technetwork/ja-
valjavase/downl oads/jdk8-downl oads-2133151.html].

Y ou will aso need the M2E plugin for Maven integration, however this can be done inside Eclipse now,
so refer to the Plugin Installation section for that.

Installation

Linux

Eclipse does not come as an installer, but rather an archive. Extract the directory to a working location
wherever you would like. Now install the JDK software, location is not important as Eclipse will find it
automatically.

Before we begin, we will need to clone the repository from git.

For linux operating systems, navigate to a directory where you want the repository to be cloned to and
type the following into terminal .

git clone https://repository.tigase.org/git/tigase-server.git

Windows

Please see the Windows coding guide for instructions on how to obtain source code from git. If you don’t
want to install git software specifically, you can use Eclipse’s git plugin to obtain the repository without
any new software. First click on File, then Import... Next select from Git folder and the Projects from Git

11

//https://eclipse.org/downloads/
//https://eclipse.org/downloads/
//https://eclipse.org/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

Tigase Development Guide

Blmeor % I » =

Select

Import one or more projects from a Git Repository.

Select an import source:

type filter text

[

F Y TR Y YT T RFY YV T

[= General
b = EIB

= Git
=% Projects from Git
= Install
= Java EE
= Mawven
= Comph
= Plug-in Development
= Remote Systermns
= Run/Debug
= Tasks
= Team

= Web
7= Weh eanviree

| @

< Back

Mlext =

Finish | | Cancel

Click next,

and now select clone URI

12

Tigase Development Guide

Birrmesrenor o o Lo

Select Repository Source GIT
Select a location of Git Repositories
type filter text
| | Existing local repository
E Clone URI
I < Back Net> || Finsh || Cancel
@ _

[

Now click next, and in this window enter the following into the URI field
git://repository.tigase.org/git/tigase-server.git

The rest of the fields will populate automatically

13

Tigase Development Guide

83 it pojcts rom it S e

Source Git Repository GIT
Enter the location of the source repository.
Location
URL: ? git:ffrepusitur}r.tigase.crrgfgitftigase-semer.gitl | Local Fiie...|
Host: repository.tigase.org
Bepository path: /git/tigase-server.git
Connection
Protocol:
Port:
Authentication
User: | |
Fassword; | |
| | Store in Secure Store
" @ <Back || Nets> || Enish || Cancel

=

Select the master branch, and any branches you wish to edit. The master branch should be the only one
you need, branches are used for specific code changes

14

Tigase Development Guide

7§} Import Projects _i@ﬂu

Branch Selection -
1R
Select branches to clone from remote repository. Remote tracking branches —

will be created to track updates for these branches in the remote repositery.

Branches of git://repository.tigase.org/git/tigase-server.git:

: type filter text

] &= Task_2908
] & clustering_3
] = devel

] = fixes-for-5.2
V] =2 master
7] &5 new_cluster_api
] .z old-stable
[52 osgi

7] &= stable

[ticket 431
&, trunk

| Select All | | Deselect All

' @ < Back Met> || Finish || Cancel
¥

=

Now select the directory where you wanted to clone the repository to. This was function as the project
root directory you will use later on in the setup.

15

Tigase Development Guide

rﬂ Import Projects from Git W W’ -

Local Destination

Configure the local storage location for tigase-server.

ARE
F

Destination

Directony:

C:\Temp\Tigasg]

| Browse |

Initial branch: | master

Configuration

Femote name:

| Clone submodules

origin

! @

Finish

Cancel

=

Onceyou click next Eclipse will download the repository and any branches you selected to that directory.
Noteyouwill beunabletoimport thisgit directory sincethereareno git aproject specific filesdownl oaded.
However, once downloading is complete you may click cancel, and the git repository will remain in the

directory you have chosen.

16

Tigase Development Guide

Setup

Once you have the main window open and have established a workspace (where most of your working
fileswill be stored), click on Help and then Install New Software. ..

Eclipse Java

s Overview
X Get an overview of the feature

@{'- . Samples

- Try out the samples

@

7

[@ & & &

Welcome

Help Contents
Search

Dynamic Help

Key Assist...
Tips and Tricks...
Report Bug or Enhancem

Cheat Sheets...
Perform Setup Tasks...

Check for Updates
Install Mew Software...
Installation Details
Eclipse Marketplace...

About Eclipse

Under the Work With field enter the following and press enter: http://download.eclipse.org/technol o-

gy/m2efreleases/

Note: You may wish to click the Add... button and add the above location as a permanent software

location to keep thelocation in memory

17

http://download.eclipse.org/technology/m2e/releases/
http://download.eclipse.org/technology/m2e/releases/

Tigase Development Guide

Available Software
Check the itermns that you wish to install,

Work with: -P-'i-‘.c;':i:::.;'.‘..'-’:_i.c;nluad.-;:.lipse.n:rrg.r‘tech nology/mle/releases/

Find mu

: type filter text

. Mame Wers

| a4 U Maven Integration for Eclipse

% mle - Maven Integration for Eclipse (includes Incubating components, 1.6.]
% mle - sifd] over logback legging (Cptional) 1.6.]
Select All | | Deselect Al 2 items selected
Details
Show only the latest versions of available software Hide i
Group items by category What &

|| Show only software applicable to target environment
Contact all update sites duning install to find required software

@

Tigase Development Guide

Y ou should see the M2 Eclipse software packages show in the main window. Click the check-box and
click Next. Once the installer isfinished it will need to restart Eclipse.

Oncethat is done, lets connect Eclipse to the cloned repository.

Click File and Import... to bring up the import dialog window. Select Maven and then Existing Maven
Project.

EI] Import o [S1

Select

Import Bxisting Maven Projects |w

Select an import source:

type filter text

[+ = General -
b = EIB
b= Git
= Install
i > = Java EE
4 [Maven

7.::]' Check out Maven Projects from SCM

W, Existing Maven Projects|

.n-_;_lj I.n._r.-téI.I-I:n.r"élEpl.c.r;-a.ﬁ.;rtifact to a Maven repository
/ i._j‘ Materialize Maven Projects from 5CM
b = Comph e
b = Plug-in Development

m

I = Remote Systermns
b = Run/Debug

i o3, Taclke

® < Back [Mext >] Finish Cancel

19

Tigase Development Guide

Now click Next and point the root directory to where you cloned the git repository, Eclipse should auto-
matically see the pom.xml file and show up in the next window.

20

Tigase Development Guide

Maven Projects

Select Maven projects

Projects:

fpomuaml tigaseitigase-server 7 1.0-5NAPSHOT:5{ packaging.type]

Add project(s) to working set

| tigase-server

b Advanced

@ <Back | Medt> Finis!

21

Tigase Development Guide

Once theimport is finished, you are able to now begin working with Tigase's code inside Eclipse! Happy
coding!

Server Compilation

Tigase XMPP Server Project uses Maven for compilation. For details on Maven and it's use, please see
the Maven Guide.

Distribution Packages

Once Compiled, Tigase creates two separate distribution archives:

» -distisaminimal version containing only tigase-server, tigase-xmitools and tigase-utils, MUC, Pubsub,
and HTTP.

» -dist-max isaversion containing all additional tigase components as well as dependencies required by
those components.

They will be available as both zip and tarball.

Building Server and Generating Packages

Server binary and it's documentation
After cloning tigase-server repository:

git clone https://repository.tigase.org/git/tigase-server.git
cd tigase-server

Y ou compile server with maven :

mvn cl ean install

Thiswill: - Build Tigase XM PP tigase-server jar in tigase-server/target.

If you wish to include compilation of the documentation use distribution profile:
m/n --Pdist clean install

This will - compile server binaries. - generate javadoc and manual documentation ti gase- serv-
er/target/ _docs directory.

Server distribution packages

Distribution building ishandled by separate project (Tigase Server Distribution [https://github.com/tigase/
tigase-server-distribution])

In order to build distribution packages* clone tigase-server-distribution repository:

git clone https://git.tigase.tech/tigase-server-distribution
ti gase-server-distribution

and compile it using maven with distribution profile:

22

https://github.com/tigase/tigase-server-distribution
https://github.com/tigase/tigase-server-distribution
https://github.com/tigase/tigase-server-distribution

Tigase Development Guide

mvn --Pdi st clean install
Thiswill:

» compile al documentation sources (including dependencies) and place them in ti gase-serv-
er-distribution/target/ docs directory

» download all dependencies in defined versions and put them in ti gase-server-distri bu-
tion/target/dist/jars/ directory.

* create both types of distribution packages (-dist and -dist-max) and place them inti gase- serv-
er-distribution/target/ _dist/ directory.

Running Server

Afterwards you can run the server with the regular shell script from within ser ver module:

cd server
./scripts/tigase.sh start etc/tigase.conf

Please bear in mind, that you need to provide correct setup in etc/config.tdsl configuration files for the
server to work correctly.

Tigase Kernel

Tigase Kernel is an implementation of 10C [https://en.wikipedia.org/wiki/Inversion_of control] created
for Tigase XMPP Server. It is responsible for maintaining object lifecycle and provides mechanisms for
dependency resol utions between beans.

Additionally, asand optional feature, Tigase Kernel is capable of configuring beans using a provided bean
configurator.

Basics

What is kernel?

Kernel isaninstance of theKer nel classwhichisresponsiblefor managing scope and visibility of beans.
Kernel handles bean:

* registration of abean

* unregistration of abean

* initialization of abean

* deinitialization of abean

* dependency injection to the bean
* handling of bean lifecycle

* registration of additional beans based on annotations (optionally using registered class implementing
BeanConf i gur at or asdef aul t BeanConfi gur at or)

23

https://en.wikipedia.org/wiki/Inversion_of_control
https://en.wikipedia.org/wiki/Inversion_of_control

Tigase Development Guide

« configuration of abean (optionally thru registered classimplementing BeanConf i gur at or asde-
faul t BeanConfi gur at or)

Kernel coreis responsible for dependency resolution and maintaining lifecycle of beans. Other features,
like proper configuration of beans are done by additional beans working inside the Kernel.

Kernel identifies beansby their name, so each kernel may have only one bean named abc. If morethan one
bean hasthe same name, then the last one registered will be used asitsregistration will override previously
registered beans. Y ou may use whatever name you want to name a bean inside kernel but it cannot:

» beservi ce asthisnameis used by Tigase Kernel internally when “RegistrarBean's are in use (see
RegistrarBean

» end with #KERNEL as this names are also used by Tigase Kernel internally
Tip

Kernel initializes beans using lazy initialization. This means that if abean is not required by any
other beans, or not retrieved from the kernel manually, an instance will not be created.

During registration of a bean, the kernel checksif there is any beans which requires this newly registered
bean and if so, then instance of a newly registered bean will be created and injected to fieldswhich require
it.
What is a kernel scope?

Each kernel hasitsown scopeinwhichit canlook for beans. By default kernel whileinjecting dependencies
may look for them only in the same kernel instance in which new instance of a bean is created or in the
direct parent kernel. Thisway it is possible to have separate beans named the same in the different kernel
SCOpES.

Note

If bean ismarked asexport abl e, itisalso visible in all descendants kernel scopes.

What is a bean?

A bean is a named instance of the class which has parameterless constructor and which is registered in
the kernel.

Warning

Parameterless constructor is a required as it will be used by kernel to create an instance of the
bean, see bean lifecycle.

Lifecycle of a bean

Creating instance of a bean

Instantiation of a bean

During this step, kernel creates instance of the class which was registered for this bean (for more details
see Registration of a bean). Instance of abean is created using paremeterless constructor of aclass.

24

Tigase Development Guide

Configuring a bean (optional)

In this step kernel passes class instance of a bean to the configurator bean (an instance of BeanCon-

fi gurat or if available), for configuring it. During this step, BeanConf i gur at or instance, whichis
aware of the configuration loaded from thefile, injectsthis configuration to the bean fiel ds annotated with
@conf i gFi el d annotation. By default configurator uses reflectionsto accessthosefields. However, if a
bean has a corresponding public set t er /get t er methods for afield annotated with @onf i gFi el d
(method parameter/return type matches field type), then configurator will use them instead of accessing
afield viareflection.

Note

If thereisno value for afield specified in the configuration or valueis equal to the current value
of the field, then configurator will skip setting value for thisfield (It will also not call sett er
method even if it exists).

At the end of the configuration step, if bean implements Conf i gur at i onChangedAwar e interface,
thenmethodbeanConf i gur ati onChanged(Col | ecti on<Stri ng> changedFi el ds) isbe-
ing called, to notify bean about field names which values has changed. Thisisuseful, if you need to update
bean configuration, when you have all configuration available inside bean.

Note

Configuration of the bean may be changed at runtime and it will be applied in the same way as
initial configuration is passed to the bean. So please keepinmindthat get t er /set t er may be
called multiple times - even for already configured and initialized bean.

Injecting dependencies

At this point kernel looks for the bean classfields annotated with @ nj ect and looksfor avaluefor each
of this fields. During this step, kernel checks list of available beans in this kernel, which matches field
type and additional constraints specified in the annotation.

When arequired value (instance of abean) isfound, then kernel triesto inject it using reflection. However,
if thereisamatching get t er /set t er defined for that field it will be called instead of reflection.

Note

If dependency changes, ie. due to reconfiguration, then value of the dependent field will change
and set t er will be called if it exists. So please keep in mind that get t er /sett er may be
called multiple times - even for already configured and initialized bean.

Initialization of a bean

When bean is configured and dependencies are set, then initialization of abean is almost finished. At this
point, if bean implements | ni ti al i zabl e interface, kernel callsi ni ti al i ze() method to allow
bean initialize properly if needed.

Destroying instance of a bean
When bean is being unloaded, then reference to itsinstance is just dropped. However, if bean classimple-

ments Unr egi st er Anar e interface, then kernel callsbef or eUnr egi st er () method. Thisisvery
useful in case which bean acquires some resources during initialization and should release them now.

25

Tigase Development Guide

Note

This method will not be called if bean was not initialized fully (bean initialization step was note
passed)!

Reconfiguration of a bean (optional)

At any point in time bean may be reconfigured by default bean configurator (instance of BeanConf i g-
ur at or) registered in the kernel. Thiswill happen in the same way asit described in Configuring abean
in Creating instace of a bean section.

Updating dependencies

It may happen, that due to reconfiguration or registration/unregistration or activation/deactivation of some
other beans dependencies of a bean will change. As aresult, Tigase Kernel will inject new dependencies
as described in Injecting dependencies

Registration of a bean

There are few ways to register a bean.

Using annotation (recommended but optional)

To register a bean using annotation you need to annotate it with @ean annotation and pass values for
following properties:

* nane - name under which item should be registered

e active -true if bean should be enabled without enabling it in the configuration (however it is still
possible to disable it using configuration)

e parent - class of the parent bean which activation should trigger registration of your bean. In most
cases parent class should beimplementing Regi st r ar Bean

e parent s - array of classes which should be threaten aspar ent classesif more than one parent class
isrequired (optional)

» exportabl e-trueif beanshould bevisiblein all descendant kernels (in other case default visibility
ruleswill be applied) (optional)

* sel ectors - array of selector classes which will decide whether class should be registered or not
(optional)

Tip

If par ent issetto Ker nel . cl ass it tellskernel to register this bean in the root/main kernel
(top-level kerndl).

If you want your bean SomeDependencyBean to be registered when another bean Par ent Bean is
being registered (like a required dependency), you may annotate your bean SonmeDependencyBean
with @ean annotation like this example:

@ean(name = -"named SoneDependencyBean", parent = ParentBean.cl ass, active = true
public class SoneDependencyBean {

26

Tigase Development Guide

Warning

Works only if bean registered asdef aul t BeanConf i gur at or supportsthisfeature. By de-
fault Tigase XMPP Server uses DSLBeanConf i gur at or which is subclass of Abst r act -
BeanConf i gur at or which provides support for this feature.

Setting par ent to class not implementing Regi st r ar Bean interface

If par ent is set to the class which is not implementing Regi st r ar Bean interface, then your bean
will be registered in the same kernel scope in which parent bean is registered. If you do so, ie. by setting
parent to the class of the bean which is registered in the ker nel 1 and your bean will be also registered
inker nel 1. Asthe result it will be exposed to other beans in the same kernel scope. This also means
that if you will configure it in the same way as you would set par ent to the par ent of annotation of
the class to which your par ent point to.

Example.

@ean(nane="beanl", parent=Kernel.cl ass)
public class Beanl {
@Conf i gFi el d(desc="Descri ption")
private int fieldl = 0;

}

@ean(nanme="bean2", parent=Beanl. cl ass)
public class Bean2 {

@Conf i gFi el d(desc="Descri ption")
private int field2 = 0;

}

Inthis case it meansthat bean1 isregistered in the root/main kernel instance. At the same time, bean2
isalso registered to the root/main kernel asitsvalue of par ent property of annotation pointsto class not
implementing Regi st r ar Bean.

To configure value of fi el d1 ininstance of beanl and fi el d2 in instance of bean2 in DSL (for
more information about DSL format please check section DSL fil e format of the Admi n Cui de)
you would need to use following entry in the config file:

beanl {

fieldl = 1
}
bean2 {

field2 = 2
}

Asyou can see, thisresulted in thebean2 configuration being on the samelevel asbean1 configuration.
Calling kernel methods

As aclass

To register a bean as a class, you need to have an instance of a Tigase Kernel executeit'sr egi st er -
Bean() method passing your Bean1 class.

27

Tigase Development Guide

kernel . regi st er Bean(Beanl. cl ass) . exec();

Note

To be ableto use thismethod you will need to annotate Beanl classwith @Bean annotation and
provide a bean name which will be used for registration of the bean.

As a factory

To do this you need to have an instance of a Tigase Kernel execute it's r egi st er Bean() method
passing your bean Bean5 class.

kernel . regi st er Bean("bean5") . asC ass(Bean5. cl ass) . w t hFact ory(Bean5Fact ory. cl ass) .

As an instance

For thisyou need to have an instance of a Tigase Kernel executeit'sr egi st er Bean() method passing
your bean Bean41 classinstance.

Bean4l bean4l = new Bean4l();
kernel . regi sterBean("beand4_1"). asl nst ance(bean4l). exec();

Warning

Beans registered as an instance will not inject dependencies. Aswell this bean instances will not
be configured by provided bean configurators.

Using config file (optional)
If there is registered a bean def aul t BeanConf i gur at or which supports registration in the config
file, it is possible to do so. By default Tigase XMPP Server uses DSLBeanConf i gur at or which pro-
vides support for that and registration is possiblein the config filein DSL. Asregistration of beansusing a

config fileis part of the admin of the Tigase XM PP Server tasks, it is described in explained in the Admin
Guidein subsection Def i ni ng beanof DSL fil e format section.

Tip

Thisway allows admin to select different class for abean. This option should be used to provide
aternative implementations to the default beans which should be registered using annotations.

Warning

Works only if bean registered asdef aul t BeanConf i gur at or supportsthisfeature. By de-
fault Tigase XMPP Server uses DSLBeanConf i gur at or which provides support for that.

Defining dependencies

All dependencies are defined with annotations:

public class Beanl {
@ nj ect
private Bean2 bean2;

28

Tigase Development Guide

@ nj ect (bean = -"bean3")
private Bean3 beans3;

@nject(type = Bean4. cl ass)
private Beand4 bean4;

@ nj ect
private Special[] tabl e Speci al ;

@nject(type = Special.cl ass)
private Set<Special > collectionO Speci al ;

@nject(null Al'l oned = true)
private Bean5 beanb;

}

Kernel automatically determinestype of arequired beans based on field type. Asaresult, there is no need
to specify the type of abean in case of bean4 field.

When there are more than one bean instances matching required dependency fields, the type needsto be an
array or collection. If kernel isunableto resolve dependencies, it will throw an exception unless @ nj ect
annotation hasnul | Al | owed settot r ue. Thisis useful to make some dependencies optional. To help
kernel select a single bean instance when more that one bean will match field dependency, you may set
name of arequired bean as shown in annotation to field bean3.

Dependencies are inserted using getters/setters if those methods exist, otherwise they are inserted directly
to the fields. Thanksto usage of setters, it is possible to detect a change of dependency instance and react
asrequired, i.e. clear internal cache.

Warning
Kernel is resolving dependencies during injection only using beans visible in its scope. This

makes it unable to inject an instance of a class which is not registered in the same kernel as a
bean or not visible in this kernel scope (see Scope and visibility).

Warning
If two beans have bidirectional dependencies, then it isrequired to allow at least one of them be

nul | (make it an optional dependency). In other case it will create circular dependency which
cannot be satisfied and kernel will throw exceptions at runtime.

Nested kernels and exported beans

Tigase Kernel allows the usage of nested kernels. This allows you to create complex applications and
maintain proper separation and visibility of beansin scopes as each module (subkernel) may work within
its own scope.

Subkernels may be created using one of two ways:

Manual registration of new a new kernel

Y ou can create an instance of anew kernel and register it as a bean within the parent kernel.

Kernel parent = new Kernel ("parent");

29

Tigase Development Guide

Usage

Scope

Kernel child = new Kernel ("child");
parent . regi sterBean(chil d. get Nane()). asl nstance(child).exec();

of RegistrarBean

Y ou may create a bean which implementsthe Regi st r ar Bean interfaces. For all beans that implement
thisinterface, subkernels are created. Y ou can access this new kernel within an instance of Regi st r ar -
Bean classasr egi st er (Ker nel) andunr egi st er (Ker nel) methods are called once the Reg-
i st rarBean instanceis created or destroyed.

Thereisaso an interface named Regi st r ar BeanW t hDef aul t BeanCl ass. Thisinterfaceisvery
useful if you want or need to create a bean which would allow you to configure many subbeans which will
have the same class but different names and you do not know names of those beans before configuration
will be set. All you need to do isto implement thisinterface and in method get Def aul t BeanCl ass()

return class which should be used for all subbeans defined in configuration for which there will be no
class configured.

As an example of such use case is dat aSour ce bean, which alows administrator to easily configure
many data sources without passing their class names, ie.

dat aSource {

default () { -.... -}
domainl () { -.... -}
domain2 () { -.... -}

}

With this config we just defined 3 beans named def aul t , donmai n1 and dorrai n2. All of those beans
will beinstances of aclassreturned by aget Def aul t BeanC ass() method of dat aSour ce bean.

and visibility

Beans that are registered within a parent kernel are visible to beans registered within the first level of
child kernels. However, beansregister ed within child kernelsare not available to beansregistered in
a parent kernel with the exception that they are visible to bean that created the subkernel (an instance
of Regi st r ar Bean).

It is possible to export beans so they can be visible outside the first level of child kernels.

To do so, you need to mark the bean as exportable using annotations or by calling the expor t abl e()
method.

Using annotation.

@ean(nanme = -"beanl", exportable = true)
public class Beanl {
}

Callingexport abl e().

kernel . regi st er Bean(Beanl. cl ass) . exportabl e(). exec();

Dependency graph

Kernel allowsthe creation of adependency graph. Thefollowing lineswill generateit inaformat supported
by Graphviz [http://www.graphviz.org].

30

http://www.graphviz.org
http://www.graphviz.org

Tigase Development Guide

DependencyG apher dg = new DependencyG apher (krnl);
String dot = dg.get DependencyG aph();

Configuration

The kernel core does not provide any way to configure created beans. Do do that you need to use the
DSLBeanConf i gur at or class by providing its instance within configuration and registration of this
instances within kernel.

Example.

Kernel kernel = new Kernel ("root");

kernel . regi st er Bean(Def aul t TypesConverter.cl ass). exportabl e(). exec();

kernel . regi st er Bean(DSLBeanConf i gur at or. cl ass) . export abl e() . exec();

DSLBeanConf i gurat or configurator = kernel.getlnstance(DSLBeanConfi gurator.cl ass);
Map<String, Object> cfg = new Confi gReader().read(file);
configurator.setProperties(cfg);

/1 and now register other beans...

DSL and kernel scopes

DSL is a structure based format explained in Tigase XMPP Server Administration Guide: DSL file for-
mat section [http://docs.tigase.org/tigase-server/snapshot/Administration_Guide/html/#dslConfig]. It is
important to know that kernel and beans structure have an impact on what the configuration in
DSL will look like.

Example kernel and beans classes.

@ean(nanme = -"beanl", parent = Kernel.class, active = true -)
public class Beanl inplements Regi strarBean {
@onfi gFi el d(desc = -"V1")

private String vi;

public void register(Kernel kernel) {
kernel . regi sterBean("beanl_1"). asd ass(Beanll. cl ass) . exec();

-}

public void unregister(Kernel kernel) {}
}
public class Beanll {

@confi gFi el d(desc = -"V11")

private String v11i;
}
@ean(nanme = -"beanl_2", parent = Beanl.class, active = true)
public class Beanl2 {

@confi gFi el d(desc = -"V12")

private String v12
}
@ean(name = -"bean2", active = true)
public class Bean2 {

@onfi gFi el d(desc = -"V2")

31

http://docs.tigase.org/tigase-server/snapshot/Administration_Guide/html/#dslConfig
http://docs.tigase.org/tigase-server/snapshot/Administration_Guide/html/#dslConfig
http://docs.tigase.org/tigase-server/snapshot/Administration_Guide/html/#dslConfig

Tigase Development Guide

private String v2;
}

public class Bean3 {
@confi gFi el d(desc = -"V3")
private String v3;

}

public class Main {
public static void main(String[] args) {

Kernel kernel = new Kernel ("root");
kernel . regi st er Bean(Def aul t TypesConverter.cl ass). exportabl e(). exec();
kernel . regi st er Bean(DSLBeanConf i gur at or . cl ass) . export abl e() . exec();
DSLBeanConf i gurat or configurator = kernel.getlnstance(DSLBeanConfi gurator.cl as
Map<String, Cbject> cfg = new Confi gReader().read(file);
configurator.setProperties(cfg);

configurator.registerBeans(null, null, config.getProperties());

kernel . regi st er Bean("bean4") . asC ass(Bean2. cl ass) . exec();
kernel . regi st er Bean("bean3"). asC ass(Bean3. cl ass) . exec();

-}
}

Following classes will produce following structure of beans:
* "beanl" of class Beanl

* "beanl 1" of classBeanll

» "beanl 2" of classBean12
* "bean4" of class Bean2

» "bean3" of classBean3

Note

Thisisasimplified structure, the actual structureisslightly more complex. However. thisversion
makes it easier to explain structure of beans and impact on configuration file structure.

Warning

Even though Bean2 was annotated with name bean2, it was registered with name bean4 as
this name was passed during registration of abeanin mai n() method.

Tip
Bean12 was registered under name beanl_2 as subbean of Beanl as aresult of annotation

of Beanl12

As mentioned DSL file structure depends on structure of beans, a file to set a config field in each bean
to bean name should ook like that:

"beanl' () {

32

Tigase Development Guide

-'vl' = -'beanl

"beanl_1' () {

-'vll' = -'beanl_ 1'
-}
"beanl_2' () {

-'v1l2' = -'beanl 2'

-}
}
'beand’ () {
-'v2'" = -'beand’

}
'bean3’ () {

-'v3' = -'beand'

}
Data Source and Repositories

In Tigase XMPP Server 8.0.0 a new concept of data sources was introduced. It was introduced to create
distinction between classes responsible for maintaining connection to actual data source and classes oper-
ating on this data source.

Data sources

DataSourceBean
-
DataSourcePool
D?taSc:urce) DataSource "example2.com”
default” examplel.com”
DataSource
"example2.com”
DataSource
"example2.com”
b

DataSource

Dat aSour ce is an interface which should be implemented by all classes implementing access to data
source, i.e. implementing access to database using JDBC connection or to MongoDB. Implementation of
Dat aSour ce isautomatically selected using uri provided in configuration and @Reposi t ory. Met a
annotation on classes implementing Dat aSour ce interface.

DataSourcePool

Dat aSour cePool is interface which should be implemented by classes acting as a pool of da
ta sources for single domain. There is no requirement to create class implementing this interface,

33

Tigase Development Guide

however if implementation of Dat aSour ce is blocking and does not support concurrent requests,
then creation of Dat aSour cePool is recommended. An example of such case is implementation of
Dat aReposi t oryl npl which executes al requests using single connection and for this class there
is Dat aReposi t or yPool implementing Dat aSour cePool interface and improving performance.
Implementation of Dat aSour cePool isautomatically selected using uri provided in configuration and

@Reposi t ory. Met a annotation on classes implementing Dat aSour cePool interface.

DataSourceBean

This class is a helper class and provides support for handling multiple data sources. You can think of
a Dat aSour ceBean as a map of named Dat aSour ce or Dat aSour cePool instances. This class
is also responsible for initialization of data source. Moreover, if data source will change during runtime
Dat aSour ceBean is responsible for firing a Dat aSour ceChangedEvent to notify other classes

about this change.

User and authentication repositories

This repositories may be using existing (configured and initialized) data sources. However, it is also pos-

sible to that they may have their own connections. Usage of data sourcesis recommended if possible.

DataSourceBean
DataSourcePool
D?ta&aume) DataSource "example2.com”
default” examplel.com”
DataSource
A A “example2.com”
DataSource
“example2.com”
: J)
Iy
AuthRepository AuthRepository AuthRepository
"default” “example1.com” "example2.com”

AuthRepositoryMDPoolBean

Tigase Development Guide

DataSourceBean
-
DataSourcePool
D?tasﬂurce) DataSource rexample2.com”
default” examplel.com”
DataSource
A A "exampleZ.com”
DataSource
"example2.com”
. Y

UserRepository
"default”

UserRepository
“example1.com”

UserRepository
"example2.com”

UserRepositoryMDPoolBean

AuthRepository and UserRepository

This are a base interfaces which needs to be implemented by authentication repository (Aut hReposi -
t ory) and by repository of users (User Reposi t or y). Classes implementing this interfaces should be

only responsible for retrieving data from data sources.

AuthRepositoryPool and UserRepositoryPool

If classimplementing Aut hReposi t or yPool or User Reposi t or yPool isnot using data sources
or contains blocking or is not good with concurrent access, then it should be wrapped within proper repos-
itory pool. Most of implementations provided as part of Tigase XM PP Server do not require to be wrapped
within repository pool. If your implementation is blocking or not perform well with concurrent access
(ie. due to synchronization), then it should be wrapped within this pool. To wrap implementation within
apool, you need to set pool - ¢l s property of configured user or authentication repository in your con-

figuration file.

AuthRepositoryMDPoolBean and UserRepositoryMDPoolBean

This classes are for classes implementing Aut hRepository and User Repository what
Dat aSour ceBean is for classes implementing Dat aSour ce interface. This classes holds map of
named authentication or user repositories. They are also responsible for initialization of classes imple-

menting this repositories.

35

Tigase Development Guide

Other repositories

It is possible to implement repositories not implementing Aut hReposi t ory or User Reposi tory.
Each type of custom repository should have its own API and its own interface.

DataSourceBean

-

DataSource DataSource
"default” “example1.com” -

Y Y 'y
P
e
CustomRepository1 CustomRepositoryi CustomBRepasitor
"default” “example1.com” "default”

CustomRepository1 Custe

DataSourceAware

Custom repositories should implement they own interface specifying its API. This interfaces should
extend Dat aSour ceAwar e interface which is base interface required to be implemented by custom
repositories. Dat aSour ceAwar e has a method set Dat aSour ce() which will be called with in-
stance of data source to initialize instance of custom repository. Implementations should be annotat-
ed with @Reposi t ory. Met a implementation to make the automatically selected for proper type of
Dat aSour ce implementation.

36

Tigase Development Guide

MDRepositoryBean

It isrequired to create a class extending MDReposi t or yBean implementing same custom interface as
the custom repository. This class will be amulti domain pool, alowing you to have separate implementa
tion of custom repository for each domain. Moreover, it will be responsible for creation and initialization
of your custom repository instances.

Component Development

A component in the Tigase is an entity with its own JID address. It can receive packets, process them,
and can also generate packets.

An example of the best known componentsis MUC or PubSub. In Tigase however, amost everything is
actually a component: Session Manager, s2s connections manager, Message Router, etc... Components
are loaded based on the server configuration, new components can be loaded and activated at run-time.
Y ou can easily replace a component implementation and the only change to make is a class name in the
configuration entry.

Creating components for Tigase server is an essential part of the server development hence thereis a lot
of useful API and ready to use code available. This guide should help you to get familiar with the API and
how to quickly and efficiently create your own component implementations.

1. Component implementation - Lesson 1 - Basics

2. Component implementation - Lesson 2 - Configuration

3. Component implementation - Lesson 3 - Multi-Threading
4. Component implementation - Lesson 4 - Service Discovery
5. Component implementation - Lesson 5 - Statistics

6. Component implementation - Lesson 6 - Scripting Support
7. Component implementation - Lesson 7 - Data Repository
8. Component implementation - Lesson 8 - Startup Time

9. Configuration API

10.Packet Filtering in Component

Component Implementation - Lesson 1 - Basics

Creating a Tigase component is actually very simple and with broad APl available you can create a pow-
erful component with just afew lines of code. Y ou can find detailed API description elsewhere. This series
presents hands on lessons with code exampl es, teaching how to get desired resultsin the simplest possible
code using existing Tigase API.

Even though all Tigase components are just implementations of the Server Component interface | will
keep such alow level information to necessary minimum. Creating a new component based on just inter-
faces, while very possible, is not very effective. This guide intends to teach you how to make use of what
isaready there, ready to use with aminimal coding effort.

Thisisjust thefirst lesson of the serieswhere | cover basics of the component implementation.

37

Tigase Development Guide

Let’'s get started and create the Tigase component:

i mport java.util.logging. Logger;
i mport tigase.component. Abstract Ker nel BasedConponent ;
i mport tigase.server. Packet;

public class Test Component extends Abstract Ker nel BasedConponent {

}

private static final Logger |og = Logger. getLogger (Test Conponent. cl ass. get Nanme()

@verride

public String get Component Version() {
String version = this.getd ass().getPackage(). getlnpl enentati onVersion();
return version == null -? -"0.0.0" -: version,

-}

@verride
publ i c bool ean i sDi scoNonAdmi n() {
return false;

-}

@verride
protected voi d registerMdul es(Kernel kernel) {

-// here we need to register nodul es responsible for processing packets

-}

Asyou can see we have 3 mandatory methods when we extends AbstractK er nelBasedComponent:

String getComponentVersion() which returns version of a component for logging purposes

boolean isDiscoNonAdmin() which decides if component will be visible for users other that server
administrators

void register M odules(K ernel kernel) which allows you to register component modules responsible
for actual processing of packets

Tip

If you decide you do not want to use modules for processing packets (even though we strongly
suggest to use them, as thanks to modules components are easily extendible) you can implement
one more method void processPacket(Packet packet) which will be called for every packet sent
to acomponent. Thismethod isactually logical asthe main task for your component is processing
packets.

Class name for our new component is TestComponent and we have also initialized a separated logger for
this class. Doing Thisis very useful asit allows usto easily find log entries created by our class.

With these a few lines of code you have a fully functional Tigase component which can be loaded to
the Tigase server; it can receive and process packets, shows as an element on service discovery list (for
administrators only), responds to administrator ad-hoc commands, supports scripting, generates statistics,
can be deployed as an external component, and afew other things.

Next important step is to create modules responsible for processing packets. For now let’s create module
responsible for handling messages by appending them to log file:

38

Tigase Development Guide

@ean(name = -"test-nodul e", parent = TestConponent.class, active = true)
public static class Test Modul e extends Abstract Modul e {

private static final Logger |og = Logger. getLogger (TestMdul e. cl ass. get Canoni cal
private static final Criteria CRITERIA = ElenentCriteria. nane("nmessage");
@verride

public Criteria getMduleCriteria() {
return CRI TERI A;

-}

@verride

public void process(Packet packet) throws Conponent Exception, TigaseStringprepEx
log.finest("My packet: -" + packet.toString());

-}

}

Instanceof Criteriaclassreturnedby Criteria get Modul eCriteria() isusedby component
classto decideif packet should be processed by this module or not. In this case we returned instance which
matches any packet which is amessage.

And finally we have a very important method voi d process(Packet packet) whichis main
processing method of a component. If component will receive packet that matches criteria returned by
module - this method will be called.

But how we can send packet from amodule? AbstractM odule contains method void write(Packet pack-
et) which you can use to send packets from a component.

Before we go any further with the implementation let’s configure the component in Tigase server so it is
loaded next time the server starts. Assuming our init.tdsl file looks like this one:

‘config-type' = -'default’
"debug’ = ['server']
"default-virtual -host' = [-'devel.tigase.org -]

admns = [-'adnm n@level .tigase.org’ -]
dat aSour ce {

default () {
uri = -'jdbc:derby:/Tigase/tigasedb’
-}
}
muc() {}

pubsub() {}

We can see that it already is configured to load two other components; MUC and PubSub. Let's add a
third - our new component to the configuration file by appending the following line in the propertiesfile:

test(cl ass: Test Component) {}
Now we have to restart the server.

There are afew ways to check whether our component has been loaded to the server. Probably the easiest
isto connect to the server from an administrator account and look at the service discovery list.

39

Tigase Development Guide

aRrvice Discoverny

; B LI : 5, [. admi el
El i i =,] o
Aeldress: | devel tigase.arg = | Nade: = | (_Browse]
Nams 1] Wi
tof Tigase wer. 4.4.0-b1%58 davel tigase.amng

'S
» LP Server canfiguration basic=canfiidevel.tig... canfig
» ¢ Bosh connection manager boshifidevel. tigase.org
4f Client connection manager c2sifdeveltigase.ong
U Sessian Mmanager e - manEkdewel tiga. ..
b e - . = - 5

[

i S 5[]

sats

s
i1 Undefined descripticon

= ¥ A4 E §
¥ ﬂ";'.. Multl User Chat muc.dewel.tigase.arg
¥ pi) Fublish=3ubscribe pubsub.devel tigase.org

! Auto- browse into objects
~ Automatically get item information

s W
| Ml Closa

If everything goeswell you should see an entry on thelist similar to the highlighted one on the screenshot.
The component description is"Undefined description™ which is adefault description and we can change it
later on, the component default JID is: test@devel .tigase.or g, where devel .tigase.or g isthe server domain
and test is the component name.

Another way to find out if the component has been loaded is by looking at the log files. Getting yoursel f
familiar with Tigase log files will be very useful thing if you plan on developing Tigase components. So
let’s look at the log file logs/tigase.log.0, if the component has been loaded you should find following
linesin the log:

MessageRout er. set Properties() FINER Loading and registering nmessage receiver: tes
MessageRout er . addRout er () | NFO Addi ng receiver: Test Conponent
MessageRout er . addConponent () | NFO Addi ng conponent: Test Conponent

If your component did not load you should first check configuration files. Maybe the Tigase could not
find your class at startup time. Make sure your classisin CLASSPATH or copy a JAR file with your
classto Tigasejarg directory.

Assuming everything went well and your component is loaded by the sever and it shows on the service
discovery list as on the screenshot above you can double click on it to get a window with a list of ad-
hoc commands - administrator scripts. A window on the screenshot shows only two basic commands for
adding and removing script which is a good start.

A ™M Execute Command (festBdevel tig. ..

e UL v New command script ™

Remove command scripd

| PSS | [Cancel) {SExecure)

40

Tigase Development Guide

Moreover, you can browse the server statistics in the service discovery window to find your new test
component on the list. If you click on the component it shows you a window with component statistics,
very hasic packets counters.

ol) - L
BAEL G Tl r Ml B Eamam

LYl = o
b Tigane wpr 48 ol il e =g g
A el il < - e [
B EpsarnF o —anuEe SrSiEkeer] Foae e
TOChE LI Pt e L 2l

e
VLR (g
L
vt edn

I ehiidrer Egme erp BN I
AT T
Cop=puer— paupr=en abfkleer Bgme srg siEn - =
Comgans™ maulddd (D o Y ERTRLE
Slrbred drer s o oire e L
| WHEE Mardge vhagey |- gl |
i Meln e O T geebl [HIF O

e b il b Gl il ool dbvress il i

donn- berens -~ ghyiin
L I TN M A PSR

[Chnd

Aswe can see with just afew lines of code our new component is quite mighty and can do alot of things
without much effort from the devel oper side.

Now, the time has come to the most important question. Can our new component do something useful,
that is can it receive and process XM PP packets?

Let'stry it out. Using you favorite client send a message to JID: test@devel.tigase.or g (assuming your
server isconfigured for devel.tigase.org domain). Y ou can either use kind of XML consolein your client
or just send aplain message to the component JID. According to our codein process(...) method it should
log our message. For thistest | have sent a message with subject: "test message" and body: "thisis a test".
The log file should contain following entry:

Test Modul e. process() FINEST: My packet: to=null, fromenull,

dat a=<nessage fronm="adm n@level . tigase. org/ devel "
to="t est @evel .tigase.org" id="abcaa" xm ns="jabber:client">
<subj ect >t est nessage</ subj ect >
<body>this is a test</body>

</ message>, XM.NS=j abber:client, priority=NORVAL

If thisis a case we can be sure that everything works as expected and all we now have to do isto fill the
process(...) method with some useful code.

Component Implementation - Lesson 2 - Configuration

It might be hard to tell what the first important thing you should do with your new component implemen-
tation. Different developers may have a different view on this. It seemsto me however that it isawaysa
good idea to give to your component away to configure it and provide some runtime settings.

This guide describes how to add configuration handling to your component.

To demonstrate how to implement component configuration let’ s say we want to configure which types of
packets will be logged by the component. There are three possible packet types. message, presence and
ig and we want to be able to configure logging of any combination of the three. Furthermore we also want

41

Tigase Development Guide

to be able to configure the text which is prepended to the logged message and to optionally switch secure
login. (Secure logging replaces all packet CData with text: CData size: NN to protect user privacy.)

Let’s create the following private variables in our component TestM odule:

@onfi gFi el d(desc = -"Logged packet types", alias = -"packet-types")
private String[] packetTypes = {"nmessage", -"presence", -"iq"};
@onfigFi el d(desc = -"Prefix", alias = -"| og-prepend")

private String prependText = -"My packet: -";

@onfi gFi el d(desc = -"Secure |ogging", alias = -"secure-I|oggi ng")

private bool ean securelLoggi ng = fal se;

And thisisit. Tigase Kernel will take care of this fields and will update them when configuration will
change.

The syntax inconfi g. t dsl fileisvery smple and is described in details in the Admin Guide. To set
the configuration for your component in conf i g. t dsl file you have to append following lines to the
file inside test component configuration block:

test-nodul e {

| og-prepend = -' My packet: -'
packet-types = [-'nessage', -'presence', -'iq -]
secure-1ogging = true

}

The sguare brackets are used to mark that we set alist consisting of a few elements, have a look at the
Admin Guide documentation for more details.

And thisisthe complete code of the new component modulewith amodified pr ocess(..) method taking
advantage of configuration settings:

@ean(name = -"test-nodul e", parent = TestConponent.class, active = true)
public static class Test Modul e extends Abstract Modul e {

private static final Logger |og = Logger. getLogger (TestMdul e. cl ass. get Canoni cal

private Criteria CRITERIA = ElenentCriteria. nane(" nmessage");

@onfi gFi el d(desc = -"Logged packet types", alias = -"packet-types")
private String[] packetTypes = {"nmessage", -"presence", -"iq"};
@onfigFi el d(desc = -"Prefix", alias = -"| og-prepend")

private String prependText = -"My packet: -";

@onfi gFi el d(desc = -"Secure |ogging", alias = -"secure-|oggi ng")

private bool ean securelLoggi ng = fal se;

@verride
public Criteria getMduleCriteria() {
return CRI TER A

-}

public void setPacket Types(String[] packetTypes) {
t hi s. packet Types = packet Types;
Criteria crit = new O ();
for (String packet Type -: packet Types) {
crit.add(El enentCriteria. name(packet Type));

-}

42

Tigase Development Guide

CRITERIA = crit;
-}

@verride
public void process(Packet packet) throws Conponent Exception, Ti gaseStringprepEx
| og. finest(prependText + packet.toString(securelLogging));

-}
}
Of course we can do much more useful packet processing in the pr ocess(..) method. Thisisjust an
example code.
Tip

Here we used a setter setPacketType(String[] packetTypes) which is a setter for field packet-
Types. Tigase Kerndl will use it instead of assigning value directly to a field which gives up
opportunity to convert value to different type and update other field - in our case we updat-
ed CRITERIA field which will result in change of packet types which for which method void
process(...) will be called.

Component Implementation - Lesson 3 - Multi-Threading

Multi core and multi CPU machines are very common nowadays. Y our new custom component however,
processes all packetsin asingle thread.

Thisisespecialy important if the packet processing is CPU expensive like, for example, SPAM checking.
In such a case you could experience single Core/CPU usage at 100% while other Cores/CPUs are idling.
Ideally, you want your component to use all available CPUs.

Tigase API offers a very simple way to execute component’s pr ocessPacket (Packet packet)
method in multiplethreads. Methodsi nt pr ocessi ngQut Thr eads() andi nt pr ocessi ngl n-
Thr eads() returns number of threads assigned to the component. By default it returnsjust '1' as not all
component implementations are prepared to process packets concurrently. By overwriting the method you
can return any value you think is appropriate for the implementation. Please note, there are two methods,
oneis for a number of threads for incoming packets to the component and another for outgoing packets
from the component. It used to be a single method but different components have different needs and the
best performance can be achieved when the outgoing queues have a separate threads pool from incoming
gueues. Also some components only receive packets while other only send, therefore assigning an equal
number of threads for both that could be a waste of resources.

Note

Due to how Kernel works you MUST avoid using variables in those methods. If you would like
to have this configurable at startup timeyou could simply set pr ocessi ng-i n-t hr eads and
processi ng- out - t hr eads in your component’s bean configuration.

If the packet processing is CPU bound only, you normally want to have as many threads as there are CPUs
available:

@verride
public int processinglnThreads() {
return Runtime. getRuntine().avail abl eProcessors();
}
@verride
public int processingQutThreads() ({

43

Tigase Development Guide

return Runtime. getRuntine().avail abl eProcessors();

}

If the processing is 1/0O bound (network or database) you probably want to have more threads to process
requests. It is hard to guess the ideal number of threads right on the first try. Instead you should run afew
tests to see how many threadsis best for implementation of the component.

Now you have many threadsfor processing your packets, but thereisone slight problem with this. In many
cases packet order is essential. If our pr ocessPacket (..) method is executed concurrently by a few
threads it is quite possible that a message sent to user can takeover the message sent earlier. Especially
if the first message was large and the second was small. We can prevent this by adjusting the method
responsible for packet distribution among threads.

The algorithm for packets distribution among threads is very simple:
int thread_ i dx = hashCodeFor Packet (packet) % threads total;

So the key here is using the hashCodeFor Packet (..) method. By overwriting it we can make sure
that all packets addressed to the same user will always be processed by the same thread:

@verride
public int hashCodeFor Packet (Packet packet) ({
i f (packet.getElemlo() -!'= null) {
return packet. get El emTo(). hashCode();
-}
-/1 This should not happen, every packet nust have a destination
-// address, but naybe our SPAM checker is used for checking
-/1 strange kind of packets too...
i f (packet.getStanzaFron() -!= null) {
return packet. get St anzaFron() . hashCode();
-}
-// If this really happens on your systemyou should | ook
-// carefully at packets arriving to your conponent and
-// find a better way to cal cul ate hashCode
return 1;

}

The above two methods give control over the number of threads assigned to the packets processing in
your component and to the packet distribution among threads. Thisis not all Tigase API has to offer in
terms of multi-threading.

Sometimes you want to perform some periodic actions. Y ou can of course create Timer instance and load
it with TimerTasks. Asthere might be aneed for this, every level of the Class hierarchy could end-up with
multiple Timer (threads in fact) objects doing similar job and using resources. There are a few methods
which alow you to reuse common Timer object to perform all sorts of actions.

First, you have three methods allowing your to perform some periodic actions:

public synchronized void everySecond();
public synchronized void everyM nute();
public synchroni zed void everyHour();

An example implementation for periodic notifications sent to some address could look like this one:

@verride
public synchronized void everyMnute() {

44

Tigase Development Guide

super. everyM nute();
if ((++delayCounter) >= notificationFrequency) ({
addCut Packet (Packet . get Message(abuseAddr ess, get Conponent 1 d(),
St anzaType. chat, -"Detected spam nessages: -" + spanCounter,
-"Spam counter”, null, newPacketld("spam")));
del ayCounter = O;
spanmCounter = O;
-}
}

This method sends every notificationFrequency minute a message to abuseAddress reporting
how many spam messages have been detected during last period. Please note, you have to call
super. ever yM nut e() to make sure other actions are executed as well and you haveto also remem-
ber to keep processing in thismethod to minimum, especialy if you overwriteever ySecond() method.

There is a'so a method which allow you to schedule tasks executed at certain time, it is very similar to
thej ava. util . Ti mer API. Theonly differenceisthat we are using ScheduledExecutor Serviceasa
backend which is being reused among all levels of Class hierarchy. Thereis a separate Schedul edEx-
ecut or Ser vi ce for each Class instance though, to avoid interferences between separate components:

addTi mer Task(tigase. util.Ti merTask task, |ong del ay);
Here isacode of an example component and module which uses all the API discussed in this article:
Example component code.

public class Test Component extends Abstract Ker nel BasedConponent {

private static final Logger |og = Logger. getLogger(Test Conponent. cl ass

@ nj ect
private Test Modul e test Mbdul e;

@verride

public synchronized void everyMnute() {
super. everyM nute();
t est Modul e. everyM nut e() ;

-}

@verride
public String get Component Version() {

. get Name()

String version = this.getd ass().getPackage(). getlnpl enentati onVersion();

return version == null -? -"0.0.0" -: version;

-}

@verride
public int hashCodeFor Packet (Packet packet) ({
if (packet.getEl enlo() -!= null) {
return packet. get El enifo() . hashCode();
-}
-/1 This should not happen, every packet nust have a destination
-// address, but naybe our SPAM checker is used for checking
-// strange kind of packets too....
i f (packet.getStanzaFron() -!= null) {
return packet. get St anzaFron() . hashCode();

45

Tigase Development Guide

-}

-// If this really happens on your systemyou should | ook carefully
-// at packets arriving to your component and decide a better way

-// to cal cul ate hashCode

return 1;

-}
@verride

publ i c bool ean i sDi scoNonAdmi n() {

return fal se;

-}
@verride

public int processinglnThreads() {
return Runtime. getRuntine().avail abl eProcessors();

-}
@verride

public int processingQut Threads() ({
return Runtime.getRuntine().avail abl eProcessors();

-}
@verride

protected void registerMdul es(Kernel kernel) {
-// here we need to register

-}
}

Example module code.

@ean(nanme = -"test-nodul e",
public static class Test Modul e extends Abstract Modul e {

private static final Logger

par

nodul es responsi bl e for processing packets

ent = Test Conponent.class, active = true)

| og = Logger. get Logger (Test Mobdul e. cl ass. get Canoni ca

private Criteria CRITERIA = ElenentCriteria. nane("nmessage");

@confi gFi el d(desc = -"Bad words", alias = -"bad-words")

private String[] badWwrds = {"wordl", -"word2", -"word3"};

@onfigField(desc = -"Wiite |listed addresses”, alias = -"white-list")
private String[] whiteList = {"adm n@ ocal host"};

@onfi gFi el d(desc = -"Logged packet types", alias = -"packet-types")

private String[] packetTypes = {"nmessage", -"presence", -"iq"};
@onfigFi el d(desc = -"Prefix", alias = -"| og-prepend")

private String prependText = -"Spam detected: -";

@onfi gFi el d(desc = -"Secure |ogging", alias = -"secure-I|oggi ng")

private bool ean securelLoggi ng = fal se;

@onfi gFi el d(desc = -"Abuse notification address”, alias = -"abuse-address")
private JI D abuseAddress = JID.jidlnstanceNS("abuse@ ocahost");
@onfi gFi el d(desc = -"Frequency of notification", alias = -"notification-frequen
private int notificationFrequency = 10;

private int delayCounter = 0O;

private | ong spanCounter = O;

46

Tigase Development Guide

@ nj ect
private Test Conmponent comnponent;

public void everyMnute() {
if ((++delayCounter) >= notificationFrequency) ({
write(Message. get Message(abuseAddr ess, conponent. get Conponentld(), StanzaTyp
-"Detected spam nessages: -" + spanmCounter, -"Spam
conponent . newPacket I d("spam")));
del ayCounter = O;
spanmCounter = O;
-}
-}

@verride
public Criteria getMduleCriteria() {
return CRI TER A

-}

public void setPacket Types(String[] packetTypes) {
t hi s. packet Types = packet Types;
Criteria crit = new O ();
for (String packet Type -: packet Types) {
crit.add(El enentCriteria. name(packet Type));
-}
CRITERIA = crit;
-}

@verride
public void process(Packet packet) throws Conponent Exception, Ti gaseStringprepEx
-// Is this packet a nessage?
if ("nmessage"” == packet.get El emNane()) ({
String from = packet. get StanzaFron().toString();
-// 1s sender on the whitelist?
if (Arrays. binarySearch(whitelList, from < 0) {
-// The sender is not on whitelist so let's check the content
String body = packet. get El enCDat aSt ati cStr(Message. MESSAGE _BODY_PATH) ;
if (body -!'= null && -!body.isEnpty()) {
body = body. t oLower Case();
for (String word -: badWrds) ({
i f (body.contains(word)) {
| og. finest(prependText + packet.toString(securelLogging));
++spanCount er ;
return;

-// Not a SPAM return it for further processing
Packet result = packet.swapFronfo();
wite(result);

47

Tigase Development Guide

Component Implementation - Lesson 4 - Service Discov-

ery

Y ou component still shows in the service discovery list as an element with "Undefined description”. It
also doesn’t provide any interesting features or sub-nodes.

In this article | will show how to, in a simple way, change the basic component information presented
on the service discovery list and how to add some service disco features. As a bit more advanced feature
the guide will teach you about adding/removing service discovery nodes at run-time and about updating
existing elements.

Component description and category type can be changed by overriding two following methods:

@verride

public String getDi scoDescription() {
return -"Spamfiltering";

}

@verride

public String getDi scoCat egoryType() {
return -"spant;

}

Please note, there is no such 'spam'’ category type defined in the Service Discovery ldentities registry
[http://xmpp.org/registrar/disco-categories.html]. It has been used here as a demonstration only. Please
refer to the Service Discovery Identities registry document for alist of categories and types and pick the
one most suitable for you.

After you have added the two above methods and restarted the server with updated code, have alook at
the service discovery window. Y ou should see something like on the screenshot.

&AM m 11 Service Discovery —
d O e £ oE - admin@devel

Address: devel tigase.org =l Node: =l Browse |

Harme D Mode

fs1 Tigase ver. 4.4.0-b1958 devel.tigase.org

F Configuration commands basic=conf@devel tigase.org config

F 7 Bosh connection manager boshpdevel tigase.ong

¢ i Client connection manager c2s@devel tigase.org

* Ea Multi User Chat muc.devel tigase.org

¥ 41 Publish-Subscribe pubsub.devel tigase.org

= LF Session manager sess-rnan@devel tigase.ong

¥ LF Server statistics statsi@devel.tigase.org stats

¥ ¥ WHost Manager vhost=man@devel.tigase.org

_ Auto-browse into objects
Automarically get item infarmation

i ™
(_Close |

48

http://xmpp.org/registrar/disco-categories.html
http://xmpp.org/registrar/disco-categories.html

Tigase Development Guide

Now let’s add method which will allow our module Test Mbdul e to return supported features. This
way our component will automatically report features supported by all it's modules. To do so we need to
implement amethod String[] getFeatur es() which returnsarray of St r i ng items. Thisitemsare used to
generate alist of features supported by component. List of features supported by all modules are retrieved
during service discovery of acomponent by Di scover yModul e.

Although thiswas easy, this particular change doesn't affect anything apart from just avisual appearance.
Let’'s get then to more advanced and more useful changes.

Oneof thelimitations of methods aboveisthat you can not update or change component information at run-
time with these methods. They are called only once during initialization of acomponent when component
service discovery information is created and prepared for later use. Sometimes, however it is useful to be
able to change the service discovery during run-time.

In our simple spam filtering component let’ s show how many messages have been checked out as part of
the service discovery description string. Every time we receive a message we can to cal:

updat eSer vi ceDi scoverylten(get Name(), null, getDiscoDescription() + -

A small performance note, in some cases calling updat eSer vi ceDi scoverylten(..) might bean
expensive operation so probably a better idea would be to call the method not every time we receive a
message but maybe every 100 times or so.

Thefirst parameter is the component JID presented on the service discovery list. However, Tigase server
may work for many virtual hosts so the hostname part is added by the lower level functions and we only
provide the component name here. The second parameter is the service discovery node which is usually
'null' for top level disco elements. Third isthe item description (whichisactually called 'name' in the disco
specification). The last parameter specifiesif the element isvisible to administrators only.

o o 241 Service Discovery —
2 o &4 B - admin@devel
Address: devel tigase.org =] Node: ';-! Browse
Piama 114] Node
t41 Tigase ver. 4.4.0-b1958 devel.tigase.org
2 I Server configuration basic-confi@devel.tigase.org config
{f Bosh connection manager bosh@devel tigase.org
1 Client connection manager ¢2s@devel tigase org
d':; Multi User Chat muc.devel.tigase.org
141 Publish-Subscribe pubsub.devel tigase org
1 Session manager sess-maniddevel.tigase.org
srafs

7 Server sratistics
pam filtering: [4]

VHosts Manager

| Auto-browse into objects

stats@devel tigase org
testioe g (M)
vhost-manidevel tigase.org

™ Automatically get itern information

ESE]

Close |
| TR

The complete method code is presented below and the screenshot above shows how the element of the
service discovery for our component can change if we apply our code and send a few messages to the

component.

49

[" + (++ne

Tigase Development Guide

Using the method we can also add submodes to our component element. The XMPP service discovery
really is not for showing application counters, but this case it is good enough to demonstrate the API
available in Tigase so we continue with presenting our counters via service discovery. This time, instead
of using 'null’ as a node we put some meaningful texts as in example below:

/1 This is called whenever a nessage arrives

/1 to the conponent

updat eServi ceDi scoveryl tenm(get Nane(), -"nessages",
-"Messages processed: [" + (++nessagesCounter) + -"]", true);

/1 This is called every tine the conponent detects

/'l spam nessage

updat eServi ceDi scoveryl tem(get Nane(), -"spani', -"Spam caught: [" +
(++t ot al SpanCounter) + -"]", true);

Again, have alook at the full method body below for a complete code example. Now if we send a few
messages to the component and some of them are spam (contain words recognized as spam) we can browse
the service discovery of the server. Y our service discovery should show alist similar to the one presented
on the screenshot on the left.

Of course depending on theimplementation, initially there might be no sub-nodes under our component el -
ement if wecall theupdat eSer vi ceDi scoveryl t en(..) method only when amessageisprocessed.
To make sure that sub-nodes of our component show from the very beginning you can call theminset -
Properties(..) forthefirst timeto populate the service discovery with initial sub-nodes.

Please note, the updat eSer vi ceDi scoverylten(..) method is used for adding a new item and
updating existing one. There is a separate method though to remove the item:

voi d renmoveServi ceDi scoveryltem(String jid,
String node, String description)

Actualy only two first parameters are important: the jid and the node which must correspond to the
existing, previously created service discovery item.

There are two additional variants of the update method which give you more control over the service
discovery item created. Items can be of different categories and types and can al so present aset of features.

The simpler is a variant which sets a set of features for the updated service discovery item. There is a
document [http://xmpp.org/registrar/disco-features.html] describing existing, registered features. We are
creating an example which is going to be a spam filter and there is no predefined feature for spam filtering
but for purpose of this guide we can invent two feature identification strings and set it for our component.
Let's call updat e method with following parameters:

updat eSer vi ceDi scoveryl ten(get Nane(), null, getDi scoDescription(),
true, -"tigase:x:spamfilter", -"tigase:x:spamreporting");

The best place to call this method isthe set Properti es(..) method so our component gets a proper
servicediscovery settingsat startup time. We have set two featuresfor the component disco: tigase: x: spam-
filter and tigase: x: spam-reporting. This method accepts avariable set of arguments so we can passto it as
many features as we need or following Java spec we can just pass an array of Strings.

Update your code with call presented above, and restart the server. Have alook at the service discovery
for the component now.

The last functionality might be not very useful for our case of the spam filtering component, but it is for
many other cases like MUC or PubSub for which it is setting proper category and type for the service

50

http://xmpp.org/registrar/disco-features.html
http://xmpp.org/registrar/disco-features.html

Tigase Development Guide

discovery item. Thereisadocument listing all currently registered service discovery identities (categories
and types). Again thereis entry for spam filtering. Let’ s use the automation category and spamfilter type
and set it for our component:

updat eSer vi ceDi scoveryl ten(get Nane(), null, getDi scoDescription(),
-"automation", -"spamfiltering", true,
-"tigase: x:spamfilter", -"tigase:x:spamreporting");

Of course all these setting can be applied to any service discovery create or update, including sub-nodes.
And hereis acomplete code of the component:;

Example component code.

public class Test Component extends Abstract Ker nel BasedConponent {

private static final Logger |og = Logger. getLogger(Test Conponent. cl ass

@ nj ect
private Test Modul e test Mbdul e;

@verride

public synchronized void everyMnute() {
super. everyM nute();
t est Modul e. everyM nut e() ;

-}

@verride
public String get Component Version() {

. get Name()

String version = this.getd ass().getPackage(). getlnpl enentati onVersion();

return version == null -? -"0.0.0" -: version;

-}

@verride
public String getDi scoDescription() {
return -"Spamfiltering";

-}

@verride
public String getDi scoCat egoryType() {
return -"spant;

-}

@verride
public int hashCodeFor Packet (Packet packet) {
i f (packet.getElemlo() -!'= null) {
return packet. get El emTo(). hashCode();
-}
-// This should not happen, every packet nust have a destination
-// address, but naybe our SPAM checker is used for checking
-/1 strange kind of packets too...
i f (packet.getStanzaFron() -!= null) {
return packet. get St anzaFron() . hashCode();
-}
-// If this really happens on your systemyou should | ook carefully
-// at packets arriving to your component and decide a better way

51

Tigase Development Guide

}

-// to cal cul ate hashCode
return 1;

-}

@verride
publ i c bool ean i sDi scoNonAdmi n() {
return false;

-}

@verride
public int processinglnThreads() {
return Runtime. getRuntine().avail abl eProcessors();

-}

@verride
public int processingQut Threads() ({
return Runtime. getRuntine().avail abl eProcessors();

-}

@verride

protected void registerMdul es(Kernel kernel) {
-// here we need to register nodul es responsible for processing packets
kernel . regi sterBean("di sco").asCl ass(D scoveryMdul e. cl ass) . exec();

-}

Example module code.

@ean(name = -"test-nodul e", parent = TestConponent.class, active = true)
public static class Test Modul e extends Abstract Modul e {

private static final Logger |og = Logger. getLogger(TestMdul e. cl ass. get Canoni ca

private Criteria CRITERIA = ElenentCriteria. nane(" nmessage");

private String[] FEATURES = { -"tigase:x:spamfilter", -"tigase:x:spamreporting
@onfi gFi el d(desc = -"Bad words", alias = -"bad-words")

private String[] badWwrds = {"wordl", -"word2", -"word3"};

@onfigField(desc = -"Wiite |listed addresses”, alias = -"white-list")

private String[] whiteList = {"adm n@ ocal host"};

@onfi gFi el d(desc = -"Logged packet types", alias = -"packet-types")

private String[] packetTypes = {"nmessage", -"presence", -"iq"};
@onfigFi el d(desc = -"Prefix", alias = -"| og-prepend")

private String prependText = -"Spam detected: -";

@onfi gFi el d(desc = -"Secure |ogging", alias = -"secure-|oggi ng")

private bool ean securelLoggi ng = fal se;

@onfi gFi el d(desc = -"Abuse notification address”, alias = -"abuse-address")
private JI D abuseAddress = JID.jidlnstanceNS("abuse@ ocahost");
@onfi gFi el d(desc = -"Frequency of notification", alias = -"notification-frequen

private int notificationFrequency = 10;
private int delayCounter = 0O;

private | ong spanCounter = O;

private | ong total SpanCounter = 0;

52

Tigase Development Guide

private | ong nessagesCounter = O;

@ nj ect
private Test Conmponent comnponent;

public void everyMnute() {
if ((++delayCounter) >= notificationFrequency) ({
write(Message. get Message(abuseAddr ess, conponent. get Conponentld(), StanzaTyp
-"Detected spam nessages: -" + spanmCounter, -"Spam
conponent . newPacket | d("spam")));
del ayCounter = O;
spanmCounter = O;
-}
-}

@verride
public String[] getFeatures() {
return FEATURES;

-}

@verride
public Criteria getMduleCriteria() {
return CRI TER A

-}

public void setPacket Types(String[] packetTypes) {
t hi s. packet Types = packet Types;
Criteria crit = new O ();
for (String packet Type -: packet Types) {
crit.add(El enentCriteria. name(packet Type));
-}
CRITERIA = crit;
-}

@verride
public void process(Packet packet) throws Conponent Exception, Ti gaseStringprepEx
-// Is this packet a nessage?
if ("nmessage” == packet.get El emNane()) ({
conponent . updat eSer vi ceDi scoverylt en{ conmponent . get Name(), -"nmessages”,
-"Messages processed: [" + (++nessagesC
String from = packet. get StanzaFron().toString();
-// 1s sender on the whitelist?
if (Arrays. binarySearch(whitelList, from < 0) {
-// The sender is not on whitelist so let's check the content
String body = packet. get El enCDat aSt ati cStr (Message. MESSAGE_BODY_PATH) ;
if (body -!'= null && -!body.isEnpty()) {
body = body. t oLower Case();
for (String word -: badWrds) ({
i f (body.contains(word)) {
| og. finest(prependText + packet.toString(securelLogging));
++spanCount er ;
conponent . updat eSer vi ceDi scoverylten{conmponent . get Name(), -"span', -
(++t ot al SpamCounter) + -"]", tr

53

Tigase Development Guide

return;

-// Not a SPAM return it for further processing
Packet result = packet.swapFromlo();
wite(result);
-}
}

Component Implementation - Lesson 5 - Statistics

In most cases you'll want to gather some run-time statistics from your component to see how it works,
detect possible performance issues or congestion problems. All server statistics are exposed and are ac-
cessible via XM PP with ad-hoc commands, HTTP, IMX and some selected statistics are also available
via SNMP. As a component developer you don't have to do anything to expose your statistic via any of
those protocoals, you just have to provide your statistics and the admin will be able to access them any
way he wants.

Thislesson will teach you how to add your own statistics and how to make surethat the statistics generation
doesn’t affect application performance.

[M N statsi@devel.tigase,org
test/Last minute packers: F
test/Packets recelved: 3
test/Fackets senk: F
test/Spam messages found: 1

test/All messages processed: 3

Stats level: FINE +
&
(Y revious Newt | (Cancel) {(Finish)

Y our component from the very beginning generates some statistics by classesit inherits. Let’s add a few
statistics to our spam filtering component:

@verride
public void getStatistics(StatisticsList list) {
super.getStatistics(list);
ist.add(getNane(), -"Spam nessages found", total SpanCounter, Level.|lNFO;
list.add(getNanme(), -"All nessages processed”, nessagesCounter, Level.FINER);
if (list.checkLevel (Level.FINEST)) {
-// Some very expensive statistics generation code...

54

Tigase Development Guide

-}
}

The code should be pretty much self-explanatory.

Youhavetocal super. get Stati stics(..) toupdatestatsof the parent class. St at i sti csLi st
is a collection which keeps all the statistics in a way which is easy to update, search, and retrieve them.
Y ou actually don’'t need to know all the implementation details but if you are interested please refer to the
source code and JavaDoc documentation.

The first parameter of the add(..) method is the component name. All the statistics are grouped by the
component names to make it easier to look at particular component data. Next is a description of the
element. The third parameter is the element value which can be any number or string.

The last parameter is probably the most interesting. The idea has been borrowed from the logging frame-
work. Each statistic item has importance level. Levels are exactly the same as for logging methods with
SEVERE the most critical and FINEST the least important. This parameter has been added to improve
performance and statistics retrieval. When the StatisticsList object is created it gets assigned a leve re-
quested by the user. If theadd(..) method iscalled with lower priority level then the element is not even
added to thelist. This saves network bandwidth, improves statistics retrieving speed and is also more clear
to present to the end-user.

Onething which may beabit confusing at firstisthat, if thereisanumerical element added to statisticswith
0 value then the Level is always forced to FINEST. The assumption is that the administrator is normally
not interested zer o-value statistics, therefore unless he intentionally request the lowest level statistics he
won’'t see elements with zer os.

The if statement requires some explanation too. Normally adding a new statistics element is not a very
expensive operation so passing it with add(..) method at an appropriate level is enough. Sometimes,
however preparing statistics data may be quite expensive, like reading/counting some records from data-
base. Statistics can be collected quite frequently therefore it doesn’t make sense to collect the statistics
at al if there not going to be used as the current level is higher then the item we pass anyway. In such
acase it is recommended to test whether the element level will be accepted by the collection and if not
skip the whole processing atogether.

Asyou can see, the API for generating and presenting component statisticsis very simple and straightfor-
ward. Just one method to overwrite and a simple way to pass your own counters. Below isthe whole code
of the example component:

Example component code.
public class Test Component extends Abstract Ker nel BasedConponent {
private static final Logger |og = Logger. getLogger(Test Conponent. cl ass. get Name()

@ nj ect
private Test Modul e test Mbdul e;

@verride

public synchronized void everyM nute() ({
super. everyM nute();
t est Modul e. everyM nut e() ;

-}
@verride

55

Tigase Development Guide

public String get Component Version() {
String version = this.getd ass().getPackage(). getlnpl enentati onVersion();
return version == null -? -"0.0.0" -: version

-}

@verride
public String getDi scoDescription() {
return -"Spamfiltering";

-}

@verride
public String getDi scoCat egoryType() {
return -"spant;

-}

@verride
public int hashCodeFor Packet (Packet packet) {
i f (packet.getElemlo() -!'= null) {
return packet. get El emTo(). hashCode();
-}
-/1 This should not happen, every packet nust have a destination
-// address, but naybe our SPAM checker is used for checking
-/1 strange kind of packets too...
i f (packet.getStanzaFron() -!= null) {
return packet. get St anzaFron() . hashCode();
-}
-// If this really happens on your systemyou should | ook carefully
-// at packets arriving to your component and decide a better way
-// to cal cul ate hashCode
return 1,

-}

@verride
publ i c bool ean i sDi scoNonAdmi n() {
return false;

-}

@verride
public int processinglnThreads() {
return Runtime. getRuntine().avail abl eProcessors();

-}

@verride
public int processingQut Threads() ({
return Runtime. getRuntine().avail abl eProcessors();

-}

@verride
protected voi d registerMdul es(Kernel kernel) {
-// here we need to register nodul es responsible for processing packets

-}

@verride
public void getStatistics(StatisticsList list) {

56

Tigase Development Guide

super.getStatistics(list);
list.add(getNane(), -"Spam nmessages found"”, testMdul e.getTotal SpanCounter (),
list.add(getNanme(), -"All nessages processed", testMdul e.get MessagesCounter ()
if (list.checkLevel (Level.FINEST)) {
-// Some very expensive statistics generation code..
-}
-}

}
Example module code.

@ean(name = -"test-nodul e", parent = TestConponent.class, active = true)
public static class Test Modul e extends Abstract Modul e {

private static final Logger |og = Logger. getLogger(TestMdul e. cl ass. get Canoni ca

private Criteria CRITERIA = ElenentCriteria. nane(" nmessage");

private String[] FEATURES = { -"tigase:x:spamfilter", -"tigase:x:spamreporting
@onfi gFi el d(desc = -"Bad words", alias = -"bad-words")

private String[] badWrds = {"wordl", -"word2", -"word3"};

@onfigField(desc = -"Wiite |listed addresses”, alias = -"white-list")

private String[] whiteList = {"adm n@ ocal host"};

@onfi gFi el d(desc = -"Logged packet types", alias = -"packet-types")

private String[] packetTypes = {"nmessage", -"presence", -"iq"};
@onfigFi el d(desc = -"Prefix", alias = -"| og-prepend")

private String prependText = -"Spam detected: -";

@onfi gFi el d(desc = -"Secure | ogging", alias = -"secure-I|oggi ng")

private bool ean securelLoggi ng = fal se;

@onfi gFi el d(desc = -"Abuse notification address”, alias = -"abuse-address")
private JI D abuseAddress = JID.jidlnstanceNS("abuse@ ocahost");
@onfi gFi el d(desc = -"Frequency of notification", alias = -"notification-frequen

private int notificationFrequency = 10;
private int delayCounter = 0O;

private | ong spanCounter = O;

private | ong total SpanCounter = O;
private | ong nessagesCounter = O;

@ nj ect
private Test Conmponent comnponent;

public void everyMnute() {
if ((++delayCounter) >= notificationFrequency) ({
write(Message. get Message(abuseAddr ess, conponent. get Conponentld(), StanzaTyp
-"Detected spam nessages: -" + spamCounter, -"Spam
conponent . newPacket | d("spam")));
del ayCounter = O;
spanCounter = O,
-}
-}

@verride

57

Tigase Development Guide

public String[] getFeatures() {
return FEATURES;

-}

@verride
public Criteria getMduleCriteria() {
return CRI TER A

-}

public | ong get MessagesCounter () {
return nessagesCounter;

-}

public | ong get Tot al SpanCounter () {
return total SpanCount er;

-}

public void setPacket Types(String[] packetTypes) {
t hi s. packet Types = packet Types;
Criteria crit = new O ();
for (String packet Type -: packet Types) {
crit.add(El enentCriteria. name(packet Type));
-}
CRITERIA = crit;
-}

@verride
public void process(Packet packet) throws Conponent Exception, Ti gaseStringprepEx
-// Is this packet a nessage?
if ("nmessage"” == packet.get El emNane()) ({
conponent . updat eSer vi ceDi scoveryl t en{ conmponent . get Name(), -"nmessages”,
-"Messages processed: [" + (++nessagesC
String from = packet. get StanzaFron().toString();
-// 1s sender on the whitelist?
if (Arrays. binarySearch(whitelList, from < 0) {
-// The sender is not on whitelist so let's check the content
String body = packet. get El enCDat aSt ati cStr(Message. MESSAGE _BODY_PATH) ;
if (body -!'= null && -!body.isEnpty()) {
body = body. t oLower Case();
for (String word -: badWrds) ({
i f (body.contains(word)) {
| og. finest(prependText + packet.toString(securelLogging));
++spanCount er ;
conponent . updat eSer vi ceDi scoverylten{conmponent . get Name(), -"spanm', -
(++t ot al SpamCounter) + -"]", tr
return;

-// Not a SPAM return it for further processing
Packet result = packet.swapFronfo();
wite(result);

58

Tigase Development Guide

-}
}

Component Implementation - Lesson 6 - Scripting Sup-

port

Scripting support isabasic API built-in to Tigase server and automatically available to any component at
no extraresource cost. Thisframework, however, can only access existing component variableswhich are
inherited by your code from parent classes. It can not access any data or any structures you added in your
component. A little effort is needed to expose some of your data to the scripting API.

This guide shows how to extend existing scripting APl with your component specific data structures.

Integrating your component implementation with the scripting APl is as simple as the code below:

private static final String BAD WORDS VAR = -"badWrds";
private static final String WH TE_LI ST_VAR = -"whiteList";
@verride

public void initBindings(Bindings binds) {
super . i ni t Bi ndi ngs(bi nds);
bi nds. put (BAD_WORDS_VAR, test Modul e. badWr ds) ;
bi nds. put (WHI TE_LI ST_VAR, testMdul e. whiteList);

}

Thisway you expose two the component variables: badWbr ds and whi t eLi st to scripts under names
the same names - two defined constants. Y ou could use different names of course but it is always a good
idea to keep things straightforward, hence we use the same variable names in the component and in the
script.

Almost done, amost... In our old implementation these two variables are Javaarraysof St ri ng. There-
forewe can only changetheir elements but we can not add or remove elements from these structuresinside
the script. Thisis not very practical and it puts some serious limits on the script’s code. To overcomethis
problem | have changed the test component code to keep bad words and whitelist inj ava. uti | . Set
collection. This gives us enough flexibility to manipulate data.

As our component is now ready to cooperate with the scripting API, | will demonstrate now how to add
remove or change elements of these collections using a script and ad-hoc commands.

Ann EmJ:IEur}(mm'""'E{éi-.'t.@de";;ﬁig...]

a1t UL New command seript -
Remove command script

[TST | 1 Cancel) poEswcute™)
A

First, browse the server service discovery and double click on the test component. If you use Psi [http://
psi-im.org/] client this should bring to you a new window with ad-hoc commands list. Other clients may
present available ad-hoc commands differently.

The screenshot below shows how this may look. Y ou have to provide some description for the script and
an ID string. We use Groovy in this guide but you can as well use any different scripting language.

59

http://psi-im.org/
http://psi-im.org/
http://psi-im.org/

Tigase Development Guide

test@devel.tigase.org

Description: List bad words

Command Id: badwards-list

Language GrooWy

badw = (java. wtil SetibadWaords

def result = =

for (% in badw) { result += 5 + "\n" |}
return redulE

Script text:

Save to disk: [V

rsi | revious Mext _ Cancel | [Finish

Pleaserefer to the Tigase scripting documentation for all the detailshow to add support for more languages.
From the Tigase API point of view it al looks the same. Y ou have to select a proper language from the
pull-down list on windows shown on the right. If your preferred language is not on the list, it meansit is
not installed properly and Tigase is unable to detect it.

The script to pull alist of current bad words can be as simple as the following Groovy code:

def badw = (java.util. Set)badWrds

def result = -""

for (s in badw) { result +=s + -"\n" -}
return result

Asyou see from the code, you have to reference your component variablesto avariablesin your script to
make sure a correct typeis used. The rest is very simple and is a pure scripting language stuff.

Load the script on to the server and execute it. You should receive a new window with alist of al bad
words currently used by the spam filter.

Below is another simple script which allows updating (adding/removing) bad words from the list.

i mport tigase.server. Conmand
i mport tigase.server. Packet

def WORDS LI ST_KEY = -"words-list"
def OPERATI ON_KEY = -"operation"
def REMOVE = -"Renove"

def ADD = -"Add"

def OPERATIONS = [ADD, REMOVE]

60

Tigase Development Guide

def badw = (java.util. Set)badWrds

def Packet p = (Packet)packet

def words = Command. get Fi el dVal ue(p, WORDS LI ST_KEY)
def operation = Comrand. get Fi el dVal ue(p, OPERATI ON_KEY)

if (words == null) {
-// No data to process, let's ask user to provide
-// a list of words
def res = (Packet)p.commandResul t (Conmand. Dat aType. f or nm
Conmand. addFi el dVal ue(res, WORDS LI ST _KEY, -"", -"Bad words list")
Conmand. addFi el dVal ue(res, OPERATI ON_KEY, ADD, -"Qperation",
(String[])OPERATI ONS, (String[]) OPERATI ONS)
return res

}

def words_list = words.tokenize(",")

if (operation == ADD) {
words_list.each { badw add(it.trinm()) -}
return -"Words have been added.”

}

if (operation == REMOVE) {
words_list.each { badw. remove(it.trim()) -}
return -"Wrds have been renoved."

}

return -"Unknown operation: -" + operation

These two scripts are just the beginning. The possibilities are endless and with the simple afew lines of
code in your test component you can then extend your application at runtime with scripts doing various
things; you can reload scripts, add and remove them, extending and modifying functionality as you need.
No need to restart the server, no need to recompile the code and you can use whatever scripting language
you like.

Of course, scripts for whitelist modifications would look exactly the same and it doesn’t make sense to
attach them here.

Here is a complete code of the test component with the new method described at the beginning and data
structures changed from array of String*sto Java * Set:

Example component code.
public class Test Component extends Abstract Ker nel BasedConponent {

private static final Logger |og = Logger. getLogger(Test Conponent. cl ass. get Name()

private static final String BAD WORDS KEY
private static final String WH TELI ST_KEY

-"bad-wor ds";
-"white-list";

@ nj ect
private Test Modul e test Mbdul e;

@verride
public synchronized void everyMnute() ({

61

Tigase Development Guide

super. everyM nute();
t est Modul e. everyM nut e() ;

-}

@verride

public String get Component Version() {

String version = this.getd ass().getPackage(). getlnpl enentati onVersion();
return version == null -? -"0.0.0" -: version

-}

@verride
public String getDi scoDescription() {
return -"Spamfiltering";

-}

@verride
public String getDi scoCat egoryType() {
return -"spant;

-}

@verride
public int hashCodeFor Packet (Packet packet) ({
i f (packet.getElemlo() -!'= null) {
return packet. get El emTo(). hashCode();
-}
-/1 This should not happen, every packet nust have a destination
-// address, but naybe our SPAM checker is used for checking
-/1 strange kind of packets too...
i f (packet.getStanzaFron() -!= null) {
return packet. get St anzaFron() . hashCode();
-}
-// If this really happens on your systemyou should | ook carefully
-// at packets arriving to your component and decide a better way
-// to cal cul ate hashCode
return 1,

-}

@verride
publ i c bool ean i sDi scoNonAdmi n() {
return false;

-}

@verride
public int processinglnThreads() {
return Runtime. getRuntine().avail abl eProcessors();

-}

@verride
public int processingQutThreads() ({
return Runtime. getRuntine().avail abl eProcessors();

-}

@verride
protected voi d registerMdul es(Kernel kernel) {

62

Tigase Development Guide

}

-// here we need to register nodul es responsible for processing packets

-}

@verride
public void getStatistics(StatisticsList list) {
super.getStatistics(list);
list.add(getNanme(), -"Spam nmessages found"”, testMdul e.getTotal SpanCounter (),
list.add(getNanme(), -"All nessages processed", testMdul e.get MessagesCounter ()
if (list.checkLevel (Level.FINEST)) {
-// Some very expensive statistics generation code..
-}
-}

@verride

public void initBindi ngs(Bi ndi ngs binds) {
super . i ni t Bi ndi ngs(bi nds);
bi nds. put (BAD_ WORDS KEY, testMdul e. badWor ds);
bi nds. put (WHI TELI ST_KEY, testMdul e. whiteList);

-}

Example module code.

@ean(name = -"test-nodul e", parent = TestConponent.class, active = true)
public static class Test Modul e extends Abstract Modul e {

private static final Logger |og = Logger. getLogger(TestMdul e. cl ass. get Canoni ca

private Criteria CRITERIA = ElenentCriteria. nane(" nmessage");

private String[] FEATURES = { -"tigase:x:spamfilter", -"tigase:x:spamreporting
@onfi gFi el d(desc = -"Bad words", alias = -"bad-words")

protected CopyOnWiteArraySet<String> badWwrds = new CopyOnWiteArraySet <>(Array
@onfigField(desc = -"Wiite |listed addresses”, alias = -"white-list")

protected CopyOnWiteArraySet<String> whiteList = new CopyOnWiteArraySet<>(Arra
@onfi gFi el d(desc = -"Logged packet types", alias = -"packet-types")

private String[] packetTypes = {"nmessage", -"presence", -"iq"};
@onfigFi el d(desc = -"Prefix", alias = -"| og-prepend")

private String prependText = -"Spam detected: -";

@onfi gFi el d(desc = -"Secure |ogging", alias = -"secure-|oggi ng")

private bool ean securelLoggi ng = fal se;

@onfi gFi el d(desc = -"Abuse notification address”, alias = -"abuse-address")
private JI D abuseAddress = JID.jidlnstanceNS("abuse@ ocahost");
@onfi gFi el d(desc = -"Frequency of notification", alias = -"notification-frequen

private int notificationFrequency = 10;
private int delayCounter = 0O;

private | ong spanCounter = O;

private | ong total SpanCounter = 0;
private | ong nessagesCounter = O;

@ nj ect
private Test Conmponent comnponent;

63

Tigase Development Guide

public void everyMnute() {
if ((++delayCounter) >= notificationFrequency) ({
write(Message. get Message(abuseAddr ess, conponent. get Conponentld(), StanzaTyp
-"Detected spam nessages: -" + spanmCounter, -"Spam
conponent . newPacket I d("spam")));
del ayCounter = O;
spanmCounter = O;
-}
-}

@verride
public String[] getFeatures() {
return FEATURES;

-}

@verride
public Criteria getMduleCriteria() {
return CRI TERI A

-}

public int get MessagesCounter () {
return nessagesCounter;

-}

public int getTotal SpamCounter () {
return total SpanCounter;

-}

public void setPacket Types(String[] packetTypes) {
t hi s. packet Types = packet Types;
Criteria crit = new O ();
for (String packet Type -: packet Types) {
crit.add(El enentCriteria. name(packet Type));
-}
CRITERIA = crit;
-}

@verride
public void process(Packet packet) throws Conponent Exception, Ti gaseStringprepEx
-// Is this packet a nessage?
if ("nmessage” == packet.get El emNane()) ({
conponent . updat eSer vi ceDi scoveryl t en{ conmponent . get Name(), -"nmessages”,
-"Messages processed: [" + (++nessagesC
String from = packet. get StanzaFron().toString();
-// 1s sender on the whitelist?
if (!'whiteList.contains(from) {
-// The sender is not on whitelist so let's check the content
String body = packet. get El enCDat aSt ati cStr(Message. MESSAGE_BODY_PATH) ;
if (body -!= null && -!body.isEnpty()) {
body = body. t oLower Case();
for (String word -: badWrds) ({
i f (body.contains(word)) {
| og. finest(prependText + packet.toString(securelLogging));

64

Tigase Development Guide

++spanCount er ;

conponent . updat eSer vi ceDi scoverylten{conmponent . get Name(), -"spanm', -
(++t ot al SpamCounter) + -"]", tr

return;

-// Not a SPAM return it for further processing
Packet result = packet.swapFromlo();
wite(result);
-}
}

Component Implementation - Lesson 7 - Data Repository

ConfigRepository

There are cases when you want to store some data permanently by your component. Y ou can of course use
the component configuration to provide some database connection settings, implement your own database
connector and store records you need. There is, however, a very ssimple and useful framework which
allows you to read and store some data transparently in either a database or a disk file. The framework
also supports ad-hoc command interface straight away so you can manipulate your component data using
an XMPP client.

In order to use it one needsto extend t i gase. db. conp. Conf i gReposi t ory abstract class.

Accessing UserRepository or AuthRepository

To use AuthRepository or User Repository you need only to declare fields properly and annotated them
with @Inject. Thisfields must be part of a class managed by Tigase Kernel - class of acomponent or any
class annotated with @Bean annotation. For that classes proper instances of repositories will be injected
by dependency injection.

Example usage of AuthRepository and User Repository.

@ nj ect
private Aut hRepository authRepository;
@ nj ect
private UserRepository userRepository;

Accessing other repositories

In order to have more freedom while accessing repositoriesit’ s possibleto create and use custom repository
implementation which implements DataSour ceAwar e interface.

For our example let's assume it will be class implementing TestRepositorylfc and our implementation
will be using JDBC. To make it work, we need to define Test Reposi t oryl f ¢ as a generic inter-
face extending Dat aSour ceAwar e interface. Dat aSour ceAwar e interface will provide definition
for methods required by Tigase XMPP Server internals to initialize custom repository classes based on
Test Repositorylfc.

TestRepositorylfc.

65

Tigase Development Guide

public interface TestRepositorylfc<DS extends DataSource> extends Dat aSourceAwar e<
-/ 1 Exanpl e net hod
voi d addltem(BareJI D userJid, String item throws RepositoryException;

}

Next we need to prepare our actual implementation of repository - class responsible for execution of
SQL statements. In this class we need to implement all of methods from our interface and method void
setDataSour ce(DataSour ce dataSour ce) which comesfrom DataSour ceAwar einterface. Inthismethod
we need to initialize data source, ie. create prepared statements. We should annotate our new class with
@reposi t ory. Met a annotationwhichwill allow Tigase XM PP Server to find this classwhenever class
implementing Test Reposi t or yl f ¢ and with support for data source with jdbc URI.

@Repository. Meta(supportedUris = -"jdbc:.*")
public static class JDBCTest Repository inplenents TestRepositorylfc<DataRepository

private static final String SOVE STATEMENT = -"select * fromtig_users";
private DataRepository repository;

@verride
public void setDataSource(Dat aRepository repository) {
-// here we need to initialize required prepared statenents
try {
repository.initPreparedSt at enent (SOVE_STATEMENT, SOVE_STATEMENT) ;
-} catch (SQLException ex) {
t hrow new Runti meException("Could not initialize repository”, ex);
-}
this.repository = repository,;

-}

@verride
public void addltem(BaredI D userJid, String iten) throws RepositoryException {
try {
PreparedSt atenent stnmt = repository. get PreparedSt at enent (userJi d, SOVE_STATE
synchroni zed (stm) ({
-// do what needs to be done
-} catch (SQLException ex) {
t hr ow new Reposi t or yExcepti on(ex);
-}
-}
}

Asyou can see we defined type of adata source generic parameter for interface Test Reposi toryl f c.
With that we make sure that only instance implementing Dat aReposi t or y interface will be provided
and thanks to that we do not need to cast provided instance of Dat aSour ce to thisinterface before any
access to data source.

Withthat in placewe need to create classwhich will take care of adding support for multi-database setup. In
our caseit will be TestRepositoryM DBean, which will take care of discovery of repository class, initial-
ization and re-injection of data source. It isrequired to do so, asit wasjust mentioned our Test Repos-
i t or yiVDBean will be responsible for initialization of JDBCTest Reposi t ory (actually thiswill be
done by MDReposi t or yBean which isextended by Test Reposi t or yMDBean.

@ean(name = -"repository", parent = TestConmponent.class, active = true)

66

Tigase Development Guide

public static class Test RepositoryVDBean extends MDRepositoryBeanWthStatistics<Te

}

i mpl enents Test Repositorylfc {

public Test RepositoryVdBean() {
super (Test Reposi torylfc. cl ass);

-}

@verride
public C ass<?> get Defaul t BeanC ass() {
return Test RepositoryConfigBean. cl ass;

-}

@verride
public void setDat aSour ce(Dat aSour ce dat aSource) {
-// nothing to do here

-}

@verride
public void addltenm(BaredI D userJid, String iten) throws RepositoryException {

get Reposi tory(userJid. get Domai n()).addlten{userJdid, item;
-}

@verride

protected C ass<? extends TestRepositorylfc> findCd assFor Dat aSour ce(Dat aSource d
t hrows DBI nit Exception {
return Dat aSour ceHel per. get Def aul t Cl ass(Test Repositoryl fc. cl ass, dataSource. ge

-}

public static class Test RepositoryConfigBean extends MDRepositoryConfi gBean<Test
-}

Most of this code will be the same in all implementations based on MDReposi t or yBeanWt hS-
tatistics. Inour case only custom method is void addltem(...) which uses getRepository(String
domain) method to retrieve correct repository for a domain. This retrieval of actual repository instance
for adomain will need to be done for every custom method of Test Reposi toryl fc.

Tip

It is also possible to extend MDReposi t or yBean or SDReposi t or yBean instead of
VDReposi t oryBeanW t hSt at i sti cs. However, if you decide to extend abstract reposi-
tory bean classes without wi t hSt at i sti cs suffix, then no statistics data related to usage of
this repository will be gathered. The only change, will be that you will not need to passinterface
class to constructor of asuperclass asit is not needed.

Note

As mentioned above, it is also possible to extend SDRepost i or yBean and SDReposi t o-
ryBeanWt hSt ati sti cs. Methods which you would need to implement are the sameisin
case of extending MDReposi t oryBeanW t hSt ati sti cs, however internaly SDRepos-
i t or yBean will not have support for using different repository for different domain. In fact
SDReposi t oryBeanWt hSt at i sti cs hasonly onerepository instance and uses only one
data source for all domains. The same behavior is presented by MDReposi t or yBeanW t hS-
tatisticsifonlysingledef aul t instanceof repository isconfigured. However, MDRepos-

67

Tigase Development Guide

itoryBeanWthStatistics gives better flexibility and due to that usage of SDReposi -
t or yBean and SDReposi t oryBeanW t hSt ati sti cs isdiscouraged.

While thisis more difficult to implement than in previous version, it gives you support for multi database
setup and provides you with statistics of database query times which may be used for diagnosis.

Asyou can also see, we' ve annotated T estRepositoryM DBean with @Bean annotation which will force
TigaseKernel toloadit every time TestComponent will beloaded. Thisway itispossibletoinject instance
of this class as a dependency to any bean used by this component (ie. component, module, etc.) by just
creating afield and annotating it:

@ nj ect
private TestRepositorylfc testRepository;

Tip

In testRepository field instance of TestRepositoryM DBean will be injected.

Note

If the class in which we intend to use our repository is deeply nested within Kernel de-

pendencies and we want to leverage automatic schema versioning we have to implement
ti gase. ker nel . beans. Regi st rar Bean inour class!

Configuration

Defaults

Our class Test Reposi t or yMDBean is annotated with @Bean which setsitsname asr eposi t ory
and sets parent as Test Conponent . Instance of this component was configured by use under name of
t est in Tigase XMPP Server configuration file. Asaresult, al configuration related to our repositories
should be placed inr eposi t or y section placed insidet est section.

Example.

test(class: Test Conponent) {
repository () {
-/l repository related configuration

-}

As mentioned above, if we use MDRepositoryBeanWthStatistics as our base class for
Test Reposi t or yiVDBean, then we may have different data sources used for different domains. By
default, if wewill not configureit otherwise, MDReposi t or yBeanW t hSt at i sti cs will createonly
singlerepository instance named def aul t . It will be used for all domainsand it will, by default, use data
source named the same as repository instance - it will use data source named def aul t . Thisdefaults are
equal to following configuration entered in the config file:

test(cl ass: Test Component) {
repository () {
default () {
dat aSour ceNane = -'default’
-}
-}

68

Tigase Development Guide

Changing data source used by repository

Itis possible to make any repository use different data source than data source configured under the same
name asrepository instance. To do so, you need to set dat aSour ceNane property of repository instance
to the name of data source which it should use.

Example setting repository def aul t to use data sourcenamedt est .

test(class: Test Conponent) {
repository () {
default () {
dat aSour ceName = -'test'
-}
-}
}

Configuring separate repository for domain

To configure repository instance to be used for particular domain, you need to define repository with the
same name as domain for which it should be used. It will, by default, use data source with name equal
domain name.

Separaterepository for exanpl e. comusing data source named exanpl e. com

dat aSource () {
-// configuration of data sources here is not conplete

default () {

uri = -"jdbc: derby:/dat abase"
-}
-'example.com () {

uri = -"jdbc: derby/ exanpl e"
-}

}

test(class: Test Conponent) ({
repository () {

default () {

-}

-'example.com () {
-}

-}
}

Separaterepository for exanpl e. comusing data source named t est .

dat aSource () {
-// configuration of data sources here is not conplete

default () {

uri = -"jdbc: derby:/dat abase”
-}
-'test' () {

uri = -"jdbc: derby/ exanpl e"
-}

}

test(cl ass: Test Component) {

69

Tigase Development Guide

repository () {

default () {
-}
-'example.com () {
dat aSour ceName = -'test'

-}

-}

}
Note

In both examples presented above, for domains other than exanpl e. com repository instance
named def aul t will be used and it will use data source named def aul t .

Repository Versioning

It'salso possibleto enable repository versioning capabilities when creating custom implementation. There
are acouple of parts/steps to fully take advantage of this mechanism.

EachDat aSour ce hasatablet i g_schena_ver si ons which containsinformati on about component
schema version installed in the database associated with particular DataSource.

Enabling version checking in implementation

First of all, repository implementation should implement
tigase.db. util. RepositoryVersi onAnar e interface (al it's methods are defined by default)
and annotate it with t i gase. db. Reposi t ory. Schenal d. For example .Repository annoted with
Schenal d and implementing Reposi t or yVer si onAwar e

@Repository. Schemald(id = -"test-conmponent”, name = -"Test Conmponent")
public static class Test RepositoryVDBean extends MDRepositoryBeanWthStatistics<Te
i mpl enents Test Repositorylfc {

Thisaction alone will result in performing the check during Tigase XM PP Server startup and initialisation
of repository whether tables, indexes, stored procedures and other elements are present in the configured
data source in the required version. By default, required version matches the implementation version (ob-
tained viacall toj ava. | ang. Package. get | npl enent ati onVer si on()), however it's possi-
ble to specify required version manually, either:

e by utilizingti gase. db. util. RepositoryVersi onAwar e. SchemaVer si on annotation:

@Repository. Schemald(id = -"test_conmponent”, name = -"Test Conmponent")

@Reposi t or yVer si onAwar e. SchemaVer si on(version = -"0.0.1")

public static class Test RepositoryVDBean extends MDRepositoryBeanWthStatistics<Te
i mpl enents Test Repositorylfc {

e or by overridingti gase. db. uti | . Reposi t oryVer si onAwar e. get Ver si on method:

@verride
public Version getVersion() {
return -"0.0.1";

}

70

Tigase Development Guide

Handling wrong version and the upgrade
To detect that version information in database is inadequate following logic will take place:

« if thereisno version information in the database the service will be stopped completely prompting to in-
stall the schema (either viaupdat e- schema or i nst al | - schena depending on user preference);

« if there is an information about loaded component schema version in the repository and the base part
of the required schemaversion (i.e. taking into account only major.minor.bugfix part) is different from
the one present in the repository then:

« if the required version of the component schemaisfinal (i.e. non SNAPSHOT) the server will shut-
down and print in thelog file (namely | ogs/ ti gase- consol e. | og) termina error forcing the
user to upgrade the schema;

« if therequired version of the component schemais non-final (i.e. having SNAPSHOT part) then there
will be awarning printed in the log file (namely | ogs/ ti gase- consol e. | og) prompting user
to run the upgrade procedure due to possible changes in the schema but the server will not stop;

Upgrade of the loaded schema in the database will be performed by executing:
./scripts/tigase.sh upgrade-schema etc/tigase. conf

The above command will load current configuration, information about all configured data sources and
enabled components, and then perform upgrade of the schema of each configured component in the ap-
propriate data source.

Depending on the type of the database (or specified annotation), how the upgrade procedure is handled
internally is slightly different.

Relational databases (external handling)

For all relational databases (MySQL, PostgreSQL, MS SQL Server, etc...) we highly recommend storing
complete database schema in external files with following naming convention: <dat abase_t ype>-
<conponent _nane>- <ver si on>. sql , for example complete schema for our Test component ver-
sion 0.0.5intended for MySQL would be stored infilenamed mysqgl - t est - 0. 0. 5. sql . What'smore
- schemafiles must be stored under dat abase/ subdirectory in Tigase XMPP Server installation direc-
tory.

Note

this can be controlled with ext er nal property of Repository. Schemal d annotation,
which defaultsto "true”, if setto f al se then handling will be done as described in ?7?2?

For example:

» dat abase/ nysql -test-0.0. 1. sql
» dat abase/ nysql -test-0.0. 2. sql
« dat abase/ nysql -test-0.0. 3. sql
» dat abase/ nysql -test-0.0. 4. sql
» dat abase/ nysqgl -test-0.0.5. sql

During the upgrade processall required schemafileswill beloaded in the ascending version order. Version
range will depend on the conditions and will follow simplerules:

71

Tigase Development Guide

 Start of the range will start at the next version to the one currently loaded in the database (e.g. if the
current version loaded to the database is 0. 0. 3 and we are deploying component version 0. 0. 5
then Schemal oader will try to load schemafrom files: dat abase/ nysql -t est - 0. 0. 4. sgl and
dat abase/ nysql -test-0.0.5.sql)

 If we are trying to deploy a SNAPSTHOT version of the component then schema file matching that
version will aways beincluded in thelist of filesto be loaded (e.g. if we are trying to deploy a nightly
build with component version 0. 0. 5- SNAPSHOT and currently loaded schemaversion in the database
is0. 0. 5 then Schemal oader will includedat abase/ nysql -t est - 0. 0. 5. sql inthelistof files
to be loaded)

It's also possible to skip above filtering logic and force loading all schema files for particular compo-
nent/database from dat abase/ directory by appending - - f or ceRel oadAl | SchemaFi | es=t rue
parameter to the upgr ade- schena/i nst al | - schena command.

Non-relational databases (internal handling)

If there is a need to handle database schema internally (for example for cases like NoSQL databas-
es or simply there is such preference) then it's possible to do so by setting ext er nal attribute of
Reposi t ory. Schenal d annotationtof al se:

@repository. Schemald(id = -"test_conmponent”, name = -"Test Conmponent", external =

In such case, updat eSchenma method fromti gase. db. uti | . Reposi t or yVer si onAwar e in-
terface should be implemented to handle installation/updating of the schema. It takes two arguments:

* Optional <Ver si on> ol dVer si on - indicating current version of the schemaloaded to the data-
base (if it's present)

e Ver si on newVer si on -indicating required version (either version of component or specific version
of the repository)

Setting required repository version in database

Each versioned schema file should consist at the end code responsible for setting appropriate version of
the loaded schema in the form of Stored Procedure call with the name of the component and the version
as parameters:

* Postgresgl

-- QUERY START:
sel ect Ti gSet Conponent Version('test_conponent', -'0.0.5");
-- QUERY END:

. MsSQL Server

-- QUERY START:

exec Ti gSet Component Version -'test_conmponent', -'0.0.5";
-- QUERY END:

€O

« MySQL

-- QUERY START:
call Ti gSet Conponent Version('test_conponent', -'0.0.5");
-- QUERY END:

e Derby

72

Tigase Development Guide

-- QUERY START:
cal |l Ti gSet Component Version('test_conponent', -'0.0.5");
-- QUERY END:

In case of schema handled internaly, after successful load (i.e. execution of the imple-
mented ti gase. db.util.RepositoryVersionAware. updat eSchema method returning
tigase.db. util.SchemaLoader. Resul t. ok) theversion in the database will be set to the cur-
rent version of the component.

This allows (in case of schema handled externally) to load it by hand by directly importing . sql files
into database.

Component Implementation - Lesson 8 - Lifecycle of a
component

Initialization of a component
A startup hook in the Tigase is different from the shutdown hook.

Thisisbecauseyou cannot really tell when exactly the startup timeis. Isit when the application started, isit
when configuration isloaded, isit when all objectsareinitialized. And thismight be even different for each
component. Therefore, in fact, thereis no startup hook in Tigase in the same sense as the shutdown hook.

There are afew methods which are called at startup time of a component in the following order:

1. Constructor - thereis of course constructor which has no parameters. However it does not guarantee
that this instance of the component will be used at all. The object could be created just to get default
values of a config fields and may be destroyed afterwards.

2. Getters/Setters - at second step of initialization of a component, Kernel configures component by
reading and setting values of fields annotated with @Conf i gFi el d() annotation. If thereisapublic
getter or setter for the same name as an annotated field - it will be used.

3. void beanConfigurationChanged(Collection<String> changedFields) (optional) - if component im-
plements Conf i gur at i onChangedAwar e interface, this method will be called to notify compo-
nent about fields which values were changed. It is useful if case in which component internals depends
on configuration stored in more than one field, as it allows you to reconfigure component internals
only once.

4. void register (Kernel kernel) (optional) - if component implements Regi st r ar Bean interface this
method is called to allow registration of component private beans.

5. Dependency Injection - during this time Kernel injects beans to component fields annotated with
@ nj ect . If public getters or setters for thisfields exist - kernel will use them.

6. void initialized() (optional) - called if component implements | ni ti al i zabl e interface to notify
it that configuration is set and dependencies are injected.

7. void start() - during this call component startsit’sinternal jobs or worker threads or whatever it needs
for future activity. Component’s queues and threads are initialized at this point. (after this method
returns the component is ready)

Therefore, the st art () hook is the best point if you want to be sure that component is fully loaded,
initialized and functional.

73

Tigase Development Guide

Tip

Component instance may be started and stopped only once, however new instances of the same
component with the same name may be created during Tigase XM PP Server uptime, ie. asaresult
of aserver reconfiguration.

Reconfiguration

During lifecycle of a component instance it may happen that Tigase XM PP Server will be reconfigured.
If change in configuration of this component will not be related to it’ s activity, then Kernel will set values
of changes fields annotated with @onf i gFi el d() . Inthis case public field setters may be used.

Tip

If component implements Conf i gur ati onChangedAwar e interface, then method void
beanConfigurationChanged(Collection<String> changedFields) will be called to notify com-
ponent about fields which values were changed. It is useful if same component internal depends
on configuration stored in more than onefield, as it allows you to reconfigure this internal once.

Update of injected dependencies

During lifecycle of acomponent instance it may happen that due to reconfiguration of a server other bean
needs to be injected as a dependency to a component. In this case Tigase Kernel will inject dependencies
to fields annotated with @ nj ect which value needs to be updated.

Stopping a component

Component instance may be stopped at any point of Tigase XMPP Server runtime, ie. due to reconfigu-
ration, or due to server graceful shutdown.

In both cases following methods of a component will be called:
1. void stop() - first method stops component internal processing queues.

2. void beforeUnregister () (optional) - if component implements @UnregisterAware@ interface this
method is called to notify instance of a component that it is being unloaded.

3. void unregister (Kernel kernel) (optional) - if component implements Regi st r ar Bean called to
give component away to unregister beans (if needed).

Packet Filtering in Components
The Packet Filter API

Tigase server offers an API to filter packet traffic inside every component. Y ou can separately filter in-
coming and outgoing packets.

By filtering we mean intercepting apacket and possibly making some changesto the packet or just blocking
the packet completely. By blocking we mean stopping from any further processing and just dropping the
packet.

The packet filtering is based on the PacketFilterIfc [https://github.com/tigase/tigase-server/blob/mas-
ter/src/main/javaltigase/server/PacketFilterlfc.javal interface. Please have a look in the JavaDoc docu-

74

https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/server/PacketFilterIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/server/PacketFilterIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/server/PacketFilterIfc.java

Tigase Development Guide

mentation to this interface for all the details. The main filtering method is Packet filt er (Packet
packet) ; which takes packetsasan input, processesit, possibly alerting the packet content (may add or
remove some payloads) and returns a Packet for further processing. If it returns null it means the packet
is blocked and no further processing is permitted otherwise it returns a Packet object which is either the
same object it received as a parameter or amodified copy of the original object.

Please note, although Packet object is not an unmodifiable instance, it isrecommended that changesto the
existing object are not made. The same Packet might be processed at the same time by other components
or threads, therefore modification of the Packet may lead to unpredictable results.

Pleaserefer to an example codein PacketCounter [https://github.com/tigase/tigase-server/bl ob/master/src/
main/javaltigase/server/PacketFilterIfc.javal whichisavery simplefilter counting different types of pack-
ets. Thisfilter is by default loaded to all components which might be very helpful for assessing traffic
shapes on newly deployed installation. Y ou can get counters for all types of packets, where they are gen-
erated, where they flow, what component they put the most load on.

This is because packet filter can also generate and present its own statistics which are accessible via nor-
mal statistics monitoring mechanisms. To take advantage of the statistics functiondlity, the packet fil-
ter hasto implement thevoi d get Statistics(StatisticsList |ist); method. Normaly,
the method is empty. However, you can generate and add statistics from the filter to the list. Please re-
fer to PacketCounter [https://github.com/tigase/tigase-server/blob/master/src/main/javaltigase/server/fil -
ters/PacketCounter.java] for an example implementation code.

Configuration

Packet filtersare configurable, that isalist of packet filterscan beprovided in Tigase server’ sconfiguration
for each component separately and for each traffic direction. This gives you agreat flexibility and control
over the data flow inside the Tigase server.

You can for example, load specific packet filters to all connections managers to block specific traffic or
specific packet source from sending messages to users on your server. You could also reduce the server
overall load by removing certain payload from all packets. The possibilities are endless.

The default configuration is generated in such a way that each component loads a single packet filter -
Packet Count er for each traffic direction:

bosh {
-'incomng-filters'
-'outgoing-filters'
seeQt her Host {}

-'tigase.server.filters. Packet Counter'’
-'tigase.server.filters. Packet Counter'’

}

c2s {
-'incomng-filters' = -'tigase.server.filters. Packet Counter’
-'outgoing-filters' = -'"tigase.server.filters. Packet Counter’
seeQt her Host {}

}

' message-router’ {
-'incomng-filters'
-'outgoing-filters'

-'tigase.server.filters. Packet Counter'’
-'tigase.server.filters. Packet Counter'’

}
muc {
-'incomng-filters' = -'tigase.server.filters. Packet Counter’
-'outgoing-filters' = -'"tigase.server.filters. Packet Counter’
}
s2s {

75

https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/server/PacketFilterIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/server/PacketFilterIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/server/PacketFilterIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/server/filters/PacketCounter.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/server/filters/PacketCounter.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/server/filters/PacketCounter.java

Tigase Development Guide

-'incomng-filters'
-'outgoing-filters'

-'tigase.server.filters. Packet Counter'’
-'tigase.server.filters. Packet Counter'’

}

'sess-man' () {
-'incomng-filters'
-'outgoing-filters'

-'tigase.server.filters. Packet Counter'’
-'tigase.server.filters. Packet Counter'’

}

Now, let's say you have a packet filter implemented in class: com.company.SpamBlocker. You want to
disable PacketCounter on most of the components leaving it only in the message router component and
you want to install SpamBlocker in all connection managers.

Please note, in case of the connection managers 'incoming' and 'outgoing' traffic is probably somehow
opposite from what you would normally expect.

 incomingistraffic whichissubmitted to acomponent by message router and hasto be further processed.
For connection managers this further processing means sending it out to the network.

» outgoingistraffic which is'generated' by the component and goes out of the component. Such a packet
issubmitted to message router which then decideswhereto send it for further processing. For connection
managers outgoing traffic is all the packets just received from the network.

According to that we have to apply the SpamBlocker filter to al 'outgoing' traffic in al connection man-
agers. You may also decide that it might be actually useful to compare traffic shape between Bosh con-
nections and standard XM PP c2s connections. So let’s leave packet counters for this components too.

Hereisour new configuration applying SpamBlocker to connection managers and PacketCounter to afew
other components:

bosh {
-'incomng-filters'
-'outgoing-filters'
seeQt her Host {}

-'tigase.server.filters. Packet Counter’
-'tigase.server.filters. Packet Count er, com conpany. SpanBl

}

c2s {
-'incomng-filters' = -'tigase.server.filters. Packet Counter’
-'outgoing-filters' = -"tigase.server.filters. Packet Counter, com conpany. SpanBl
seeQt her Host {}

}

'message-router’ {
-'incomng-filters'
-'outgoing-filters'

-'tigase.server.filters. Packet Counter’
-'tigase.server.filters. Packet Counter’

}
muc {
-'incomng-filters' = -""
-'outgoing-filters' = -""
}
s2s {
-'incomng-filters' = -""
-'outgoing-filters' = -'com conpany. SpanBl ocker'
}

'sess-man' () {
-'incomng-filters'
-'outgoing-filters'

76

Tigase Development Guide

The simplest way to apply the new configuration is viathe confi g. t dsl file which isin details de-
scribed in the Admin Guide.

EventBus APl in Tigase

EventBus is a custom publish-subscribe mechanism which allows for the use of Event Listener within
Tigase Server. EventBus consists of two separated parts: Distributed EventBus and Local EventBus. Lo-
cal EventBus is only concerned with local event listener, and will operate events locally. Distributed
EventBus is designed to distribute events among cluster nodes. For a more detailed overview of Event-
Bus and it’s features, please visit The Administration Guide [http://docs.tigase.org/tigase-server/snap-
shot/Administration_Guide/html/#eventBus].

EventBus API

To create instance of EventBus use the following code:
Event Bus event Bus = Event BusFactory. getl nstance();

NOTE: Remember, that EventBus is asynchronous. All handlers are called in a different thread than the
thread that initialy fired the event.

Distributed EventBus

Distributed EventBus is designed to distribute events among cluster nodes. Events must extends
ti gase. xm . El enent:

<Event Nanme xm ns="ti gase: demn" >
<sanpl e_val ue>1</ sanpl e_val ue>
</ Event Nane>

Events are identified by two elements: name of event and namespace.
Registering events handlers

To catch and handle an event published in any node of cluster, EventsHandler must be registered first.

Event Handl er handl er = new Event Handl er () {

@verride
public void onEvent (String name, String xmns, Elenment event) {
-// TODO
-}
i
event Bus. addHandl er (" Event Nane", -"ti gase: denp", handler);

It ispossible to register handler for all events with aspecific xmlnssuch ast i gase: deno below:
event Bus. addHandl er (nul I, -"tigase: deno", handl er);

Events created on others cluster node, will have attributer enpt e settot r ue and attribute sour ce set
to event creator node name:

<Event Name xm ns="ti gase: demp" renote="true" source="nodel. exanpl e">
<sanpl e_val ue>1</ sanpl e_val ue>
</ Event Nanme>

77

http://docs.tigase.org/tigase-server/snapshot/Administration_Guide/html/#eventBus
http://docs.tigase.org/tigase-server/snapshot/Administration_Guide/html/#eventBus
http://docs.tigase.org/tigase-server/snapshot/Administration_Guide/html/#eventBus

Tigase Development Guide

Publishing events

The only limitation for events are the requirements of name and xmins. Internal structure may be defined
by programmer.

El enent event = new El enent (" Event Nane", new String[]{"xm ns"}, new String[]{"tiga
event. addChi | d(new El enent ("sanpl e_val ue", -"1"));

event Bus. fire(event);

This event will be received by al handlers that are registered for exactly this event, or al events using
the tigase:demo namespace on all cluster nodes. It is possible to limit event delivery only to the current
Tigase instance (current cluster node), by setting the attribute | ocal :

El ement event = new El enent ("Event Nane", new String[]{"xm ns", -"local"}, new Stri
event . addChi | d(new El enent ("sanpl e_val ue", -"1"));

event Bus.fire(event);

Local EventBus

Local EventBusisthe mechanism to distribute eventsto all listeners on the sameinstance of Tigase Server.
Local EventBus uses Java Objectsaseventsand allowsfor the transmission instance of object (for example
Map or Set).

Defining events and handlers classes
Local EventBus uses own structures of events and handlers.
SampleEvent.java.
public static class Sanpl eEvent inplenments Event {

private final String data;

public Sanpl eEvent (String data) {
this.data = data;

-}

public String getData() ({
return data;

-}
}
Registering events handlers

To catch an event, Event Handl er must be registered in EventBus:

Event Handl er handl er = new Event Handl er () {

@verride
public void onEvent (Event event) {

-}

78

Tigase Development Guide

event Bus. addHandl er (Sanpl eEvent . cl ass, handl er);

The other way to register ahandler is by using annotations. Event consumer class must contain the method
with a single parameter, and its type must be equal to expected event type.

SampleConsumer .java.

public static class Sanpl eConsuner {

@Handl eEvent

public void onCat chSomeNi ceEvent (Sanpl eEvent event) {
}

@Handl eEvent

public void onEvent 01(| nportant Event event) {

}

}

Theinstance of class must be registered in Eventbus:
event Bus. regi ster Al | (consumer);

Oncethisisin place, EventBus will be added as the event handler for two different events.

Publishing events
Publishing eventsis simple:

Sanpl eEvent event = new Sanpl eEvent ("data");
event Bus. fire(event);

Cluster Map Interface

Starting with v7.1.0, a cluster map interface has been implemented. The cluster map is aided by use of the
distributed event bus system to communicate between al clusters.

Requirements

Any full distribution of Tigase will support the Cluster Map API so long as the eventbus component is
not disabled. JDK v8 is required for this feature, however since Tigase requires this, you should aready
haveit installed.

The cluster map is stored in memory and follows the map. uti |l . i nt er f ace java standards can be
used to improve cluster connections, and help clustered servers keep track of each other.

Map Creation

Map must be created with the following command:
java.util.Map<String, String> map = C usterMapFactory.get().createMap("type", Strin

Where "type" isthe map ID. This creates the map locally and then fires an event to al clustered servers.
Each cluster server has an event handler waiting for, in this case, NewMapCr eat e event. Map Key class
and Map Value class are used to type conversion. Arrays of strings are parameters, for example 1D of user
session. Once received, the distributed eventbus will create alocal map.

79

Tigase Development Guide

event Bus. addHandl er (MapCr eat edEvent . cl ass, new Event Handl er <MapCr eat edEvent >() {

@verride
public void onEvent (MapCreat edEvent e) ({
-}

1)
A brief example of amap creation is shown here:
java.util.Map<String, String> map = C usterMapFactory. get().createMap("Very_I nport

This will fire event MapCreatedEvent on al other cluster nodes. Strings
"Very Important Map_In_User Session" and "user-session-identifier-123" are given as parameters in
onMapCr eat ed() ~ method. The event consumer code must know what to do with map with type
"Very Important Map_In_User_Session". It may retrieve user session "user-session-identifier-123" and
put thismap in this session. It should be used to tell other nodes how to treat the event with anewly created
map, and it should be stored in user session.

Map Changes

Changesto the map on one cluster will trigger AddVal ue or RenoveVal ue eventsin eventbus. Stanzas
sent between clusters will look something like this:

<El enent Add xm ns="ti gase: cl ustered: nap" >
<ui d>1- 2- 3</ ui d>
<itene
<key>xKEY</ key>
<val ue>xVALUE</ val ue>
</itenp
<itene
<key>yKEY</ key>
<val ue>yVALUE</ val ue>
</itenp
</ El ement Add>

Code to handle adding an item:

event Bus. addHandl er (El enent Add, tigase: clustered: map, new EventHandler() {

@verride
public void onEvent(String name, String xmns, Elenment event) {
-1);

Where the element 'event' isthe UID, and the name string is the name of the map key/value pair.
This example removes an el ement from the cluster map. Removal of itemslook similar:

<El enent Renove xm ns="ti gase: cl ust er ed: map" >
<ui d>1- 2- 3</ ui d>
<itenp
<key>xKEY</ key>
<val ue>xVALUE</ val ue>
<litenmp
</ El ement Renmove>

with the code also being similar:

event Bus. addHandl er (El ement Renove, tigase: cl ustered: map, new Event Handl er () {

80

Tigase Development Guide

@verride
public void onEvent (String name, String xm ns, Element nane) {

-1);

Map Destruction

Java Garbage Collector will normally remove alocal map if it isno longer used. Clustered maps however
are not removed in this manner. These maps must be destroyed manually if they are no longer used:

Cl ust er MapFact ory. get (). destroyMap(cl map) ;

Calling this, the map named clmap will be destroyed on each cluster node.

The event handler will catch event when map is destroyed on another cluster node:

event Bus. addHandl er (MapDest r oyedEvent . cl ass,

@verride
public void onEvent (MapDestroyedEvent event) ({
-}

1)
Plugin Development

Thisisaset of documents explaining details what is a plugin, how they are designed and how they work
inside the Tigase server. The last part of the documentation explains step by step creating the code for
anew plugin.

Writing Plugin Code
Plugin Configuration
How Packets are Processed by the SM and Plugins

SASL Custom Mechanisms and Configuration

Writing Plugin Code

Stanza processing takes place in 4 steps. A different kind of plugin is responsible for each step of pro-

cessing:
1. XMPPPreprocessorlfc [https://github.com/tigase/tigase-server/bl ob/master/src/main/javaltigase/

xmpp/XM PPPreprocessorifc.java) - isthe interface for packets pre-processing plugins.

. XMPPProcessorlfc [https://github.com/tigase/tigase-server/blob/master/src/main/javaltigase/xmpp/

XMPPProcessor.java - istheinterface for packets processing plugins.

. XMPPPostprocessorlfc [https://github.com/tigaseltigase-server/bl ob/master/src/main/javaltigase/

xmpp/XM PPPostprocessorlfc.java) - isthe interface for packets post-processing plugins.

. XMPPPacketFilterlfc [https://github.com/tigase/tigase-server/blob/master/src/main/javaltigase/xmpp/

XMPPPacketFilterlfc.java] - isthe interface for processing results filtering.

If you look inside any of these interfaces you will only find a single method. Thisis where al the packet
processing takes place. All of them take a similar set of parameters and below is a description for all of
them:

81

new Event Handl er <MapDest r oyedEvent >()

https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/XMPPPreprocessorIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/XMPPPreprocessorIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/XMPPPreprocessorIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/XMPPProcessor.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/XMPPProcessor.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/XMPPProcessor.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/XMPPPostprocessorIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/XMPPPostprocessorIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/XMPPPostprocessorIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/XMPPPacketFilterIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/XMPPPacketFilterIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/XMPPPacketFilterIfc.java

Tigase Development Guide

» Packet packet - packet iswhich being processed. This parameter may never be null. Even though this
is not an immutable object it mustn’'t be altered. None of it’ s fields or attributes can be changed during
processing.

» XMPPResourceConnection session - user session which keeps all the user session data and also gives
access to the user’s data repository. It allows for the storing of information in permanent storage or in
memory only during the life of the session. This parameter can be null if thereis no online user session
at the time of the packet processing.

» NonAuthUser Repository repo - thisisauser datastorage which isnormally used when the user session
(parameter above) is null. This repository allows for avery restricted access only. It allows for storing
some user private data (but doesn’'t allow overwriting existing data) like messages for offline users and
it also allows for reading user public datalike V Cards.

* Queue<Packet> results - this a collection with packets which have been generated as input packet
processing results. Regardless a response to a user request is sent or the packet is forwarded to it's
destinationit isalwaysrequired that acopy of theinput packet is created and stored in the r esults queue.

* Map<String, Object> settings - this map keeps plugin specific settings loaded from the Tigase server
configuration. In most casesit is unused, however if the plugin needsto access an external database that
thisisaway to pass the database connection string to the plugin.

After a closer look in some of the interfaces you can see that they extend another interface: XMPPIm-
plifc [https://github.com/tigase/tigase-server/blob/master/src/main/javaltigase/xmpp/ XM PPImplifc.javal
which provides a basic metainformation about the plugin implementation. Please refer to JavaDoc [http://
docs.tigase.org/tigase-server/snapshot/javadoc/tigase/xmpp/impl/package-summary.html] documentation
for al details.

For purpose of this guide we are implementing a simple plugin for handling all <message/> packets
that is forwarding packets to the destination address. Incoming packets are forwarded to the user con-
nection and outgoing packets are forwarded to the external destination address. This message plugin
[https://github.com/ti gase/tigase-server/bl ob/master/src/main/javaltigase/xmpp/impl/Message.javal is ac-
tually implemented already and it is available in our Git repository. The code has some comments inside
already but this guide goes deeper into the implementation details.

First of al you have to choose what kind of plugin you want to implement. If thisis going to be a packet
processor you have to implement the XM PPProcessor | fc interface, if thisis going to be a pre-processor
then you have to implement the XM PPPr epr ocessor | fc interface. Of course your implementation can
implement more than one interface, even all of them. There are also two abstract helper classes, one of
which you should use as a base for all you plugins XM PPProcessor or use Annotated XM PPPr ocessor
for annotation support.

Using annotation support
The class declaration should ook like this (assuming you are implementing just the packet processor):

public class Message extends Annot at edXMPPProcessor
i mpl enents XMPPProcessorlfc

Thefirst thing to create isthe plugin ID. Thisis a unique string which you put in the configuration file to
tell the server to load and use the plugin. In most cases you can use XMLNS if the plugin wants packets
with elements with avery specific name space. Of course thereis no guarantee there is no other packet for
this specific XML element too. As we want to process all messages and don’t want to spend whole day
on thinking about acool 1D, let’s say our ID is: message.

A plugin informs about it's presence using astatic I D field and @I d annotation placed on class:

82

https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/XMPPImplIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/XMPPImplIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/XMPPImplIfc.java
http://docs.tigase.org/tigase-server/snapshot/javadoc/tigase/xmpp/impl/package-summary.html
http://docs.tigase.org/tigase-server/snapshot/javadoc/tigase/xmpp/impl/package-summary.html
http://docs.tigase.org/tigase-server/snapshot/javadoc/tigase/xmpp/impl/package-summary.html
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/impl/Message.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/xmpp/impl/Message.java

Tigase Development Guide

@d(1D)
public class Message extends Annot at edXMPPProcessor
i mpl enents XMPPProcessorlfc {
protected static final String ID = -"nmessage";

}

As mentioned before, this plugin receives only this kind of packets for processing which it is interested
in. In this example, the plugin is interested only in packets with <message/> elements and only if they
areinthe "jabber:client" namespace. To indicate all supported elements and namespaces we have to add
2 more annotations:

@d(1D)
@Handl es({
@Handl e(pat h={ -"nmessage" -}, xm ns="jabber:client")

})
public class Message extends Annot at edXMPPProcessor
i mpl enents XMPPProcessorlfc {
private static final String ID = -"nessage";

}
Using older non-annotation based implementation

The class declaration should look like this (assuming you are implementing just the packet processor):

public class Message extends XMPPProcessor
i mpl enents XMPPProcessorlfc

Thefirst thing to create is the plugin 1D like above.
A plugin informs about it’s ID using following code:

private static final String ID = -"message";
public String id() { return ID;, -}

As mentioned before this plugin receives only this kind of packets for processing which it is interested
in. In this example, the plugin is interested only in packets with <message/> elements and only if they
arein "jabber:client" namespace. To indicate all supported elements and namespaces we have to add 2
more methods:

public String[] supEl enents() {
return new String[] {"message"};

}

public String[] supNamespaces() {
return new String[] {"jabber:client"};

}
Implementation of processing method

Now we have our plugin prepared for loading in Tigase. The next step is the actual packet processing
method. For the complete code, please refer to the plugin in the Git. | will only comment here on elements
which might be confusing or add a few more lines of code which might be helpful in your case.

@verride
public void process(Packet packet, XWMPPResourceConnection session,

83

Tigase Development Guide

NonAut hUser Reposi tory repo, Queue<Packet> results, Map<String, Object> settings)
t hrows XMPPException {

/1 For performance reasons it is better to do the check
/1 before calling | ogging nethod.
if (log.isLoggabl e(Level.FINEST)) {

| og. 1 og(Level . FI NEST, -"Processing packet: {0}", packet);

}
/1 You may want to skip processing conpletely if the user is offline.
if (session == null) {
return;
} -// end of if (session == null)
try {

/1 Renmenber to cut the resource part off before conparing JlDs
BareJdI D id = (packet.getStanzaTo() -!= null) -? packet.get StanzaTo(). getBareJdl X

/1 Checking if this is a packet TO the owner of the session
if (session.isUserld(id)) {

/1l Yes this is message to -"this' client
Packet result = packet.copyEl ementOnly();

/1 This is where and how we set the address of the conponent

/1 which should receive the result packet for the final delivery
/!l to the end-user. In nost cases this is a c2s or Bosh conponent
/1 which keep the user connecti on.

resul t. set Packet To(sessi on. get Connect i onl d(packet . get St anzaTo()));

/1 In nost cases this mght be skipped, however if there is a
/1 problemduring packet delivery an error mght be sent back
resul t. set Packet From packet. get To());

/1 Don't forget to add the packet to the results queue or it
/1 will be |ost.
results.offer(result);

return;
} -/1 end of else

/1 Renmenber to cut the resource part off before conparing JlDs
id = (packet.getStanzaFrom() -!= null) -? packet.getStanzaFron().getBaredlD() -:

/1 Checking if this is maybe packet FROM the client
if (session.isUserld(id)) {

/1l This is a packet FROMthis client, the sinplest action is
/1 to forward it to its destination:

/1 Sinple clone the XM el ement and...

/1l -... putting it to results queue is enough

resul ts. of fer(packet. copyEl enentOnly());

Tigase Development Guide

return;

}

/1 Can we really reach this place here?

/'l Yes, some packets don't even have fromor to address.

/1 The best exanple is | Q packet which is usually a request to

/1l the server for some data. Such packets may not have any addresses
/1 And they usually require nore conpl ex processing

/1 This is how you check whether this is a packet FROM the user

/1 who is owner of the session:

JID jid = packet.getFrom);

/1 This test is in npbst cases equal to checking get StanzaFrom()
i f (session.getConnectionld().equals(jid)) {

/1 Do sone packet specific processing here, but we are dealing
/1 with nessages here which normally need just forwarding
El ement el _result = packet.getEl enent().clone();

/1 1f we are here it neans FROM address was m ssing fromthe
/1 packet, it is a place to set it here:
el _result.setAttribute("front', session.getJID().toString());

Packet result = Packet.packetlnstance(el _result, session.getJI),
packet . get St anzaTo());

/1l -... putting it to results queue is enough
results.offer(result);
}
} catch (Not Aut horizedException e) ({
| og. war ni ng(" Not Aut hori zedExcepti on for packet: -" + packet);
resul ts. of fer(Aut horizati on. NOT_AUTHORI ZED. get ResponseMessage(packet ,
"You must authorize session first.", true));
} -// end of try-catch

}
Plugin Configuration

Plugin configuration is straightforward.

Tell the Tigase server to load or not to load the plugins viathe conf i g. t dsl file. Plugins fal within
the' sess-man' container. To activate a plugin, smply list it among the sess-man plugins.

If you do not wish to use this method to find out what plugins are running, there are two ways you can
identify if aplugin isrunning. Oneisthelog file: logstigase-console.log. If you look inside you can find
following output:

Loadi ng plugin: jabber:ig:register -...

Loadi ng plugin: jabber:ig:auth -...

Loadi ng plugin: urn:ietf:paranms:xm:ns:xnmpp-sasl -...
Loadi ng plugin: urn:ietf:paramnms:xm:ns:xnmpp-bind -...
Loadi ng plugin: urn:ietf:paranms: xm :ns: xmpp-session -...
Loadi ng plugin: roster-presence -...

Loadi ng plugin: jabber:iq:privacy -...

85

Tigase Development Guide

Loadi ng plugin: jabber:iqg:version -...

Loadi ng plugin: http://]jabber.org/protocol/stats -...
Loadi ng plugin: starttls -...

Loadi ng plugin: vcard-tenmp -...

Loadi ng plugin: http://]abber. org/protocol/comrmands -...
Loadi ng plugin: jabber:iqg:private -...

Loadi ng plugi n: urn:xnmpp:ping -...

and thisisalist of plugins which are loaded in your installation.
Another way isto look inside the session manager source code which has the default list hardcoded:

private static final String[] PLUJ NS FULL PROP_VAL =

{"]jabber:iqg:register", -"jabber:iqg:auth", -"urn:ietf:parans: xnl:ns: xnpp-sasl"
-"urn:ietf:parans: xm: ns: xnpp-bi nd", -"urn:ietf:parans: xm :ns: xmpp-sessi on"
-"roster-presence", -"jabber:iq:privacy", -"jabber:iq:version",
-"http://jabber.org/protocol/stats", -"starttls", -"nsgoffline",
-"vcard-temp", -"http://]jabber.org/protocol/conmands”, -"jabber:iq:private"
-"urn: xnpp: ping", -"basic-filter", -"domain-filter"};

In you wish to load a plugin outside these defaults, you have to edit the list and add your plugin IDs as a
value to the plugin list under 'sess-man’. Let’s say our plugin ID is message asin our al examples:

'sess-man' () {
-'jabber:iqg:register' () {}
-'jabber:iqg:auth' () {}
nmessage () {}

}

Assuming your plugin classisin the classpath it will be loaded and used at the runtime. Y ou may specify
classby adding cl ass: cl ass. i npl ementi ng. pl ugi n within the parenthesis of the plugin.

Note

If your plugin name has any special characters (-,:\|/.) it needs to be encapsulated in single quo-
tation marks.

There is another part of the plugin configuration though. If you looked at the Writing Plugin Code guide
you can remember the M ap settings processing parameter. Thisis amap of properties you can set in the
configuration file and these setting will be passed to the plugin at the processing time.

Again config.tdd is the place to put the stuff. These kind of properties start under your plugin 1D and
each key and value will be a child underneath:

'sess-man' () {

pl ugi nl D {
keyl = -'val 1'
key2 = -'val 2'
key3 = -'val 3'
-}
}
Note

From v8.0.0 you will no longer be able to specify one value for multiple keys, you must set each
oneindividually.

86

Tigase Development Guide

Last but not least - in case you have omitted plugin ID:

'sess-man' () {
keyl = -'val 1
}

then the configured key-value pair will be a global/common plugin setting available to all loaded plugins.

How Packets are Processed by the SM and Plugins

For Tigase server plugin development it is important to understand how it all works. There are different
kind of plugins responsible for processing packets at different stages of the data flow. Please read the
introduction below before proceeding to the actual coding part.

Introduction

In Tigase server pluginsare pieces of code responsiblefor processing particular XM PP stanzas. A separate
plugin might be responsible for processing messages, a different one for processing presences, a separate
plugins responsible for iq roster, and a different one for iq version and so on.

A plugin provides information about what exact XML element(s) name(s) with xmlnsit is interested in.
So you can create a plugin which isinterested in al packets containing caps child.

There might be no plugin for a particular stanza element, in this case the default action is used which is
simpleforwarding stanzato a destination address. There might be also more than one plugin for a specific
XML element and then they all process the same stanza simultaneously in separate threads so there is no
guarantee on the order in which the stanza is processed by a different plugins.

Each stanza goes through the Session Manager component which processes packets in afew steps. Have
alook at the picture below:

i

USerA]| Process
Postprocess

Filter

The picture shows that each stanza is processed by the session manager in 4 steps:

1. Pre-processing - All loaded pre-processors receive the packet for processing. They work within session
manager thread and they have no internal queue for processing. As they work within Session Manager
thread it isimportant that they limit processing timeto absol ute minimum asthey may affect the Session

87

Tigase Development Guide

Manager performance. The intention for the pre-processors is to use them for packet blocking. If the
pre-processing result is'true’ then the packet is blocked and no further processing is performed.

2. Processing - Thisisthe next step the packet gets through if it wasn't blocked by any of the pre-proces-
sors. It gets inserted to all processors queues with requested interest in this particular XML element.
Each processor works in a separate thread and has own internal fixed size processing queue.

3. Post-processing - If thereisno processor for the stanzathen the packet goesthrough all post-processors.
The last post-processor that is built into session manager post-processor tries to apply a default action
to a packet which hasn't been processed in step 2. Normally the default action is just forwarding the
packet to a destination. Most commonly it is applied to <message/> packets.

4. Finadly, if any of above 3 steps produced output/result packets all of them go through all filters which
may or may not block them.

An important thing to note is that we have two kinds or two places where packets may be blocked or
filtered out. One place is before packet is processed by the plugin and another place is after processing
where filtering is applied to all results generated by the processor plugins.

It isalso important to note that session manager and processor plugins act as packet consumers. The packet
is taken for processing and once processing is finished the packet is destroyed. Therefore to forward a
packet to adestination one of the processor must create acopy of the packet, set al propertiesand attributes
and return it as a processing result. Of course processor can generate any number of packets as a resullt.
Result packets can be generated in any of above 4 steps of the processing. Have alook at the picture below:

P1

USerA]| Process

i

Postprocess

Filter

Some other place:

MUC, PubSub,
user on another server...

If the packet P1 is sent from outside of the server, for example to a user on ancther server or to some
component (MUC, PubSub, transport), then one of the processor must create acopy (P2) of the packet and
set all attributes and destination addresses correctly. Packet P1 has been consumed by the session manager
during processing and a new packet has been generated by one of the plugins.

88

Tigase Development Guide

The same of course happens on the way back from the component to the user:

USerA

Some other place:

MUC, PubSub,
user on another server...

P2

The packet from the component is processed and one of the plugins must generate a copy of the packet
to deliver it to the user. Of course packet forwarding is a default action which is applied when thereisno
plugin for the particular packet.

It isimplemented thisway because theinput packet P1 can be processed by many plugins at the sametime
therefore the packet should be in fact immutable and must not change once it got to the session manager
for processing.

The most obvious processing work flow is when a user sends request to the server and expects aresponse
from the server:

Tigase Development Guide

USerA

—_—

P1 [get|sef]

SM

P2 [result]

This design has one surprising consequence though. If you look at the picture bel ow showing communica
tion between 2 users you can see that the packet is copied twice beforeit isdelivered to afinal destination:

USerA

—_—

SM

rosiprocess

P3

The packet has to be processed twice by the session manager. The first time it is processed on behalf
of the User A as an outgoing packet and the second time it is processed on behalf of the User B as an
incoming packet.

This is to make sure the User A has permission to send a packet out and all processing is applied to the
packet and also to make surethat User B has permission to receive the packet and all processing is applied.
If, for example, the User B is offline there is an offline message processor which should send the packet

to a database instead of User B.

90

Tigase Development Guide

SASL Custom Mechanisms and Configuration

ThisAPI isavailablefrom Tigase XM PP Server version 5.2.0 or later on our current master branch.
Inversion 8.0.0therewasamajor changetothe API and configuration of custom SASL mechanisms.

Note that API isunder active development. This description may be updated at any time.

Basic SASL Configuration

SASL implementation in Tigase XMPP Server is compatible with Java API, the same exact interfaces
are used.

The SASL implementation consists of following parts:
1. mechanism

2. CdlbackHandler

Mechanisms Configuration
To add a new mechanism, a new factory for the mechanism has to be implemented and registered.
The simplest way to add register anew factory isto annotate its class with @ean annotation:

Exampleof theregistration of a SASL mechanism factory with an annotation settingid of thefactory
tocust onBasl Fact ory.

@ean(nanme="cust onasl Fact ory", parent = Ti gaseSasl| Provi der.class, active = true)
public class OmFactory inplements Sasl ServerFactory {}

It can aso be done by specifying the class directly for bean custonBasl Factory in the
confi g. tdsl filelikeinthe example below:

Example of the registration of a SASL mechanism factory with TDSL setting id of the factory to
cust onBasl Factory.

'sess-man' () {
-'sasl-provider' () {
cust onBasl Factory(cl ass: com exanpl e. OwmnFactory) {}
-}
}
The class must implement the Sasl Ser ver Fact or y interface and has public constructor without any

arguments. All mechanisms returned by get Mechani smNanes () method will be registered automat-
icaly.

The default factory that is available and registered by default is
ti gase. aut h. Ti gaseSasl| Ser ver Fact or y which provides PLAI N, ANONYMOUS, EXTERNAL,
SCRAM SHA- 1, SCRAM SHA- 256 and SCRAM SHA- 512 mechanisms.

CallbackHandler Configuration

TheCal | backHandl er isahelper classused for |oading/retrieving authentication datafrom datarepos-
itory and providing them to a mechanism.

To register a new calback handler you need to create a new class extending
ti gase. aut h. Cal | backHandl er Fact ory (if you wish to keep existing SASL callback handlers)

91

Tigase Development Guide

orimplementingt i gase. aut h. Cal | backHandl er Fact oryl f c. Youwill needtooverridecr e-
at e() method to return an instance of your custom Cal | backHandl er when appropriate.

Next you need to register new implementation of Cal | backHandl er Factorylfc. The
confi g. tdsl fileshouldinclude:

'sess-man' () {
-'sasl -provider' () {
cal | back- handl er-factory(cl ass: com exanpl e. OmCal | backHandl er Factory) {}
-}
}

During the authentication process, Tigase server always checks for asks callback handler factory for spe-
cific handler to selected mechanisms, and if there is no specific handler the default oneis used.

Selecting Mechanisms Available in the Stream

Theti gase. aut h. Mechani snel ect or interface isused for selecting mechanisms availablein a
stream. Method fi | t er Mechani sns() should return a collection with mechanisms avail able based
on:

1. al registered SASL factories
2. XMPP session data (from XMPPResour ceConnect i on class)

The default selector returns mechanisms from all mechanism factories registered in sasl - pr ovi der
(Ti gaseSasl Provi der).

It is possible to use a custom selector by specifying it'sclassint theconfi g. t dsl file

'sess-man' () {
-'sasl -provider' () {
-''mechani smsel ector' (cl ass: com exanpl e. OmSel ector) {}
-}
}

Logging/Authentication

After the XM PP stream is opened by aclient, the server checkswhich SASL mechanismsare availablefor
the XM PP session. Depending on whether the stream is encrypted or not, depending on the domain, the
server can present different available authentication mechanisms. Mechani snfSel ect or isresponsible
for choosing mechanisms. List of allowed mechanismsis stored in the XM PP session object.

When the client/user begins the authentication procedure it uses one particular mechanism. It must use one
of the mechanisms provided by the server asavailable for this on. The server checks whether mecha-
nisms used by the client is on the list of allowed mechanisms. It the check is successful, the server creates
Sasl| Ser ver class instance and proceeds with exchanging authentication information. Authentication
datais different depending on the mechanism used.

When the SASL authentication is completed without any error, Tigase server should have authorized user
name or authorized BareJID. In the first case, the server automatically builds user’s JD based on the
domain used in the stream opening element int o attribute.

If, after a successful authentication, method call: get Negot i at edProperty ("1 S_ANONYMOUS")

returns Bool ean. TRUE then the user session is marked as anonymous. For valid and registered users
this can be used for cases when we do not want to load any user data such as roster, vcard, privacy lists
and so on. Thisis a performance and resource usage implication and can be useful for use cases such as

92

Tigase Development Guide

support chat. The authorization is performed based on the client database but we do not need to load any
XMPP specific datafor the user’s session.

More details about implementation can be found in the custom mechanisms devel opment section.
Custom Mechanisms Development

Mechanism

get Aut hori zat i onl D() method from Sasl Ser ver class should return bare JID authorized user.
In case that the method returns only user name such as romeo for example, the server automatically ap-
pends domain name to generate avalid BareJID: romeo@example.com. In case the method returns afull,
valid BarelID, the server does not change anything.

handl eLogi n() method from Sessi onManager Handl er will be called with user’s Bare JID pro-
vided by get Aut hori zat i onl D() (or created later using stream domain name).

CallbackHandler

For each session authorization, the server creates anew and separate empty handler. Factory which creates
handler instance allowsto inject different objects to the handler, depending on interfaces implemented by
the handler class:

» Aut hReposi t or yAwar e - injects Aut hReposi tory;

» Domai nAwar e - injects domain name within which the user attempts to authenticate

* NonAut hUser Reposi t or yAwar e - injects NonAut hUser Reposi t ory
General Remarks

Jabber | gAut h used for non-SASL authentication mechanisms uses the same callback as the SASL
mechanisms.

Methods aut h in Reposi t ory interfaces will be deprecated. These interfaces will be treated as user
details providers only. There will be new methods available which will alow for additional login opera-
tions on the database such aslast successful login recording.

Using Maven

Documents Describing Maven Use with the Tigase Projects

Setting up Maven in Windows

Here at Tigase, we employ Apache Maven to download latest builds, compile codes for export, and check
for errorsin the code during build. This guide will go over installing and running Maven from a Windows
operating environment. We will consider windows versions 7, 8, and 8.1 for this guide. Because Maven
does not come with an installer, there is a manual install process which might be a bit daunting for the
new user, but setup and useisfairly simple.

Requirements

1. Maven requires Java Development Kit (JDK) 6 or later. As Tigase requires the latest JDK to run, that
will do for our purposes. If you haven’tinstalled it yet, download the installer from this website [http://
www.oracle.com/technetwork/javaljavase/downloads/index.html]. Once you install JDK and restart

93

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Tigase Development Guide

your machine, be sure that you have the JAVA_HOME variable entered into Environment Variables
so callsto Javawill work from the command line.

2. Download the Maven package from here [https.//maven.apache.org/download.cgi] and unpack it into
adirectory of your choice. For this guide we will use C: \ Maven\ .

Setting up Environment Variables

The Environment Variables panel is brought up from the Control Panel by clicking System and Security

Environment ‘u’aﬁables...}
> System > Advanced System Settings. Now click the [
bottom of the panel and the Environment Variables panel will show.

button at the

IMPORTANT NOTICE: CHANGING THESE SETTINGS CAN BREAK OTHER FUNCTIONS
IN THE OPERATING SYSTEM. DO NOT FOLLOW THIS GUIDE IF YOU DO NOT KNOW
WHAT YOU ARE DOING!

User variables for Skyjay

Variable Value

C:\Program Files\Javaljdk1.8.0_45\bin;...
YlUSERPROFILE%:\AppData\LocaliTemp
YlSERPROFILE%:\AppDataLocal{Temp

System variables

Variable Value

ComSpec C:\Windows\system32\omd. exe
FP_MNO _HOST _C... MO

JAVA_HOME C:\Program Files\Javaljdk1.8.0_45
M2 _HOME C:\Program Files{Maven

|| Edit...

94

https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi

Tigase Development Guide

We need to first add two variable paths to the System variables to account for Maven'sinstall location. As
there are some programs that look for M2 HOME, and others that look for MAVEN_HOME, it's easier
to just add both and have all the bases covered.

Click on New...

Mew System Variable [ﬁj

Variable name:

Variable value:

For the Name, use M2_HOME, and for the variable enter the path to maven, which inthiscaseis
C:\ Maven

Create another new variable with the MAVEN_HOME name and add the same directory. Thesevariable
valuesjust point to where you have unpacked maven, so they do not haveto bein the C directory.

Go down to the system variablesdial og and select Path, then click on Edit. The Path variables are separated
by semicolons, find the end of the Variable value string, and add the following after the last entry:

; %v2_HOVE% bi n; %VAVEN_HOVE% bi n;

We have added two variables using the %% wildcards surrounding our Variable names from earlier.
Testing Maven

Now we must test the command line to be sure everything installed correctly. Bring up the command line
either by typing cnd in search, or navigating the start menu.

From the prompt, you do not need to change directory as setting Path allows you to reference it. Typethe
following command: nvn -v

something like this should show up

Apache Maven 3. 3.3 (7994120775791599e205a5524ec3e0df e41d4a06; 2015-04-22T04:57: 3
7-07:00)

Maven hone: C:.\ Maven

Java version: 1.8.0_45, vendor: Oracle Corporation

Java home: C.\Program Fil es\Java\jdkl1l.8.0 _45\jre

Default | ocale: en_US, platformencoding: Cpl252

CS nane: -"wi ndows 7", version: -"6.1", arch: -"and64", famly: -"dos"

If you see this message, success! You have finished installation and are ready to use Maven! If not,
go back on your settings and insure that JDK is installed, and the JAVA_HOME, M2 HOME, and
MAVEN_HOME variables are set properly.

95

Tigase Development Guide

A Very Short Maven Guide

If you don’t use Maven [http://maven.apache.org/] at all or use it once ayear you may find the document
a useful maven commands reminder:

Snapshot Compilation and Snapshot Package Generation
e nvn conpi | e - compilation of the snapshot package
* nvn package - create snapshot jar file
« nvn install -instal inlocal repository snapshot jar file

* mvn depl oy - deploy to the remote repository snapshot jar file

Release Compilation, Generation

* nvn rel ease: prepar e prepare the project for anew version release

 nvn rel ease: per f or mexecute new version rel ease generation

Generating tar.gz, tar.bz2 File With Sources Only
e nvn -Ddescriptorld=src assenbly: assenbly

Any of these commands will work when your commandline is in a directory with a pom.xml file. This
file will instruct what Maven will do.

Profiles

Maven uses profileswith the -P switch to tell what to compile and build. Tigase usestwo different profiles:
» -Pdist - creates distribution archives

» -Pdoc - creates documentation

Tests

Tests

Tests are very important part of Tigase server development process.

Each release goes through fully automated testing process. All server functions are considered implement-
ed only when they pass the testing cycle. Tigase test suite is used for all our automatic tests which allows
to define different test scenarios.

There is no tweaking on databases for tests. All databases are installed in a standard way and run with
default settings. Databases are cleared each time before the test cycle starts.

There are no modifications needed to be madeto Tigase' sconfiguration fileaswell. All testsare performed
on adefault configuration generated by the configuration wizards.

The server istested in al supported environments:

96

http://maven.apache.org/
http://maven.apache.org/

Tigase Development Guide

1. XMLDB - tests with built-in ssmple XML database. Thisis a simple and efficient solution for small
installations. It isrecommended for services with up to 100 user accounts although it has been success-
fully tested with 10,000 user accounts.

2. MySQL - testswithaMySQL [http://www.mysql.com/] database. Much slower than XML DB but may
handle many more user accounts.

3. PostgreSQL - testswith a PostgreSQL [http://www.postgresql.org/] database. Again it is much slower
than XMLDB but may handle much more user accounts. Thisis basically exactly the same code as for
MySQL database (SQL Connector) but tests are executed to make sure the code is compatible with all
supported SQL databases and to compare performance.

4. Distributed - isatest for distributed installation where c2s and s2s components run on separated ma-
chine which connects using external an component protocol (XEP-0114 [http://www.xmpp.org/exten-
sions/xep-0114.html]) to another machine with SessionManager running.

Functional Tests

Basic checking to seeif all the functions work at correctly. These tests are performed every time the code
is sent to source repository.

Version

XMLDB

MySQL

PGSQL

Distributed

3.3.2-b889

00:00:12
[tests/3.3.2-b889/
func/xmldb/func-
tional-tests.html]

00:00:17
[tests/3.3.2-b88Y/
func/mysgl/func-
tional-tests.html]

00:00:17
[tests/3.3.2-b88Y/
func/pgsgl/func-
tional-tests.html]

none

3.3.2-b880

00:00:13
[tests/3.3.2-b880/
func/xmldb/func-
tional-tests.html]

00:00:15
[tests/3.3.2-b880/
func/mysgl/func-
tional-tests.html]

00:00:15
[tests/3.3.2-b880/
func/pgsal/func-
tional-tests.html]

None

3.0.2-b700

00:00:22
[tests/3.0.2-b700/
func/xmldb/func-
tional-tests.html]

00:00:24
[tests/3.0.2-b700/
func/mysal/func-
tional-tests.html]

00:00:25
[tests/3.0.2-b700/
func/pgsal/func-
tional-tests.html]

00:00:25
[tests/3.0.2-
b700/func/sm-
mysql/function-
al-tests.html]

2.9.5-b606

00:00:22
[tests/2.9.5-b606/
func/xmldb/func-
tional-tests.htmi]

00:00:24
[tests/2.9.5-b606/
func/mysal/func-
tional-tests.html]

00:00:24
[tests/2.9.5-b606/
func/pgsal/func-
tional-tests.htmi]

00:00:24
[tests/2.9.5-
b606/func/sm-
mysqgl/function-
al-tests.html]

2.9.3-b548

00:00:22
[tests/2.9.3-b548/
func/xmldb/func-
tional-tests.html]

00:00:23
[tests/2.9.3-b548/
func/mysgl/func-
tional-tests.html]

00:00:25
[tests/2.9.3-b548/
func/pgsgl/func-
tional-tests.html]

00:00:25
[tests/2.9.3-
b548/func/sm-
mysqgl/function-
al-tests.html]

2.9.1-b528

00:00:21
[tests/2.9.1-b528/
func/xmldb/func-
tional-tests.html]

00:00:23
[tests/2.9.1-b528/
func/mysgl/func-
tional-tests.html]

00:00:24
[tests/2.9.1-b528/
func/pgsal/func-
tional-tests.html]

00:00:25
[tests/2.9.1-
b528/func/sm-
mysqgl/function-
al-tests.html]

2.8.6-b434

00:00:21
[tests/2.8.6-b434/

00:00:24
[tests/2.8.6-b434/

00:00:24
[tests/2.8.6-b434/

00:00:25
[tests/2.8.6-

97

http://www.mysql.com/
http://www.mysql.com/
http://www.postgresql.org/
http://www.postgresql.org/
http://www.xmpp.org/extensions/xep-0114.html
http://www.xmpp.org/extensions/xep-0114.html
http://www.xmpp.org/extensions/xep-0114.html
tests/3.3.2-b889/func/xmldb/functional-tests.html
tests/3.3.2-b889/func/xmldb/functional-tests.html
tests/3.3.2-b889/func/xmldb/functional-tests.html
tests/3.3.2-b889/func/xmldb/functional-tests.html
tests/3.3.2-b889/func/mysql/functional-tests.html
tests/3.3.2-b889/func/mysql/functional-tests.html
tests/3.3.2-b889/func/mysql/functional-tests.html
tests/3.3.2-b889/func/mysql/functional-tests.html
tests/3.3.2-b889/func/pgsql/functional-tests.html
tests/3.3.2-b889/func/pgsql/functional-tests.html
tests/3.3.2-b889/func/pgsql/functional-tests.html
tests/3.3.2-b889/func/pgsql/functional-tests.html
tests/3.3.2-b880/func/xmldb/functional-tests.html
tests/3.3.2-b880/func/xmldb/functional-tests.html
tests/3.3.2-b880/func/xmldb/functional-tests.html
tests/3.3.2-b880/func/xmldb/functional-tests.html
tests/3.3.2-b880/func/mysql/functional-tests.html
tests/3.3.2-b880/func/mysql/functional-tests.html
tests/3.3.2-b880/func/mysql/functional-tests.html
tests/3.3.2-b880/func/mysql/functional-tests.html
tests/3.3.2-b880/func/pgsql/functional-tests.html
tests/3.3.2-b880/func/pgsql/functional-tests.html
tests/3.3.2-b880/func/pgsql/functional-tests.html
tests/3.3.2-b880/func/pgsql/functional-tests.html
tests/3.0.2-b700/func/xmldb/functional-tests.html
tests/3.0.2-b700/func/xmldb/functional-tests.html
tests/3.0.2-b700/func/xmldb/functional-tests.html
tests/3.0.2-b700/func/xmldb/functional-tests.html
tests/3.0.2-b700/func/mysql/functional-tests.html
tests/3.0.2-b700/func/mysql/functional-tests.html
tests/3.0.2-b700/func/mysql/functional-tests.html
tests/3.0.2-b700/func/mysql/functional-tests.html
tests/3.0.2-b700/func/pgsql/functional-tests.html
tests/3.0.2-b700/func/pgsql/functional-tests.html
tests/3.0.2-b700/func/pgsql/functional-tests.html
tests/3.0.2-b700/func/pgsql/functional-tests.html
tests/3.0.2-b700/func/sm-mysql/functional-tests.html
tests/3.0.2-b700/func/sm-mysql/functional-tests.html
tests/3.0.2-b700/func/sm-mysql/functional-tests.html
tests/3.0.2-b700/func/sm-mysql/functional-tests.html
tests/3.0.2-b700/func/sm-mysql/functional-tests.html
tests/2.9.5-b606/func/xmldb/functional-tests.html
tests/2.9.5-b606/func/xmldb/functional-tests.html
tests/2.9.5-b606/func/xmldb/functional-tests.html
tests/2.9.5-b606/func/xmldb/functional-tests.html
tests/2.9.5-b606/func/mysql/functional-tests.html
tests/2.9.5-b606/func/mysql/functional-tests.html
tests/2.9.5-b606/func/mysql/functional-tests.html
tests/2.9.5-b606/func/mysql/functional-tests.html
tests/2.9.5-b606/func/pgsql/functional-tests.html
tests/2.9.5-b606/func/pgsql/functional-tests.html
tests/2.9.5-b606/func/pgsql/functional-tests.html
tests/2.9.5-b606/func/pgsql/functional-tests.html
tests/2.9.5-b606/func/sm-mysql/functional-tests.html
tests/2.9.5-b606/func/sm-mysql/functional-tests.html
tests/2.9.5-b606/func/sm-mysql/functional-tests.html
tests/2.9.5-b606/func/sm-mysql/functional-tests.html
tests/2.9.5-b606/func/sm-mysql/functional-tests.html
tests/2.9.3-b548/func/xmldb/functional-tests.html
tests/2.9.3-b548/func/xmldb/functional-tests.html
tests/2.9.3-b548/func/xmldb/functional-tests.html
tests/2.9.3-b548/func/xmldb/functional-tests.html
tests/2.9.3-b548/func/mysql/functional-tests.html
tests/2.9.3-b548/func/mysql/functional-tests.html
tests/2.9.3-b548/func/mysql/functional-tests.html
tests/2.9.3-b548/func/mysql/functional-tests.html
tests/2.9.3-b548/func/pgsql/functional-tests.html
tests/2.9.3-b548/func/pgsql/functional-tests.html
tests/2.9.3-b548/func/pgsql/functional-tests.html
tests/2.9.3-b548/func/pgsql/functional-tests.html
tests/2.9.3-b548/func/sm-mysql/functional-tests.html
tests/2.9.3-b548/func/sm-mysql/functional-tests.html
tests/2.9.3-b548/func/sm-mysql/functional-tests.html
tests/2.9.3-b548/func/sm-mysql/functional-tests.html
tests/2.9.3-b548/func/sm-mysql/functional-tests.html
tests/2.9.1-b528/func/xmldb/functional-tests.html
tests/2.9.1-b528/func/xmldb/functional-tests.html
tests/2.9.1-b528/func/xmldb/functional-tests.html
tests/2.9.1-b528/func/xmldb/functional-tests.html
tests/2.9.1-b528/func/mysql/functional-tests.html
tests/2.9.1-b528/func/mysql/functional-tests.html
tests/2.9.1-b528/func/mysql/functional-tests.html
tests/2.9.1-b528/func/mysql/functional-tests.html
tests/2.9.1-b528/func/pgsql/functional-tests.html
tests/2.9.1-b528/func/pgsql/functional-tests.html
tests/2.9.1-b528/func/pgsql/functional-tests.html
tests/2.9.1-b528/func/pgsql/functional-tests.html
tests/2.9.1-b528/func/sm-mysql/functional-tests.html
tests/2.9.1-b528/func/sm-mysql/functional-tests.html
tests/2.9.1-b528/func/sm-mysql/functional-tests.html
tests/2.9.1-b528/func/sm-mysql/functional-tests.html
tests/2.9.1-b528/func/sm-mysql/functional-tests.html
tests/2.8.6-b434/func/xmldb/functional-tests.html
tests/2.8.6-b434/func/xmldb/functional-tests.html
tests/2.8.6-b434/func/mysql/functional-tests.html
tests/2.8.6-b434/func/mysql/functional-tests.html
tests/2.8.6-b434/func/pgsql/functional-tests.html
tests/2.8.6-b434/func/pgsql/functional-tests.html
tests/2.8.6-b434/func/sm-mysql/functional-tests.html
tests/2.8.6-b434/func/sm-mysql/functional-tests.html

Tigase Development Guide

func/xmldb/func-
tional-tests.htmi]

func/mysal/func-
tional-tests.html]

func/pgsal/func-
tional-tests.html]

b434/func/sm-
mysql/function-
al-tests.html]

2.8.5-b422

00:00:21
[tests/2.8.5-b422/
func/xmldb/func-
tional-tests.html]

00:00:24
[tests/2.8.5-b422/
func/mysal/func-
tional-tests.html]

00:00:24
[tests/2.8.5-b422/
func/pgsal/func-
tional-tests.html]

00:00:26
[tests/2.8.5-
b422/func/sm-
mysql/function-
al-tests.html]

2.8.3-b409

00:00:27
[tests/2.8.3-b409/
func/xmldb/func-
tional-tests.html]

00:00:29
[tests/2.8.3-b409/
func/mysgl/func-
tional-tests.html]

00:00:29
[tests/2.8.3-b409/
func/pgsgl/func-
tional-tests.html]

00:00:32
[tests/2.8.3-
b409/func/sm-
mysqgl/function-
al-tests.html]

2.7.2-b378

00:00:30
[tests/2.7.2-b378/
func/xmldb/func-
tional-tests.html]

00:00:34
[tests/2.7.2-b378/
func/mysgl/func-
tional-tests.html]

00:00:33
[tests/2.7.2-b378/
func/pgsal/func-
tional-tests.html]

00:00:35
[tests/2.7.2-
b378/func/sm-
mysqgl/function-
al-tests.html]

2.6.4-b300

00:00:30
[tests/2.6.4-b300/
func/xmldb/func-
tional-tests.htmi]

00:00:32
[tests/2.6.4-b300/
func/mysal/func-
tional-tests.html]

00:00:35
[tests/2.6.4-b300/
func/pgsal/func-
tional-tests.html]

00:00:39
[tests/2.6.4-
b300/func/sm-
mysql/function-
al-tests.html]

2.6.4-b295

00:00:29
[tests/2.6.4-b295/
func/xmldb/func-
tional-tests.html]

00:00:32
[tests/2.6.4-b295/
func/mysal/func-
tional-tests.html]

00:00:45
[tests/2.6.4-b295/
func/pgsal/func-
tional-tests.html]

00:00:36
[tests/2.6.4-
b295/func/sm-
mysql/function-
al-tests.html]

2.6.0-b287

00:00:31
[tests/2.6.0-b287/
func/xmldb/func-
tional-tests.html]

00:00:34
[tests/2.6.0-b287/
func/mysgl/func-
tional-tests.html]

00:00:47
[tests/2.6.0-b287/
func/pgsgl/func-
tional-tests.html]

00:00:43
[tests/2.6.0-
b287/func/sm-
mysqgl/function-
al-tests.html]

2.5.0-b279

00:00:30
[tests/2.5.0-b279/
func/xmldb/func-
tional-tests.html]

00:00:34
[tests/2.5.0-b279/
func/mysgl/func-
tional-tests.html]

00:00:45
[tests/2.5.0-b279/
func/pgsal/func-
tional-tests.html]

00:00:43
[tests/2.5.0-
b279/func/sm-
mysqgl/function-
al-tests.html]

2.4.0-b263

00:00:29
[tests/2.4.0-b263/
func/xmldb/func-
tional-tests.htmi]

00:00:33
[tests/2.4.0-b263/
func/mysal/func-
tional-tests.html]

00:00:45
[tests/2.4.0-b263/
func/pgsal/func-
tional-tests.html]

00:00:44
[tests/2.4.0-
b263/func/sm-
mysql/function-
al-tests.html]

2.3.4-b226

None

00:00:48 [tests/
function-
al-tests.html]

None

None

Performance Tests

Checking to see whether the function performs well enough.

98

tests/2.8.6-b434/func/xmldb/functional-tests.html
tests/2.8.6-b434/func/xmldb/functional-tests.html
tests/2.8.6-b434/func/mysql/functional-tests.html
tests/2.8.6-b434/func/mysql/functional-tests.html
tests/2.8.6-b434/func/pgsql/functional-tests.html
tests/2.8.6-b434/func/pgsql/functional-tests.html
tests/2.8.6-b434/func/sm-mysql/functional-tests.html
tests/2.8.6-b434/func/sm-mysql/functional-tests.html
tests/2.8.6-b434/func/sm-mysql/functional-tests.html
tests/2.8.5-b422/func/xmldb/functional-tests.html
tests/2.8.5-b422/func/xmldb/functional-tests.html
tests/2.8.5-b422/func/xmldb/functional-tests.html
tests/2.8.5-b422/func/xmldb/functional-tests.html
tests/2.8.5-b422/func/mysql/functional-tests.html
tests/2.8.5-b422/func/mysql/functional-tests.html
tests/2.8.5-b422/func/mysql/functional-tests.html
tests/2.8.5-b422/func/mysql/functional-tests.html
tests/2.8.5-b422/func/pgsql/functional-tests.html
tests/2.8.5-b422/func/pgsql/functional-tests.html
tests/2.8.5-b422/func/pgsql/functional-tests.html
tests/2.8.5-b422/func/pgsql/functional-tests.html
tests/2.8.5-b422/func/sm-mysql/functional-tests.html
tests/2.8.5-b422/func/sm-mysql/functional-tests.html
tests/2.8.5-b422/func/sm-mysql/functional-tests.html
tests/2.8.5-b422/func/sm-mysql/functional-tests.html
tests/2.8.5-b422/func/sm-mysql/functional-tests.html
tests/2.8.3-b409/func/xmldb/functional-tests.html
tests/2.8.3-b409/func/xmldb/functional-tests.html
tests/2.8.3-b409/func/xmldb/functional-tests.html
tests/2.8.3-b409/func/xmldb/functional-tests.html
tests/2.8.3-b409/func/mysql/functional-tests.html
tests/2.8.3-b409/func/mysql/functional-tests.html
tests/2.8.3-b409/func/mysql/functional-tests.html
tests/2.8.3-b409/func/mysql/functional-tests.html
tests/2.8.3-b409/func/pgsql/functional-tests.html
tests/2.8.3-b409/func/pgsql/functional-tests.html
tests/2.8.3-b409/func/pgsql/functional-tests.html
tests/2.8.3-b409/func/pgsql/functional-tests.html
tests/2.8.3-b409/func/sm-mysql/functional-tests.html
tests/2.8.3-b409/func/sm-mysql/functional-tests.html
tests/2.8.3-b409/func/sm-mysql/functional-tests.html
tests/2.8.3-b409/func/sm-mysql/functional-tests.html
tests/2.8.3-b409/func/sm-mysql/functional-tests.html
tests/2.7.2-b378/func/xmldb/functional-tests.html
tests/2.7.2-b378/func/xmldb/functional-tests.html
tests/2.7.2-b378/func/xmldb/functional-tests.html
tests/2.7.2-b378/func/xmldb/functional-tests.html
tests/2.7.2-b378/func/mysql/functional-tests.html
tests/2.7.2-b378/func/mysql/functional-tests.html
tests/2.7.2-b378/func/mysql/functional-tests.html
tests/2.7.2-b378/func/mysql/functional-tests.html
tests/2.7.2-b378/func/pgsql/functional-tests.html
tests/2.7.2-b378/func/pgsql/functional-tests.html
tests/2.7.2-b378/func/pgsql/functional-tests.html
tests/2.7.2-b378/func/pgsql/functional-tests.html
tests/2.7.2-b378/func/sm-mysql/functional-tests.html
tests/2.7.2-b378/func/sm-mysql/functional-tests.html
tests/2.7.2-b378/func/sm-mysql/functional-tests.html
tests/2.7.2-b378/func/sm-mysql/functional-tests.html
tests/2.7.2-b378/func/sm-mysql/functional-tests.html
tests/2.6.4-b300/func/xmldb/functional-tests.html
tests/2.6.4-b300/func/xmldb/functional-tests.html
tests/2.6.4-b300/func/xmldb/functional-tests.html
tests/2.6.4-b300/func/xmldb/functional-tests.html
tests/2.6.4-b300/func/mysql/functional-tests.html
tests/2.6.4-b300/func/mysql/functional-tests.html
tests/2.6.4-b300/func/mysql/functional-tests.html
tests/2.6.4-b300/func/mysql/functional-tests.html
tests/2.6.4-b300/func/pgsql/functional-tests.html
tests/2.6.4-b300/func/pgsql/functional-tests.html
tests/2.6.4-b300/func/pgsql/functional-tests.html
tests/2.6.4-b300/func/pgsql/functional-tests.html
tests/2.6.4-b300/func/sm-mysql/functional-tests.html
tests/2.6.4-b300/func/sm-mysql/functional-tests.html
tests/2.6.4-b300/func/sm-mysql/functional-tests.html
tests/2.6.4-b300/func/sm-mysql/functional-tests.html
tests/2.6.4-b300/func/sm-mysql/functional-tests.html
tests/2.6.4-b295/func/xmldb/functional-tests.html
tests/2.6.4-b295/func/xmldb/functional-tests.html
tests/2.6.4-b295/func/xmldb/functional-tests.html
tests/2.6.4-b295/func/xmldb/functional-tests.html
tests/2.6.4-b295/func/mysql/functional-tests.html
tests/2.6.4-b295/func/mysql/functional-tests.html
tests/2.6.4-b295/func/mysql/functional-tests.html
tests/2.6.4-b295/func/mysql/functional-tests.html
tests/2.6.4-b295/func/pgsql/functional-tests.html
tests/2.6.4-b295/func/pgsql/functional-tests.html
tests/2.6.4-b295/func/pgsql/functional-tests.html
tests/2.6.4-b295/func/pgsql/functional-tests.html
tests/2.6.4-b295/func/sm-mysql/functional-tests.html
tests/2.6.4-b295/func/sm-mysql/functional-tests.html
tests/2.6.4-b295/func/sm-mysql/functional-tests.html
tests/2.6.4-b295/func/sm-mysql/functional-tests.html
tests/2.6.4-b295/func/sm-mysql/functional-tests.html
tests/2.6.0-b287/func/xmldb/functional-tests.html
tests/2.6.0-b287/func/xmldb/functional-tests.html
tests/2.6.0-b287/func/xmldb/functional-tests.html
tests/2.6.0-b287/func/xmldb/functional-tests.html
tests/2.6.0-b287/func/mysql/functional-tests.html
tests/2.6.0-b287/func/mysql/functional-tests.html
tests/2.6.0-b287/func/mysql/functional-tests.html
tests/2.6.0-b287/func/mysql/functional-tests.html
tests/2.6.0-b287/func/pgsql/functional-tests.html
tests/2.6.0-b287/func/pgsql/functional-tests.html
tests/2.6.0-b287/func/pgsql/functional-tests.html
tests/2.6.0-b287/func/pgsql/functional-tests.html
tests/2.6.0-b287/func/sm-mysql/functional-tests.html
tests/2.6.0-b287/func/sm-mysql/functional-tests.html
tests/2.6.0-b287/func/sm-mysql/functional-tests.html
tests/2.6.0-b287/func/sm-mysql/functional-tests.html
tests/2.6.0-b287/func/sm-mysql/functional-tests.html
tests/2.5.0-b279/func/xmldb/functional-tests.html
tests/2.5.0-b279/func/xmldb/functional-tests.html
tests/2.5.0-b279/func/xmldb/functional-tests.html
tests/2.5.0-b279/func/xmldb/functional-tests.html
tests/2.5.0-b279/func/mysql/functional-tests.html
tests/2.5.0-b279/func/mysql/functional-tests.html
tests/2.5.0-b279/func/mysql/functional-tests.html
tests/2.5.0-b279/func/mysql/functional-tests.html
tests/2.5.0-b279/func/pgsql/functional-tests.html
tests/2.5.0-b279/func/pgsql/functional-tests.html
tests/2.5.0-b279/func/pgsql/functional-tests.html
tests/2.5.0-b279/func/pgsql/functional-tests.html
tests/2.5.0-b279/func/sm-mysql/functional-tests.html
tests/2.5.0-b279/func/sm-mysql/functional-tests.html
tests/2.5.0-b279/func/sm-mysql/functional-tests.html
tests/2.5.0-b279/func/sm-mysql/functional-tests.html
tests/2.5.0-b279/func/sm-mysql/functional-tests.html
tests/2.4.0-b263/func/xmldb/functional-tests.html
tests/2.4.0-b263/func/xmldb/functional-tests.html
tests/2.4.0-b263/func/xmldb/functional-tests.html
tests/2.4.0-b263/func/xmldb/functional-tests.html
tests/2.4.0-b263/func/mysql/functional-tests.html
tests/2.4.0-b263/func/mysql/functional-tests.html
tests/2.4.0-b263/func/mysql/functional-tests.html
tests/2.4.0-b263/func/mysql/functional-tests.html
tests/2.4.0-b263/func/pgsql/functional-tests.html
tests/2.4.0-b263/func/pgsql/functional-tests.html
tests/2.4.0-b263/func/pgsql/functional-tests.html
tests/2.4.0-b263/func/pgsql/functional-tests.html
tests/2.4.0-b263/func/sm-mysql/functional-tests.html
tests/2.4.0-b263/func/sm-mysql/functional-tests.html
tests/2.4.0-b263/func/sm-mysql/functional-tests.html
tests/2.4.0-b263/func/sm-mysql/functional-tests.html
tests/2.4.0-b263/func/sm-mysql/functional-tests.html
tests/functional-tests.html
tests/functional-tests.html
tests/functional-tests.html
tests/functional-tests.html

Tigase Development Guide

Version XMLDB MySQL PGSQL Distributed
3.3.2-b889 00:12:17 00:13:42 00:17:10 none
[tests/3.3.2- [tests/3.3.2- [tests/3.3.2-
b889/perf/ b889/perf/ b889/perf/
xmldb/perfor- mysql/perfor- pgsql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html]
3.3.2-b880 00:13:39 00:14:09 00:17:39 None
[tests/3.3.2- [tests/3.3.2- [tests/3.3.2-
b880/perf/ b880/perf/ b880/perf/
xmldb/perfor- mysql/perfor- pgsql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html]
3.0.2-b700 00:10:26 00:11:00 00:12:08 00:24:05
[tests/3.0.2- [tests/3.0.2- [tests/3.0.2- [tests/3.0.2-
b700/perf/ b700/perf/ b700/perf/ b700/perf/sm-
xmldb/perfor- mysql/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.html]
2.9.5-b606 00:09:54 00:11:18 00:37:08 00:16:20
[tests/2.9.5- [tests/2.9.5- [tests/2.9.5- [tests/2.9.5-
b606/perf/ b606/perf/ b606/perf/ b606/perf/sm-
xmldb/perfor- mysql/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.html]
2.9.3-b548 00:10:00 00:11:29 00:36:43 00:16:47
[tests/2.9.3- [tests/2.9.3- [tests/2.9.3- [tests/2.9.3-
b548/perf/ b548/perf/ b548/perf/ b548/perf/sm-
xmldb/perfor- mysql/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.htmi]
2.9.1-b528 00:09:46 00:11:15 00:36:12 00:16:36
[tests/2.9.1- [tests/2.9.1- [tests/2.9.1- [tests/2.9.1-
b528/perf/ b528/perf/ b528/perf/ b528/perf/sm-
xmldb/perfor- mysql/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.htmi]
2.8.6-b434 00:10:02 00:11:45 00:36:36 00:17:36
[tests/2.8.6- [tests/2.8.6- [tests/2.8.6- [tests/2.8.6-
b434/perf/ b434/perf/ b434/perf/ b434/perf/sm-
xmldb/perfor- mysql/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.html]
2.8.5-b422 00:12:37 00:14:40 00:38:59 00:21:40
[tests/2.8.5- [tests/2.8.5- [tests/2.8.5- [tests/2.8.5-
b422/perf/ b422/perf/ b422/perf/ b422/perf/sm-
xmldb/perfor- mysql/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.html]
2.8.3-b409 00:12:32 00:14:26 00:37:57 00:21:26
[tests/2.8.3- [tests/2.8.3- [tests/2.8.3- [tests/2.8.3-
b409/perf/ b409/perf/ b409/perf/ b409/perf/sm-
xmldb/perfor- mysql/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.htmi]
2.7.2-b378 00:12:28 00:14:57 00:37:09 00:22:20
[tests/2.7.2- [tests/2.7.2- [tests/2.7.2- [tests/2.7.2-
b378/perf/ b378/perf/ b378/perf/ b378/perf/sm-

99

tests/3.3.2-b889/perf/xmldb/performance-tests.html
tests/3.3.2-b889/perf/xmldb/performance-tests.html
tests/3.3.2-b889/perf/xmldb/performance-tests.html
tests/3.3.2-b889/perf/xmldb/performance-tests.html
tests/3.3.2-b889/perf/xmldb/performance-tests.html
tests/3.3.2-b889/perf/mysql/performance-tests.html
tests/3.3.2-b889/perf/mysql/performance-tests.html
tests/3.3.2-b889/perf/mysql/performance-tests.html
tests/3.3.2-b889/perf/mysql/performance-tests.html
tests/3.3.2-b889/perf/mysql/performance-tests.html
tests/3.3.2-b889/perf/pgsql/performance-tests.html
tests/3.3.2-b889/perf/pgsql/performance-tests.html
tests/3.3.2-b889/perf/pgsql/performance-tests.html
tests/3.3.2-b889/perf/pgsql/performance-tests.html
tests/3.3.2-b889/perf/pgsql/performance-tests.html
tests/3.3.2-b880/perf/xmldb/performance-tests.html
tests/3.3.2-b880/perf/xmldb/performance-tests.html
tests/3.3.2-b880/perf/xmldb/performance-tests.html
tests/3.3.2-b880/perf/xmldb/performance-tests.html
tests/3.3.2-b880/perf/xmldb/performance-tests.html
tests/3.3.2-b880/perf/mysql/performance-tests.html
tests/3.3.2-b880/perf/mysql/performance-tests.html
tests/3.3.2-b880/perf/mysql/performance-tests.html
tests/3.3.2-b880/perf/mysql/performance-tests.html
tests/3.3.2-b880/perf/mysql/performance-tests.html
tests/3.3.2-b880/perf/pgsql/performance-tests.html
tests/3.3.2-b880/perf/pgsql/performance-tests.html
tests/3.3.2-b880/perf/pgsql/performance-tests.html
tests/3.3.2-b880/perf/pgsql/performance-tests.html
tests/3.3.2-b880/perf/pgsql/performance-tests.html
tests/3.0.2-b700/perf/xmldb/performance-tests.html
tests/3.0.2-b700/perf/xmldb/performance-tests.html
tests/3.0.2-b700/perf/xmldb/performance-tests.html
tests/3.0.2-b700/perf/xmldb/performance-tests.html
tests/3.0.2-b700/perf/xmldb/performance-tests.html
tests/3.0.2-b700/perf/mysql/performance-tests.html
tests/3.0.2-b700/perf/mysql/performance-tests.html
tests/3.0.2-b700/perf/mysql/performance-tests.html
tests/3.0.2-b700/perf/mysql/performance-tests.html
tests/3.0.2-b700/perf/mysql/performance-tests.html
tests/3.0.2-b700/perf/pgsql/performance-tests.html
tests/3.0.2-b700/perf/pgsql/performance-tests.html
tests/3.0.2-b700/perf/pgsql/performance-tests.html
tests/3.0.2-b700/perf/pgsql/performance-tests.html
tests/3.0.2-b700/perf/pgsql/performance-tests.html
tests/3.0.2-b700/perf/sm-mysql/performance-tests.html
tests/3.0.2-b700/perf/sm-mysql/performance-tests.html
tests/3.0.2-b700/perf/sm-mysql/performance-tests.html
tests/3.0.2-b700/perf/sm-mysql/performance-tests.html
tests/3.0.2-b700/perf/sm-mysql/performance-tests.html
tests/2.9.5-b606/perf/xmldb/performance-tests.html
tests/2.9.5-b606/perf/xmldb/performance-tests.html
tests/2.9.5-b606/perf/xmldb/performance-tests.html
tests/2.9.5-b606/perf/xmldb/performance-tests.html
tests/2.9.5-b606/perf/xmldb/performance-tests.html
tests/2.9.5-b606/perf/mysql/performance-tests.html
tests/2.9.5-b606/perf/mysql/performance-tests.html
tests/2.9.5-b606/perf/mysql/performance-tests.html
tests/2.9.5-b606/perf/mysql/performance-tests.html
tests/2.9.5-b606/perf/mysql/performance-tests.html
tests/2.9.5-b606/perf/pgsql/performance-tests.html
tests/2.9.5-b606/perf/pgsql/performance-tests.html
tests/2.9.5-b606/perf/pgsql/performance-tests.html
tests/2.9.5-b606/perf/pgsql/performance-tests.html
tests/2.9.5-b606/perf/pgsql/performance-tests.html
tests/2.9.5-b606/perf/sm-mysql/performance-tests.html
tests/2.9.5-b606/perf/sm-mysql/performance-tests.html
tests/2.9.5-b606/perf/sm-mysql/performance-tests.html
tests/2.9.5-b606/perf/sm-mysql/performance-tests.html
tests/2.9.5-b606/perf/sm-mysql/performance-tests.html
tests/2.9.3-b548/perf/xmldb/performance-tests.html
tests/2.9.3-b548/perf/xmldb/performance-tests.html
tests/2.9.3-b548/perf/xmldb/performance-tests.html
tests/2.9.3-b548/perf/xmldb/performance-tests.html
tests/2.9.3-b548/perf/xmldb/performance-tests.html
tests/2.9.3-b548/perf/mysql/performance-tests.html
tests/2.9.3-b548/perf/mysql/performance-tests.html
tests/2.9.3-b548/perf/mysql/performance-tests.html
tests/2.9.3-b548/perf/mysql/performance-tests.html
tests/2.9.3-b548/perf/mysql/performance-tests.html
tests/2.9.3-b548/perf/pgsql/performance-tests.html
tests/2.9.3-b548/perf/pgsql/performance-tests.html
tests/2.9.3-b548/perf/pgsql/performance-tests.html
tests/2.9.3-b548/perf/pgsql/performance-tests.html
tests/2.9.3-b548/perf/pgsql/performance-tests.html
tests/2.9.3-b548/perf/sm-mysql/performance-tests.html
tests/2.9.3-b548/perf/sm-mysql/performance-tests.html
tests/2.9.3-b548/perf/sm-mysql/performance-tests.html
tests/2.9.3-b548/perf/sm-mysql/performance-tests.html
tests/2.9.3-b548/perf/sm-mysql/performance-tests.html
tests/2.9.1-b528/perf/xmldb/performance-tests.html
tests/2.9.1-b528/perf/xmldb/performance-tests.html
tests/2.9.1-b528/perf/xmldb/performance-tests.html
tests/2.9.1-b528/perf/xmldb/performance-tests.html
tests/2.9.1-b528/perf/xmldb/performance-tests.html
tests/2.9.1-b528/perf/mysql/performance-tests.html
tests/2.9.1-b528/perf/mysql/performance-tests.html
tests/2.9.1-b528/perf/mysql/performance-tests.html
tests/2.9.1-b528/perf/mysql/performance-tests.html
tests/2.9.1-b528/perf/mysql/performance-tests.html
tests/2.9.1-b528/perf/pgsql/performance-tests.html
tests/2.9.1-b528/perf/pgsql/performance-tests.html
tests/2.9.1-b528/perf/pgsql/performance-tests.html
tests/2.9.1-b528/perf/pgsql/performance-tests.html
tests/2.9.1-b528/perf/pgsql/performance-tests.html
tests/2.9.1-b528/perf/sm-mysql/performance-tests.html
tests/2.9.1-b528/perf/sm-mysql/performance-tests.html
tests/2.9.1-b528/perf/sm-mysql/performance-tests.html
tests/2.9.1-b528/perf/sm-mysql/performance-tests.html
tests/2.9.1-b528/perf/sm-mysql/performance-tests.html
tests/2.8.6-b434/perf/xmldb/performance-tests.html
tests/2.8.6-b434/perf/xmldb/performance-tests.html
tests/2.8.6-b434/perf/xmldb/performance-tests.html
tests/2.8.6-b434/perf/xmldb/performance-tests.html
tests/2.8.6-b434/perf/xmldb/performance-tests.html
tests/2.8.6-b434/perf/mysql/performance-tests.html
tests/2.8.6-b434/perf/mysql/performance-tests.html
tests/2.8.6-b434/perf/mysql/performance-tests.html
tests/2.8.6-b434/perf/mysql/performance-tests.html
tests/2.8.6-b434/perf/mysql/performance-tests.html
tests/2.8.6-b434/perf/pgsql/performance-tests.html
tests/2.8.6-b434/perf/pgsql/performance-tests.html
tests/2.8.6-b434/perf/pgsql/performance-tests.html
tests/2.8.6-b434/perf/pgsql/performance-tests.html
tests/2.8.6-b434/perf/pgsql/performance-tests.html
tests/2.8.6-b434/perf/sm-mysql/performance-tests.html
tests/2.8.6-b434/perf/sm-mysql/performance-tests.html
tests/2.8.6-b434/perf/sm-mysql/performance-tests.html
tests/2.8.6-b434/perf/sm-mysql/performance-tests.html
tests/2.8.6-b434/perf/sm-mysql/performance-tests.html
tests/2.8.5-b422/perf/xmldb/performance-tests.html
tests/2.8.5-b422/perf/xmldb/performance-tests.html
tests/2.8.5-b422/perf/xmldb/performance-tests.html
tests/2.8.5-b422/perf/xmldb/performance-tests.html
tests/2.8.5-b422/perf/xmldb/performance-tests.html
tests/2.8.5-b422/perf/mysql/performance-tests.html
tests/2.8.5-b422/perf/mysql/performance-tests.html
tests/2.8.5-b422/perf/mysql/performance-tests.html
tests/2.8.5-b422/perf/mysql/performance-tests.html
tests/2.8.5-b422/perf/mysql/performance-tests.html
tests/2.8.5-b422/perf/pgsql/performance-tests.html
tests/2.8.5-b422/perf/pgsql/performance-tests.html
tests/2.8.5-b422/perf/pgsql/performance-tests.html
tests/2.8.5-b422/perf/pgsql/performance-tests.html
tests/2.8.5-b422/perf/pgsql/performance-tests.html
tests/2.8.5-b422/perf/sm-mysql/performance-tests.html
tests/2.8.5-b422/perf/sm-mysql/performance-tests.html
tests/2.8.5-b422/perf/sm-mysql/performance-tests.html
tests/2.8.5-b422/perf/sm-mysql/performance-tests.html
tests/2.8.5-b422/perf/sm-mysql/performance-tests.html
tests/2.8.3-b409/perf/xmldb/performance-tests.html
tests/2.8.3-b409/perf/xmldb/performance-tests.html
tests/2.8.3-b409/perf/xmldb/performance-tests.html
tests/2.8.3-b409/perf/xmldb/performance-tests.html
tests/2.8.3-b409/perf/xmldb/performance-tests.html
tests/2.8.3-b409/perf/mysql/performance-tests.html
tests/2.8.3-b409/perf/mysql/performance-tests.html
tests/2.8.3-b409/perf/mysql/performance-tests.html
tests/2.8.3-b409/perf/mysql/performance-tests.html
tests/2.8.3-b409/perf/mysql/performance-tests.html
tests/2.8.3-b409/perf/pgsql/performance-tests.html
tests/2.8.3-b409/perf/pgsql/performance-tests.html
tests/2.8.3-b409/perf/pgsql/performance-tests.html
tests/2.8.3-b409/perf/pgsql/performance-tests.html
tests/2.8.3-b409/perf/pgsql/performance-tests.html
tests/2.8.3-b409/perf/sm-mysql/performance-tests.html
tests/2.8.3-b409/perf/sm-mysql/performance-tests.html
tests/2.8.3-b409/perf/sm-mysql/performance-tests.html
tests/2.8.3-b409/perf/sm-mysql/performance-tests.html
tests/2.8.3-b409/perf/sm-mysql/performance-tests.html
tests/2.7.2-b378/perf/xmldb/performance-tests.html
tests/2.7.2-b378/perf/xmldb/performance-tests.html
tests/2.7.2-b378/perf/xmldb/performance-tests.html
tests/2.7.2-b378/perf/mysql/performance-tests.html
tests/2.7.2-b378/perf/mysql/performance-tests.html
tests/2.7.2-b378/perf/mysql/performance-tests.html
tests/2.7.2-b378/perf/pgsql/performance-tests.html
tests/2.7.2-b378/perf/pgsql/performance-tests.html
tests/2.7.2-b378/perf/pgsql/performance-tests.html
tests/2.7.2-b378/perf/sm-mysql/performance-tests.html
tests/2.7.2-b378/perf/sm-mysql/performance-tests.html
tests/2.7.2-b378/perf/sm-mysql/performance-tests.html

Tigase Development Guide

xmldb/perfor- mysql/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.htmi]
2.6.4-b300 00:12:46 00:14:59 00:36:56 00:35:00
[tests/2.6.4- [tests/2.6.4- [tests/2.6.4- [testy/2.6.4-
b300/perf/ b300/perf/ b300/perf/ b300/perf/sm-
xmldb/perfor- mysql/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.htmi]
2.6.4-b295 00:12:23 00:14:59 00:42:24 00:30:18
[tests/2.6.4- [tests/2.6.4- [tests/2.6.4- [tests/2.6.4-
b295/perf/ b295/perf/ b295/perf/ b295/perf/sm-
xmldb/perfor- mysqgl/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.html]
2.6.0-b287 00:13:50 00:16:53 00:48:17 00:49:06
[tests/2.6.0- [tests/2.6.0- [tests/2.6.0- [tests/2.6.0-
b287/perf/ b287/perf/ b287/perf/ b287/perf/sm-
xmldb/perfor- mysql/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.htmi]
2.5.0-b279 00:13:29 00:16:58 00:47:15 00:41:52
[tests/2.5.0- [tests/2.5.0- [tests/2.5.0- [tests/2.5.0-
b279/perf/ b279/perf/ b279/perf/ b279/perf/sm-
xmldb/perfor- mysql/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.htmi]
2.4.0-b263 00:13:20 00:16:21 00:43:56 00:42:08
[tests/2.4.0- [tests/2.4.0- [tests/2.4.0- [tests/2.4.0-
b263/perf/ b263/perf/ b263/perf/ b263/perf/sm-
xmildb/perfor- mysql/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.htmi]
2.3.4-b226 None 01:23:30 None None
[tests/perfor-
mance-tests.html]

Stability Tests

Checking to see whether the function behaves well in long term run. It must handle hundreds of requests

asecond in aseveral hour server run.

Version XMLDB MySQL PGSQL Distributed
2.3.4-b226 None 16:06:31 None None
[tests/stabili-
ty-tests.html]

Tigase Test Suite

Tigase Test Suite is an engine which allows you to run tests. Essentially it just executes TestCase imple-
mentations. The tests may depend on other tests which means they are executed in specific order. For
example authentication test is executed after the stream open test which in turn is executed after network
socket connection test.

Each TestCase implementation may have it's own set of specific parameters. There is a set of common
parameters which may be applied to any TestCase. As an example of the common parameter you can take

100

tests/2.7.2-b378/perf/xmldb/performance-tests.html
tests/2.7.2-b378/perf/xmldb/performance-tests.html
tests/2.7.2-b378/perf/mysql/performance-tests.html
tests/2.7.2-b378/perf/mysql/performance-tests.html
tests/2.7.2-b378/perf/pgsql/performance-tests.html
tests/2.7.2-b378/perf/pgsql/performance-tests.html
tests/2.7.2-b378/perf/sm-mysql/performance-tests.html
tests/2.7.2-b378/perf/sm-mysql/performance-tests.html
tests/2.6.4-b300/perf/xmldb/performance-tests.html
tests/2.6.4-b300/perf/xmldb/performance-tests.html
tests/2.6.4-b300/perf/xmldb/performance-tests.html
tests/2.6.4-b300/perf/xmldb/performance-tests.html
tests/2.6.4-b300/perf/xmldb/performance-tests.html
tests/2.6.4-b300/perf/mysql/performance-tests.html
tests/2.6.4-b300/perf/mysql/performance-tests.html
tests/2.6.4-b300/perf/mysql/performance-tests.html
tests/2.6.4-b300/perf/mysql/performance-tests.html
tests/2.6.4-b300/perf/mysql/performance-tests.html
tests/2.6.4-b300/perf/pgsql/performance-tests.html
tests/2.6.4-b300/perf/pgsql/performance-tests.html
tests/2.6.4-b300/perf/pgsql/performance-tests.html
tests/2.6.4-b300/perf/pgsql/performance-tests.html
tests/2.6.4-b300/perf/pgsql/performance-tests.html
tests/2.6.4-b300/perf/sm-mysql/performance-tests.html
tests/2.6.4-b300/perf/sm-mysql/performance-tests.html
tests/2.6.4-b300/perf/sm-mysql/performance-tests.html
tests/2.6.4-b300/perf/sm-mysql/performance-tests.html
tests/2.6.4-b300/perf/sm-mysql/performance-tests.html
tests/2.6.4-b295/perf/xmldb/performance-tests.html
tests/2.6.4-b295/perf/xmldb/performance-tests.html
tests/2.6.4-b295/perf/xmldb/performance-tests.html
tests/2.6.4-b295/perf/xmldb/performance-tests.html
tests/2.6.4-b295/perf/xmldb/performance-tests.html
tests/2.6.4-b295/perf/mysql/performance-tests.html
tests/2.6.4-b295/perf/mysql/performance-tests.html
tests/2.6.4-b295/perf/mysql/performance-tests.html
tests/2.6.4-b295/perf/mysql/performance-tests.html
tests/2.6.4-b295/perf/mysql/performance-tests.html
tests/2.6.4-b295/perf/pgsql/performance-tests.html
tests/2.6.4-b295/perf/pgsql/performance-tests.html
tests/2.6.4-b295/perf/pgsql/performance-tests.html
tests/2.6.4-b295/perf/pgsql/performance-tests.html
tests/2.6.4-b295/perf/pgsql/performance-tests.html
tests/2.6.4-b295/perf/sm-mysql/performance-tests.html
tests/2.6.4-b295/perf/sm-mysql/performance-tests.html
tests/2.6.4-b295/perf/sm-mysql/performance-tests.html
tests/2.6.4-b295/perf/sm-mysql/performance-tests.html
tests/2.6.4-b295/perf/sm-mysql/performance-tests.html
tests/2.6.0-b287/perf/xmldb/performance-tests.html
tests/2.6.0-b287/perf/xmldb/performance-tests.html
tests/2.6.0-b287/perf/xmldb/performance-tests.html
tests/2.6.0-b287/perf/xmldb/performance-tests.html
tests/2.6.0-b287/perf/xmldb/performance-tests.html
tests/2.6.0-b287/perf/mysql/performance-tests.html
tests/2.6.0-b287/perf/mysql/performance-tests.html
tests/2.6.0-b287/perf/mysql/performance-tests.html
tests/2.6.0-b287/perf/mysql/performance-tests.html
tests/2.6.0-b287/perf/mysql/performance-tests.html
tests/2.6.0-b287/perf/pgsql/performance-tests.html
tests/2.6.0-b287/perf/pgsql/performance-tests.html
tests/2.6.0-b287/perf/pgsql/performance-tests.html
tests/2.6.0-b287/perf/pgsql/performance-tests.html
tests/2.6.0-b287/perf/pgsql/performance-tests.html
tests/2.6.0-b287/perf/sm-mysql/performance-tests.html
tests/2.6.0-b287/perf/sm-mysql/performance-tests.html
tests/2.6.0-b287/perf/sm-mysql/performance-tests.html
tests/2.6.0-b287/perf/sm-mysql/performance-tests.html
tests/2.6.0-b287/perf/sm-mysql/performance-tests.html
tests/2.5.0-b279/perf/xmldb/performance-tests.html
tests/2.5.0-b279/perf/xmldb/performance-tests.html
tests/2.5.0-b279/perf/xmldb/performance-tests.html
tests/2.5.0-b279/perf/xmldb/performance-tests.html
tests/2.5.0-b279/perf/xmldb/performance-tests.html
tests/2.5.0-b279/perf/mysql/performance-tests.html
tests/2.5.0-b279/perf/mysql/performance-tests.html
tests/2.5.0-b279/perf/mysql/performance-tests.html
tests/2.5.0-b279/perf/mysql/performance-tests.html
tests/2.5.0-b279/perf/mysql/performance-tests.html
tests/2.5.0-b279/perf/pgsql/performance-tests.html
tests/2.5.0-b279/perf/pgsql/performance-tests.html
tests/2.5.0-b279/perf/pgsql/performance-tests.html
tests/2.5.0-b279/perf/pgsql/performance-tests.html
tests/2.5.0-b279/perf/pgsql/performance-tests.html
tests/2.5.0-b279/perf/sm-mysql/performance-tests.html
tests/2.5.0-b279/perf/sm-mysql/performance-tests.html
tests/2.5.0-b279/perf/sm-mysql/performance-tests.html
tests/2.5.0-b279/perf/sm-mysql/performance-tests.html
tests/2.5.0-b279/perf/sm-mysql/performance-tests.html
tests/2.4.0-b263/perf/xmldb/performance-tests.html
tests/2.4.0-b263/perf/xmldb/performance-tests.html
tests/2.4.0-b263/perf/xmldb/performance-tests.html
tests/2.4.0-b263/perf/xmldb/performance-tests.html
tests/2.4.0-b263/perf/xmldb/performance-tests.html
tests/2.4.0-b263/perf/mysql/performance-tests.html
tests/2.4.0-b263/perf/mysql/performance-tests.html
tests/2.4.0-b263/perf/mysql/performance-tests.html
tests/2.4.0-b263/perf/mysql/performance-tests.html
tests/2.4.0-b263/perf/mysql/performance-tests.html
tests/2.4.0-b263/perf/pgsql/performance-tests.html
tests/2.4.0-b263/perf/pgsql/performance-tests.html
tests/2.4.0-b263/perf/pgsql/performance-tests.html
tests/2.4.0-b263/perf/pgsql/performance-tests.html
tests/2.4.0-b263/perf/pgsql/performance-tests.html
tests/2.4.0-b263/perf/sm-mysql/performance-tests.html
tests/2.4.0-b263/perf/sm-mysql/performance-tests.html
tests/2.4.0-b263/perf/sm-mysql/performance-tests.html
tests/2.4.0-b263/perf/sm-mysql/performance-tests.html
tests/2.4.0-b263/perf/sm-mysql/performance-tests.html
tests/performance-tests.html
tests/performance-tests.html
tests/performance-tests.html
tests/stability-tests.html
tests/stability-tests.html
tests/stability-tests.html

Tigase Development Guide

-loop = 10 which specified that the Test Case must be executed 10 times. Thetest specific parameter might
be -user-name = tester which may set the user name for authentication test.

The engineisvery generic and allows you to write any kind of tests but for the Tigase projects the current
TestCase implementations mimic an XMPP client and are designed to test XM PP servers.

The suite contains akind of scripting language which allowsyou to combinetest casesinto atest scenarios.
The test scenario may contain full set of functional tests for example, another test scenario may contain
performance tests and so on.

Running Tigase Test Suite (TTS)

Toobtain TTS, you will first need to clone the repository

git clone https://repository.tigase.org/git/tigase-testsuite.git
Once cloning is finished, navigate to the TTS root directory and compile with maven:

m/n cl ean install

Maven will compile TTS and placejarsin the necessary locations. From the same directory, you can begin
running TTS using the following command:

./scripts/all-tests-runner.sh
Y ou should see the following, which outlines the possible options to customize your test run

Run selected or all tests for Tigase server
Aut hor: Artur Hefczyc <artur_hefczyc@nu. co. uk>
Version: 2.0.0
---help|]-h This hel p nessage
---func [nysql | pgsql | der by| mssql | nobngodb]
Run all functional tests for a single database configuration
---lmem [nysql | pgsql | der by| mssql | nobngodb]
Run |l ow nmenory tests for a single database configuration
---perf [nysql | pgsql | der by| mssql | nobngodb]
Run all performance tests for a single database configuration
---stab [nysql | pgsql | der by| mssql | nbngodb]
Run all stability tests for a single database
configuration

---func-all Run all functional tests for all database
configurations

---Ilmemall Run low nmenory tests for all database
configurations

---perf-all Run all performance tests for all database
configurations

---stab-all Run all stability tests for all database

configurations

---all-tests Run all functionality and performance tests for
dat abase confi gurations

---single test_file.cot

---other script_file.xnpt

Speci al paraneters only at the beginning of the parameters |i st

101

Tigase Development Guide

---debug|-d Turns on debug node

---ski p-db-rel ad| - no-db Turns off rel oadi ng dat abase
---ski p-server|-no-serv Turns off Tigase server start
---smal | -nmenf -sm Run in small nenory node

O her possible paraneters are in follow ng order:
[server-dir] [server-ip]

Customizing Tigase Test Suite

Y ou may run the tests from acommand line like above, however you may create and edit the /scripts/tests-
runner-settings.sh file to fit your Tigase installation and avoid having to have long complex commands
as this template shows:

#!/ bi n/ bash

func_rep="func-rep. htm"
perf_rep="perf-rep.htm"
db_name="ti gaset est"
db_user="ti gase"
db_pass="ti gase"

root _user="root"

root _pass="root"

TESTS=("derby" -"nysqgl" -"pgsql" -"mssqgl")
| PS=("127.0.0.1" -"127.0.0.1" -"127.0.0.1" -"127.0.0.1")

server _ti meout =10

server _dir="/hone/tigase/tigase-server"
dat abase="der by"

#dat abase="nysql "

server_i p="127.0.0. 1"

MS_MEM=100
MX_MEM=1000

SMALL_MS_MEME10
SMALL_MX_MEME50

Thiswill allow you to maintain identical settings through multiple runs of TTS. See the next section for
learning how the scripting language works and how you can create and run your own custom tests.

Test Suite Scripting Language

The test suite contains scripting language which allows you to combine test cases into a test scenarios.
On the lowest level, however the language is designed to alow you to describe the test by setting test
parameters, test comments, identification and so on.

Let'slook at the example test description.

Short name@est-id-1;test-id-2: Short description for the test case

{
--loop = 10

102

Tigase Development Guide

--user-nanme = Frank
This is a commrent which is ignored

}

>> Long, detailed description of the test case <<
Meaning of al elements:

1. Short nameisany descriptive name you want. It doesn’t need to be unique, just something which tells
you what thistest is about. @ is a separator between the short name and the test ids.

2. test-id-1;test-id-2 is a semicolon separated of the test cases IDs. The tests cases are executed in the
listed order. And listing them there means that the test-id-2 depends on test-id-1. Normally you don’t
haveto list all the dependencies because all mandatory dependencies areincluded automatically. Which
means if you have an authentication test case the suite adds the network socket connection and stream
opening tests automatically. Sometimes however, there are dependencieswhich are optional or multiple
mandatory dependencies and you need to select which one hasto be executed. Asagood exampleisthe
authentications test case. There are many authentication tests: PLAIN-AUTH, SASL-DIGESTMD)5,
SASL-PLAIN, DIGEST-AUTH and they are all mandatory for most of other tests like roster, presence
and so on. One of the authentication tests is a default dependency but if you put on the list different
authentication it will be used instead of default one.

3. ! isaseparator between test casesidslist and the short test description.

4. Short test description is placed between : - colon and opening { - curly bracket. Thisis usually quite
brief, single line test description.

5. {} curly brackets contain all the test parameters, like how many times the test has to be executed or run
the test in a separate thread, user name, host | P address for the network connection and many others.

6. >> << inside the double greater than and double less than you put a very long, multiple line test de-
scription.

Asfor the testing script between open curly brackets{ and close one} you can put al the test case para-
meters you wish. The format for it is:

-parameter -name = value

Parameter names always start with -. Note, some parameters don’t require any value. They can exist on
their own without any value assigned:

-debug-on-error
Thisimitates if you were to put yes or true as the value.

The scripting language includes also support for variables which can be assigned any value and used
multiple times later on. Y ou assign a value to the variable the same way as you assign it to the parameter:

$(variable-name) = value

The variable name must be always enclosed with brackets () and start with $.

The value may be enclosed within double quotes" " or double quotes may be omitted. If thisisasimple
string like a number or character string consisting only of digits, letters, underscore _ and hyphen - then
you can omit double quotes otherwise you must enclose the value.

The test case descriptions can be nested inside other test case descriptions. Nested test case descriptions
inherit parameters and variables from outer test case description.

103

Tigase Development Guide

Writing Tests for Plugins

Y ou can write tests in asimple text file which is loaded during test suite runtime.

You simply specify what should be send to the server and what response should be expected from the
server. No need to write Java code and recompile the whol e test suite for new tests. It means new test cases
can be now written easily and quickly which hopefully means more detailed tests for the server.

How it works:

Let’s take XEP-0049 [http://www.xmpp.org/extensions/xep-0049.html] Private XML Storage. Looking
into the spec we can see the first example:

Example: Client Stores Private Data
CLIENT:

<ig type="set" id="1001">
<query xm ns="j abber:iq:private">
<exodus xm ns="exodus: prefs">
<def aul t ni ck>Hanl et </ def aul t ni ck>
</ exodus>
</ query>
<lig>

SERVER:
<iqg type="result" id="1001"/>

This is enough for the first simple test. | have to create text file Jabber |1 gPri vat e. t est looking
likethis:

send: {

<iq type="set" id="1001">
<query xm ns="j abber:iq:private">
<exodus xm ns="exodus: prefs">
<def aul t ni ck>Ham et </ def aul t ni ck>

</ exodus>

</ query>
</ig>
}
expect: {
<iq type="result" id="1001"/>
}
And now | can execute the test:
testsuite $ -./scripts/all-tests-runner.sh ---single JabberlqgPrivate.test
Ti gase server hone directory: -../server
Version: 2.8.5-b422
Dat abase: xm db
Server |P: 127.0.0.1

104

http://www.xmpp.org/extensions/xep-0049.html
http://www.xmpp.org/extensions/xep-0049.html

Tigase Development Guide

Extra paraneters: JabberlqgPrivate.test
Starting Tigase:
Ti gase runni ng pi d=6751

Runni ng: 2.8.5-b422-xm db test, IP 127.0.0.1..
Script nane: scripts/single-xnmpp-test.xnmpt
Common test: Common test -... failure!
FAI LURE, (Received result doesnt match expected result.,
Expected one of: [<iq id="1001" type="result"/>],
received:
[<ig id="1001" type="error">
<query xm ns="j abber:iq:private">
<exodus xm ns="exodus: prefs">
<def aul t ni ck>Hanl et </ def aul t ni ck>
</ exodus>
</ query>
<error type="cancel ">
<feature-not-inplemented xm ns="urn:ietf:paranms: xm : ns: xnpp-stanzas"/>
<text xm:lang="en" xm ns="urn:ietf:paranms: xm : ns: xnpp- st anzas" >
Feat ure not supported yet.</text>
</error>

</ig>]),

Total : 100ns

Test tinme: 00:00:02

Shutting down Tigase: 6751

If | just started working on this XEP and there is no code on the server side, the result is perfectly expected
although maybe this is not what we want. After awhile of working on the server code | can execute the
test once again:

testsuite $ -./scripts/all-tests-runner.sh ---single JabberlqgPrivate.test
Ti gase server hone directory: -../server

Version: 2.8.5-b422

Dat abase: xm db

Server |P: 127.0.0.1

Extra paraneters: JabberlgPrivate.test

Starting Tigase:

Ti gase runni ng pi d=6984

Runni ng: 2.8.5-b422-xm db test, IP 127.0.0.1..

Script nane: scripts/single-xnmpp-test.xnmpt

Common test: Commpn test -... success, Total: 40ns

Test time: 00:00:01

105

Tigase Development Guide

Shutting down Tigase: 6984

Thisisit. Theresult wewant in asimple and efficient way. We can repeat it as many timeswe want which
is especially important in longer term trials. Every time we change the server code we can re-run tests to
make sure we get correct responses from the server.

You can have alook in the current build, with more complete test cases, file for JabberlgPrivate [https://
github.com/tigase/ti gase-testsuite/tree/master/tests/datal Jabberl gPrivate.cot] .

Now my server tests are no longer outdated. Of course not al cases are so simple. Some XEPs require
calculationsto be done before stanzais sent or to compare received results. A good examplefor thiscaseis
user authentication like SASL and even NON-SASL. But till, there are many cases which can be covered
by simple tests: roster management, privacy lists management, vCard, private data storage and so on.

Test Case Parameters Description

Thereislong list of parameters which can be applied to any test case. Hereisthe description of all possible
parameters which can be used to build test scenarios.

Test Report Configuration

There are test report parameters which must be set in the main script filein order to generate HTML report
from the test. These parameters have no effect is they are set inside the test case description.

1. -version = 2.0.0 sets the test script version. Thisis used to easily detect incompatibility issues when
the test suite loads a script created for more recent version of the suite and may not work properly for
thisversion.

2. -output-format = (html | html-content) sets the output format for the test report. There is actually
only one format possible right now - HTML. The only difference between these 2 options is that the
html format creates full HTML page with HTML header and body. The html-content format on the
other hand creates only what isinside <body/ > element. And is used to embed test result inside other
HTML content.

3. -output-file="report-filehtml" setsthe file name for the test report.

4. -output-history = (yes| no) setslogging of the all protocol data sent between test suite and the XM PP
server. Normally for functional tests it is recommended to set it to yes but for al other tests like per-
formance or load tests it should be set to no.

5. -history-format = separate-file sets protocol data logging to a separate file. Currently thisisthe only
possible option.

6. -output-cols= (5] 7) Only valid values are:

5: -"Test nane", -"Result", -"Test tinme", -"Description" [, -"Hi story" -]
7. -"Test nane", -"Result", -"Total time", -"OK', -"Average", -"Description" [,

7. -title = "The title of the report page" This parameter sets the test report title which is placed in the
HTML pageinthe<ti t| e/ > element aswell asin the first page header.

Basic Test Parameters

These parameters can be set on per-test case basis but usually they are set in the main script file to apply
them to all test cases.

106

https://github.com/tigase/tigase-testsuite/tree/master/tests/data/JabberIqPrivate.cot
https://github.com/tigase/tigase-testsuite/tree/master/tests/data/JabberIqPrivate.cot
https://github.com/tigase/tigase-testsuite/tree/master/tests/data/JabberIqPrivate.cot

Tigase Development Guide

1. -base-ns="jabber:client" setsthe XML name space used for the XML stream in the XM PP connec-
tion. Some test cases can be used to test client to server protocol as well as server to server protocol
and possibly different protocols added in the future.

2. -debug switches debugging mode on. All the communication between the test suite and the server
is printed out to the text console and all other debugging information including java exceptions are
displayed aswell. It is especially useful when some test fails and you want to find out why.

3. -debug-on-error switches on debugging mode on error detection. Normally debug output generates
lots of message which makes the output very hard to read. Especially in the performance tests not only
you can read fast scrolling lines of the protocol databut also it Slowsthetest down. This option however
turns debugging off if everything is working well and then generates debug output if any test error us
detected.

4. -def-auth = (auth-plain | auth-digest | auth-sadl) sets the default authentication method for the user
connection.

5. -def-stream = (stream-client | stream-server | stream-component | str eam-bosh) setsthe connection
stream to be tested and the name space for the connection.

6. -host = "host.name" the vhost name the tested server runs for. It may be the real DNS name or just
configured for testing purposes hostname. It must match however the server configuration.

7. -keysfile="certskeystore" setsthelocation of the keys store file. No need to touch it.

8. -keys-file-password = keystor e sets the password for the keystore file. Normally you don’t have to
touch it.

9. -serverip =" 127.0.0.1" definesthe XMPP server |P address. You may omit this parameter and then
the IP address will be determined automatically based on the server DNS address. However if the DNS
address can not be correctly resolved or if you run tests on the localhost you can use this parameter
to enforce the | P address.

10.-socket-wait = 10000 sets the network socket timeout in milliseconds that is maximum time the test
suite will wait for the response from the server. Y ou may want to increase the timeout for some specific
tests which require lots of computation or database activity on the server. Normally 10 seconds is
enough for most cases.

11.-stop-on-fail = true causes the script to terminate all actions on the first failed test case. It helps diag-
nosing the server state at the failure point.

12-trust-file=" certs/client_truststore" setsthefilenamefor theclient trust storefile. No need to change
it.

13.-trust-file-password = truststor e sets the password for the trust store file. Normally you don’'t have
to touch it.

14.-user-name = tester setsthe user name used for the XM PP connections between the test suite and the
XMPP server. Itisusually set globally the sasmefor all tests and for some tests like receiving the server
configuration you may want to use a different account (with admin permissions). Then you can set a
different user for this specific test case.

15.-user-pass = tester-passwor d sets the password for the user used for the XM PP connection between
the test suite and the XM PP server.

16.-user-resr = resour ce sets the user JID resource part for the XM PP connection between the test suite
and the XM PP server.

107

Tigase Development Guide

Test Case Parameters

Test parameters which are normally set on per-test case basis and apply only to the test they are set for
and all inherited tests. Some of the parameters though are applied only to inherited test cases. Please look
in the description below to find more details.

1.

-active-connection is a similar parameter to -on-one-socket option. If set the suite doesn’t close the
network socket and if the test is run in loop each loop run re-uses the network connection. Unlike in
the -on-one-socket mode the whole test is executed on each run including XM PP stream initialization
and user authentication. This option is currently not recommended in anormal use. It is useful only to
debug the server behavior in very special use cases.

. -background executes the test in a separate thread in background and immediately returns control to

the test suite program without waiting for the test to complete. Default behavior is to execute all tests
sequentially and run next test when previous one has been completed. This parameter however alows
to run tests concurrently. This a bit similar option to the -daemon parameter. The daemon test/task
however is ignored completely and results from the daemon are not collected where the background
test isanormal test which isrun concurrently with another one or possibly many other tests.

. -daemon creates a task running in background in a separate thread. Such a test runs infinitely as a

daemon, itisnot recorded inthetest report and it’ sresult is not cal culated. The purpose of such test/task
isto work as a helper for other test cases. A good example of such daemon test is message responder -
the test which runs under a different user name and waits for messages and responding to the sender.

. -delay = 1000 sets the waiting time in milliseconds after the test case is completed. You may use it

if you want to introduce short delay between each test cases run in the loop or if you start the helper
daemon thread and you have to add the delay to make sure it isready to work before next real test starts
sending requests to the daemon.

. -expect-type = error sets the type for a packet expected as a response. Some test cases like message

sender expects sometimes response with the same type it has sent the packet (chat) but in some other
cases when it sends a message to a user who has privacy lists set to block messages the response should
be with an error. Thisway we can use the same test cases for testing different responses scenarios.

. -loop = 10 setsthe number of timesthe test (and all inherited tests) are repeated. Y ou can use a$(loop)

pseudo-variable to obtain and use the current loop run number. Thisis useful if you want to run every
loop run for a different user name like registering 10 different user accounts. To do this you stick the
$(loop) variable to the user name string: -user-name = " nick_name_$(loop)" .

. -loop-delay = 10 sets a delay in milliseconds between each individual loop run for the tests which is

run multiple times. Thisissimilar parameter to the -delay one but the -delay option introduces a delay
after the whole test (or all loop runs) has been completed. The loop delay options adds waiting time
between each run of the looped test.

. -loop-start = 5 sets the loop starting value. It doesn’t affect number of loop runsin aany way. It only

affects the value of the $(loop) variable. Let's say you want to run aload test for the server with 100k
concurrent users and you want to run the test from 3 different machines. To make sure each machine
uses distinct user accounts you have to set a different -loop-start parameter on each to prevent from

overlapping.

. -messages = 10 sets the number of messages to send to the server. Thisis another way of looping the

test. Instead of repeating the whol e test with opening network connection, XM PP stream, authentication
and so on it causes only to send the message this many times. This parameters is accepted by some test
cases only which send messages. For the messages listeners - test cases which is supposed to respond
to the messages the number set here specifies how many times the the response must be sent before
the test successfully terminatesit’s work.

108

Tigase Development Guide

10.-multi-thread option causes to run the test case and al inherited in all levels test cases in separate
threads. Normally the test case where you put the parameter doesn’t have a test ID (what you put
between ‘@' and "' characters so it doesn’t run atest on it’s own. Instead it contains a series of test
cases inside which are then run in a separate thread each. This is a key parameter to run tests for
many concurrent users. (Not aload tests though.) For example you can see whether the server behaves
correctly when 5 simultaneous modifies their roster. The execution time al inherited tests run in a
separate threads is added together and also results from each individual test is calculated and added to
the total main test resullts.

11.-no-record isused for kind of configuration tests (tasks) which are used to prepare the XM PP server or
database for later tests. Asan example can be creation of the test user account which islater on used for
the roster tests. Usually you don’'t want to include such tests in the test report and using this parameter
you essentially exclude the test from the report. The test and the result however showsin the command
line output so you can still track what is really going on.

12.-on-one-socket isamodifier for alooped test case. Normally when we switch looping on using -loop
parameter the suite resets the state, closes the network socket and runs the test from the very beginning
including opening network socket, XM PP stream, authentication and so on. This parameter however
changes this behavior. The network socket is not closed when the test run is completed (successfully)
and next run executes only the last part of the test omitting the XM PP stream initialization, authentica-
tion and all othersbut last. Thisis useful when you want to send many messagesto the server (although
this effect may be accomplished using -messages parameter aswell) or registering many user accounts
on the server, unregistering user accounts and any other which might make sense repeating many times.

13.-port = 5223 this parameter is similar to the | P address setting and can be also set globally for all tests.
Normally however you set it for asel ected testsonly to check SSL connection. For all other tests default
port number is used. Therefore this parameters has been included in this section instead of "Basic test
parameters’.

14.-presence this parameter enables sending initial presence with positive priority after connection and
binding the session.

15.-repeat-script = 100 and -repeat-wait = 10 are 2 parameters are specific to the common test cases.
(Thetest cases which reads the test input/output data from the pseudo-xml text file. The first parameter
is another variation of test looping. It sets how many times the test has to be repeated. It works very
much like the -on-one-socket parameter. The only difference is that the common test can preserve
someinternal states between runsand therefore it has more control over the data. The second parameter
sets the timeout in milliseconds to wait/delay between each individual test run and it isavery similar
parameter to the -delay one but it sets a timeout inside the common test instead.

16.-sour ce-file = " dir/path/toffile.cot” is aparameter to set the "common test" script file. The common
test is atest cases which depends on the authentication test case and can read data to send and responses
to expect fromthetext file. The"cot" fileisapseudo-xml file with stanzasto send and stanzasto expect.
The the test cases compares the received packets with those in the text file and reports the test result.
Thisis usually a more convenient way to write a new test cases than coding them in Java.

17.-time-out-ok is set for atest case when we expect socket timeout as a correct result from the test case.
Normally the timeout means that the test failed and there was no response from the server at all or the
response was incorrect. For some tests however (like sending a message to the user who is blocking
messages through privacy lists) the timeout is the desired correct test result.

18.-to-jid =" user_name@host.name[mailto:user _name@host.name]" setsthe destination addressfor
packets sending packets somewhere. Asan exampleisthetest case sending <nessage/ > packet. You
can set the destination address for the packet. Mind, normally every test expects some response for the
data sent so make sure the destination end-point will send back the data expected by the test case.

109

mailto:user_name@host.name
mailto:user_name@host.name

Tigase Development Guide

Experimental

The guide contains description of non-standard or experimental functionality of the server. Some of them
are based on never published extensions, some of them are just test implementation for new ideas or
performance improvements.

» Dynamic Rosters
» Mobile Optimizations

» Bosh Session Cache
Dynamic Rosters

Problem Description

Normal roster contacts stored and created as dynamic roster parts are delivered to the end user trans-
parently. The XMPP client doesn’t really know what contacts come from its own static roster created
manually by the user and what contacts come from adynamic roster part; contacts and groups generated
dynamically by the server logic.

Some specialized clients need to store extra bits of information about roster contacts. For the normal user
static roster information can be stored as private dataand isavailable only to thissingle user. In some cases
however, clients need to storeinformation about contacts from the dynamic roster part and thisinformation
must be available to all users accessing dynamic roster part.

The protocol defined here alows the exchange of information, saving and retrieving extra data about the
contacts.

Syntax and Semantics

Extra contact data is accessed using 1Q stanzas, specifically by means of a child element qualified by
the jabber:ig:roster-dynamic namespace. The child element MAY contain one or more children, each
describing a unique contact item. Content of the element is not specified and isimplementation dependent.
From Tigase' s point of view it can contain any valid XML data. Whole element is passed to the Dynami-
cRoster implementation class asis and without any verification. Upon retrieving the contact extra datathe
DynamicRoster implementation is supposed to provide a valid XML element with all the required data
for requested jid.

Thejid attribute specifies the Jabber Identifier (JID) that uniquely identifies the roster item. Inclusion of
thejid attribute is REQUIRED.

Following actions on the extra contact data are allowed:
* set - stores extrainformation about the contact

» get - retrieves extrainformation about the contact
Retrieving Contact Data
Upon connecting to the server and becoming an active resource, aclient can request the extra contact data.

Thisrequest can be made either before or after requesting the user roster. The client’ srequest for the extra
contact datais OPTIONAL.

110

Tigase Development Guide

Example: Client requests contact extra data from the server using get request:

<iq type='get' id='rce_1'>

<query xm ns='jabber:iq:roster-dynamc' >
<itemjid="archi mredes@ureka.com />

</ query>

</ig>

Example: Client receives contact extra data from the server, but there was either no extrainformation for
the user, or the user was not found in the dynamic roster:

<ig type='result' id="rce_ 1'>

<query xm ns='jabber:iq:roster-dynamc' >
<itemjid="archi mredes@ureka. con />

</ query>

</ig>

Example: Client receives contact extra data from the server, and there was some extra information found
about the contact:

<iqg type='result' id="rce_1'>

<query xm ns='jabber:iq:roster-dynamc' >
<itemjid="archi mredes@ureka. con >

<phone>+12 3234 322342</ phone>

<note>This is short note about the contact</note>
<f ax>+98 2343 3453453</fax>

<litenp

</ query>

</ig>

Updating/Saving Extra Information About the Contact
At any time, aclient MAY update extra contact information on the server.
Example: Client sends contact extrainformation using set request.
<iq type='set' id='a78b4g6ha463' >
<query xm ns='jabber:iq:roster-dynamc' >
<itemjid="archi mredes@ureka. coni >
<phone>+22 3344 556677</ phone>
<note>he is a smart guy, he knows whether the crown is nade from pure gold or not.
</itenp
</ query>
</ig>
Client responds to the server:
<iqg type='result' id="a78b4q6ha463' />
A client MAY update contact extrainformation for more than a single item in one request:
Example: Client sends contact extrainformation using set request with many <item/> elements.
<iqg type='set' id='a78b4g6ha464' >

<query xm ns='jabber:iq:roster-dynamc' >
<itemjid="archi medes@ureka. coni >

111

Tigase Development Guide

<phone>+22 3344 556677</ phone>
<note>he is a smart guy, he knows whether the crown is nmade from pure gold or not.
</itenp

<itemjid='"newt on@ureka. com >

<phone>+22 3344 556688</ phone>

<not e>He knows how heavy | am </ note>

</itenp

<itemjid='pascal @ureka.com >

<phone>+22 3344 556699</ phone>

<not e>Thi s guy hel ped ne cure ny sickness!</note>
</itenp

</ query>

<lig>

Client responds to the server:

<iqg type='result' id='"a78b4q6ha464' />
Configuration

DynamicRoster implementation class should be configured in the config.tddl file:

'sess-man' () {
-'dynam c-rosters' () {
class (class: package.custom Dynami cRoster| npl ementation) {}
-}
}

If you want to pass configuration to your implementation simply use @Conf i gFi el d annotation onyour
variable (see Component implementation - Lesson 2 - Configuration for more details).

Mobile Optimizations

Problem Description

In default configuration stanzas are sent to the client when processing is finished, but in mobile environ-
ment sending or receiving data drains battery due to use of the radio.

To save energy data should be sent to client only if it isimportant or client iswaiting for it.

Solution

When mobile client is entering inactive state it notifies server about it by sending following stanza:

<iqg type="set" id="xx">

<nmobi | e
xm ns="http://tigase. org/ protocol/nmobil e#v3"
enabl e="true"/>

</ig>

After receiving stanza server starts queuing stanza which should be send to mobile client. What kind of
gueued stanzas depends on the plugins used and in case of M obile v3 presence stanzas are queued as well
as message stanzas which are Message Carbons. Any other stanza (such as ig or plain message) is sent
immediately to the client and every stanzafrom queueis also sent at thistime.

112

Tigase Development Guide

When mobile client is entering active state it notifies server by sending following stanza:
<iqg type="set" id="xx">
<mobi | e
xm ns="http://tigase. org/protocol /nmobil e#v3"
enabl e="fal se"/>
</ig>
After recelving stanza server sends all queued stanzas to the client.

Also all stanzas from queue will be sent if number of stanzas in queue will reach queue size limit. By
default this limit is set to 50.

Queuing Algorithms
There are three mobile optimization plugins for Tigase:
* Mobilevl - al presence stanzas are kept in queue
* Mobilev2 - only last presence from each source is kept in queue
» Mobilev3 - only last presence from each source is kept in queue, also Message Carbons are queued

If you wish to activate you Mobile v1 plugin you need to send presented above with xmins attribute value
replaced with http://tigase.org/protocol/mobiletvl

If you wish to activate you Mobile v2 plugin you need to send presented above with xmlns attribute value
replaced with http://tigase.or g/protocol/mobiletv2

Configuration

Mobile plugins are not activated by default thus additional entry inthe confi g. t dsl isrequired:

'sess-man' () {
nmobile_vl () {}
}

Y ou may substitute nobi | e_v1 withnobi | e_v2 or nobi | e_v3 depending on which algorithm you
wish to use.

Note

USE ONLY ONE PLUGIN AT A TIME!
Bosh Session Cache

Problem Description

Web clients have no way to store any data locally, on the client side. Therefore after a web page reload
the web clients loses all the context it was running in before the page reload.

Some elements of the context can be retrieved from the server like the roster and all contacts presence
information. Some other data however, can not be restored easily like opened chat windows and the chat
windows contents. Even if the roster restoring is possible, this operation isvery expensivein terms of time
and resources on the server side.

113

http://tigase.org/protocol/mobile#v1
http://tigase.org/protocol/mobile#v2

Tigase Development Guide

On of possible solutions is to allow web client to store some data in the Bosh component cache on the
server side for the time while the Bosh session is active. After the page reloads, if the client can somehow
retrieve SID (stored in cookie or provided by the web application running the web client) it is possible to
reload al the data stored in the Bosh cache to the client.

Bosh session context data are: roster, contacts presence information, opened chat windows, chat windows
content and some other minor data. 1deally the web client should be able to store any data in the Bosh
component cache it wants.

Bosh Session Cache Description

Cache

The Bosh Session Cacheis divided into 2 parts - automatic cache and dynamic cache.

The reason for splitting the cacheinto 2 partsisthat some data can be collected automatically by the Bosh
component and it would be very inefficient to require the client to store the data in the Bosh cache. The
best example for such datais the Roster and contacts presence information.

» automatic cache - isthe cache part which is created automatically by the Bosh component without any
interaction with the client. The client, however, can access the cache at any time. | would say thisis
a read-only cache but | don’t want to stop client from manipulating the cache if it needs. The client
usualy, only retrieves datafrom this part of the cache asall changes should be automatically updated by
the Bosh component. The general ideafor the automatic cacheisthat the data stored there are accessible
in the standard XM PP form. So no extra code is heeded for processing them.

 dynamic cache - isthe cache part which is or can be modified at any time by the client. Client can store,
retrieve, delete and modify datain this part of the cache.

Protocol

All the Bosh Session Cache actions are executed using additional <body/ > element attributes: cache
and cache-i d. Attribute cache stores the action performed on the Bosh cache and the cache-i d
attribute refers to the cache element if the action attribute needs it. cache-i d is optional. Thereisa
default cache ID (empty one) associated with the elements for which thecache- i d isnot provided.

If the<body/ > element contains the cache attribute it meansthat all dataincluded inthe <body/ > refer
to the cache action. It isnot allowed, for example to send amessage in the body and have the cache action
set to get. The <body/ > element with cache action get, get_all, on, off, remove must be empty. The
<body/ > element with actions set or add must contain data to store in the cache.

Cache Actions

* on or off - the client can switch the cache on or off at any time during the session. It is recommended,
however that the client switchesthe cache on in the first body packet, otherwise some information from
the automatic cache may be missing. The automatic cache is created from the stream of data passing the
Bosh component. Therefore if the cache is switched on after the roster retrieval is completed then the
roster information will be missing in the cache. If the cacheis set to off (the default value) all requeststo
the cache areignored. Thisisto ensure backward compatibility with the original Bosh specification and
to make sure that in a default environment the Bosh component doesn’t consume any extra resources
for cache processing and storing as the cache wouldn’t be used by the client anyway.

* get - retrieves the cache element pointing by the cache-id from the Bosh cache. Note there is no result
cache action. The <body/ > sent as a response from the server to the client may contain cache results
for agiven cache-id and it may also contain other datareceived by the Bosh component for the client. It
may also happen that large cached data are split into afew parts and each part can be sent in a separate
<body/ > element. It may usually happen for the Roster data.

114

Tigase Development Guide

» get_all - retrieves all the elements kept in the Bosh cache. That action can can be performed after the
page reload. The client doesn’t have to request every single cached item one by one. It can retrieve all
cacheitemsin onego. It doesn’t mean however the whole cacheis sent to theclientinasingle<body/
> element. The cache content will be divided into asmaller parts of areasonable size and will be sent to
the client in a separate <body/ > elements. It may also happen that the <body/ > element contain the
cache elements as well as the new requests sent to the user like new messages or presence information.

* set - sendsdatato the Bosh Session cache for later retrieval. The client can store any datait wantsin the
cache. The Bosh components stores in the cache under the selected ID &l the datainside the <body/ >
element. The only restriction isthat the cached datamust beavalid XML content. The data are returned
to the client in exactly the same form as they were received from the server. The set action replaces any
previously stored data under thisID.

» add - adds new element to the cache under the given ID. This action might be useful for storing data
for the opened chat window. The client can add new elements for the chat window, like new messages,
iconsand so on...

* remove - removes the cached element for the given cache ID.

Cache ID

Cache ID can be an any character string. There might be some IDs reserved for a specia cases, like for
the Roster content. To avoid any future ID conflicts reserved 1D values starts with: bosh - string.

Thereisadefault cache ID - en empty string. Thus cache-id attribute can be omitted and then the requests
refers to data stored under the default (empty) ID.

Reserved Cache ID Names

Hereisalist of reserved Cache IDs:

* bosh-roster - The user roster is cached in the Bosh component in exactly the same form as it was
received from the core server. The Bosh Cache might or might not do optimizations on the roster like
removing elements from the cached roster if the roster remove has been received or may just store all
the roster requests and then send them all to the client. There is a one mandatory optimization the Bosh
Cache must perform. It must remember the last (and only the last) presence status for each roster item.
Upon roster retrieving from the cache the Bosh component must send the roster item first and then the
presence for the item. If the presence is missing it means an offline presence. If the roster is small it
can be sent to the client in a single packet but for alarge roster it is recommended to split contact lists
to batches of max 100 elements. The Bosh component may send all roster contacts first and then all
presences or it can send a part of the roster, presences for sent items, next part of the roster, presences
for next items and so on.

» bosh-resource-bind - The user resource bind is also cached to alow the client quickly retrieve infor-
mation about the full JID for the established Bosh session.

Old Stuff

This contains sections on old features, or information pertaining to old builds of Tigase. It is kept here
for archival purposes.

Tigase DB Schema Explained

Theschemabasics, how it lookslikeand brief explanation to all rows canbefoundinthelist of schemafiles
[https://github.com/tigase/tigase-server/tree/master/src/main/database]. However, thisis hardly enough to

115

https://github.com/tigase/tigase-server/tree/master/src/main/database
https://github.com/tigase/tigase-server/tree/master/src/main/database

Tigase Development Guide

understand how it works and how all the data is accessed. There are only 3 basic tables which actually
keep all the Tigase server users data: tig_users, tig_nodesand tig_pairs. Therefore it is not clear at first
how Tigase's datais organized.

Before you can understand the Tigase XM PP Server database schema, how it works and how to useit, is
it essential to know what were the goals of it's development and why it works that way. Let’s start with
the API asthis gives you the best introduction.

Simplified access can be made through methods:

voi d setData(BaredI D user, String key, String val ue);
String getData(Baredl D user, String key);

And more a complex version:

voi d setData(BareJl D user, String subnode, String key, String value);
String getData(BareJdl D user, String subnode, String key, String def);

Even though the API contains more methods, the rest is more or less a variation of presented above. A
complete API description for all access methodsis availablein JavaDoc documentation in the UserReposi-
tory [https://github.com/tigase/tigase-server/tree/master/src/main/javaltigase/db/UserRepository.java) in-
terface. So we are not going into too much detail here except for the main idea.

Tigase operates on <*key*, value> pairsfor theindividual user data. Theidea behind thiswasto make the
API very simple and also at the same time very flexible, so adding a new plugin or component would not
require a database schema change, adding new tables, or conversion of the DB schemato a new version.

As aresult the User Repository interface is exposed to all of Tigase's code, mainly the components and
plugins (let's call all of them modules). These modules simply call set/get methods to store or access
modul e specific data.

As plugins or components are developed independently it may easily happen that developer choses the
same key name to store some information. To avoid key name conflicts in the database a 'node’ concept
has been introduced. Therefore, most modules when set/get key value they also provide a subnode part,
which in most casesisjust XMLNS or some other unique string.

The 'node’ thing is a little bit like directory in a file system, it may contain subnodes which makes the
Tigase database behave like a hierarchical structure. And the notation is aso similar to file systems, you
use just / to separate node levels. In practice you can have the database organized like this:

user-nane@onmain ---> (key, value) pairs
rostélr --->
it;alml ---> (keyl, valuel) pairs.
it;almz ---> (keyl, valuel) pairs.

So to access item’s 1 data from the roster you could call method like this:
get Dat a(" user - nane@lomai n", -"roster/iteml", keyl, defl);

Thisishuge convenience for the devel oper, as he can focus on the module logic instead of worrying about
data storage implementation and organi zation. Especially at the prototype phase it speeds development up
and allows for a quick experiments with different solutions. In practice, accessing user’ s roster in such a
way would be highly inefficient so the roster is stored a bit differently but you get the idea. Also thereis

116

https://github.com/tigase/tigase-server/tree/master/src/main/java/tigase/db/UserRepository.java
https://github.com/tigase/tigase-server/tree/master/src/main/java/tigase/db/UserRepository.java
https://github.com/tigase/tigase-server/tree/master/src/main/java/tigase/db/UserRepository.java

Tigase Development Guide

amore complex APl used in some places alowing for more direct access to the database and store data
in any format optimized for the scenario.

Right now such a hierarchical structure is implemented on top of SQL databases but initially Tigase's
database was implemented as an XML structure, so it was natural and simple.

In the SQL database we simulate hierarchical structure with three tables:

1. tig_users- with main users data, user id (JID), optional password, active flag, creation time and some
other basic properties of the account. All of them could be actually stored in tig_pairs but for perfor-
mance reasons they are in one place to quickly access them with asingle, simple query.

2. tig_nodes - is a table where the hierarchy is implemented. When Tigase was storing data in XML
database the hierarchy was quite complex. However, in a SQL databaseit resulted in avery slow access
to the data and a now more flat structure is used by most components. Please note, every user’s entry
has something called root node, which is represented by ‘root' string;

3. tig_pairs- thisisthetable where al the user’ sinformation is stored in form of the <key, value> pairs.

So we now know how the data is organized. Now we are going to learn how to access the data directly
in the database using SQL queries.

Let's assume we have a user ‘admin@test-d' for whom we want to retrieve the roster. We could simply
execute query:

sel ect pval
fromtig users, tig pairs

where user_id = -"adm n@est-d and
tig users.uid = tig_pairs.uid and
pkey = -'roster’;

However, if multiple modules store data under the key 'roster’ for asingle user, we would receive multiple
results. To access the correct 'roster' we also have to know the node hierarchy for this particular key. The
main users roster is stored under the 'root’ node, so the query would look like:

sel ect pval
fromtig users, tig_nodes, tig pairs
where user _id = -"adm n@est-d and
tig_ users.uid = tig_nodes.uid and
node = -'root' and
tig users.uid = tig_pairs.uid and
pkey = -'roster’';

How exactly the information is stored in the tig_pairs table depends on the particular module. For the
roster it looks abit like XML content:

<contact jid="all-xmpp-test@est-d" subs="none" preped="sinple" name="all -xnpp-tes

Why the most recent JDK?

There are many reasons but the main is that we are a small team working on source code. So the whole
approach isto makelife easier for us, make the project easier to maintain, and development more efficient.

Hereisthelist:

« Easy to maintain - No third-party libraries are used for the project which makes this project much
easier to maintain. This simplifiesissues of compatibility between particular versions of libraries. This

117

Tigase Development Guide

aso unifies coding with a single library package without having to rely on specific versions that may
not be supported.

» Easy to deploy - Another reason to not use third-party toolsisto make it easier for end-usersto install
and use the server.

 Efficient development - As no third-party libraries are used, Tigase needs either to implement many
things on its own or use as much as possible of JDK functionality. We try to use as much as possible of
existing library provided with JDK and the rest is custom coded.

What features of JDKv5 are critical for Tigase development? Why | can’t smply re-implement some code
to make it compatible with earlier JDK versions?

* Non-blocking I/O for SSL/TLS - This is functionality which can't be simply re-implemented in
JDK-1.4. Asthe whole server uses NIO it doesn’t make sense to use blocking I/O for SSL and TLS.

» SASL - This could be re-implemented for JDK-1.4 without much effort.

e Concurrent package - This could be re-implemented for JDK-1.4 but takes a lot of work. Thisis a
critical part of the server asit uses multi-threading and concurrent processing.

» Security package - There number of extensions to the security package which otherwise would not
work as easily with earlier versions of JDK.

» LinkedHashMap - in JDKV6 is a basement for the Tigase cache implementation.

e Light HTTP server - JDKV6 offers built-in light HTTP server which is needed to implement HTTP
binding (JEP-0124) and HTTP user interface to monitor server activity and work with the server con-
figuration.

Asthe JDK improves, so does our programming as we gain the ability to use new methods, efficiencies,
and sometimes shortcuts.

Currently Tigase requires JDK v8 and we recommend updating it as often as needed!

API Description for Virtual Domains Management in the
Tigase Server

The purpose of this guide is to introduce vhost management in Tigase server. Please refer to the JavaDoc
documentation for all specific detailsnot covered inthisguide. All interfaces arewell documented and you
can use existing implementation as an example code base and reference point. The VHost management
files are located in the repository and you can browse them using the source viewer [https://github.com/
tigase/tigase-server/blob/master/src/main/javaltigase/vhosts)].

Virtual hosts management in Tigase can be adjusted in many ways through the flexible API. The
core elements of the virtual domains management is interface VHostManager [https://github.com/tigase/
tigase-server/blob/master/src/main/javaltigase/vhosts/VHostM anager.java] class. They are responsible
for providing the virtual hosts information to the rest of the Tigase server components. In particu-
lar to the MessageRouter [https://github.com/tigase/tigase-server/bl ob/master/src/main/javaltigase/serv-
er/MessageRouter.java] class which controls how XM PP packets flow inside the server.

The class you most likely want to re-implement is VHostIDBCRepository [https://github.com/tigase/
tigase-server/blob/master/src/main/javaltigase/vhosts'VHost IDBCRepository.java] used as a default vir-
tual hosts storage and implementing the VHostRepository [https.//github.com/tigase/tigase-server/blob/
master/src/main/javaltigase/vhosts/\V HostRepository.javal interface. You might need to have your own

118

https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostManager.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostManager.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostManager.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/server/MessageRouter.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/server/MessageRouter.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/server/MessageRouter.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostRepository.java

Tigase Development Guide

implementation in order to store and access virtual hosts in other than Tigase' s own data storage. Thisis
especialy important if you are going to modify the virtual domainslist through systems other than Tigase.

The very basic virtual hosts storage is provided by VHostltem [https.//github.com/tigase/tigase-serv-
er/blob/master/src/main/javaltigase/vhosts/'VHostItem.java] class. Thisis read only storage and provides
the server a bootstrap vhosts data at the first startup time when the database with virtual hostsis empty or
isnot accessible. Therefore it is advised that all VHostltem [https.//github.com/tigase/tigase-server/blob/
master/src/main/javaltigase/vhosts/V Hostltem.javal implementations extend this class. The example code
is provided in the VHostIDBCRepository [https.//github.com/tigase/tigase-server/blob/master/src/main/
javaltigase/vhosts/V HostJDBCRepository.java] file.

All components which may need virtual hosts information or want to interact with virtual hosts manage-
ment subsystem should implement the VHostListener [https://github.com/tigase/tigase-server/blob/mas-
ter/src/main/javaltigase/vhosts/'VHostListener.java) interface. In some cases implementing this interface
is necessary to receive packets for processing.

Virtual host information is carried out in 2 formsinside the Tigase server:
1. AsaString value with the domain name

2. As a VHostltem [https://github.com/tigaseltigase-server/blob/master/src/main/javaltigase/
vhosts/VVHostl tem.java] which contains all the domain information including the domain name, max-
imum number of users for this domain, whether the domain is enabled or disabled and so on. The
JavaDoc documentation contains all the details about all available fields and usage.

Hereisacomplete list of all interfaces and classes with a brief description for each of them:

1. VHostManagerlfc [https://github.com/tigase/tigase-server/blob/master/src/main/javaltigase/vhosts/
VHostManagerlfc.javal - is an interface used to access virtual hosts information in al other server
components. There is one default implementation of the interface: VHostManager.

2. VHostListener [https://github.com/tigase/tigase-server/bl ob/master/src/main/javaltigase/vhosts/
VHostListener.java] - isan interface which allows componentsto interact with the VHostManager. The
interaction isin both ways. The VHostManager provides virtual hosts information to components and
components provide some control data required to correctly route packets to components.

3. VHostRepository [https://github.com/tigase/tigase-server/blob/master/src/main/javaltigase/vhostsy
VHostRepository.java] - is an interfface used to store and load virtual domains list
from the database or any other storage media. There are 2 implementations for this
interface: VVHostConfigRepository [https://github.com/tigase/tigase-server/blob/master/src/main/ja-
valtigase/vhosts/V hostConfigRepository.java] which loads vhosts information for the con-
figuration file and provides read-only storage and - VHostIDBCRepository class which
extends VHostConfigRepository [https://github.com/tigase/tigase-server/blob/master/src/main/ja
valtigase/vhosts/V hostConfigRepository.javal and allowsfor both - reading and saving virtual domains
list. VHostIDBCRepository isloaded as a default repository by Tigase server.

4. VHostltem [https://github.com/tigase/tigase-server/bl ob/master/src/main/javaltigase/vhosts/
VHostltem.java] - is an interface which allows for accessing all the virtual domain properties. Some-
times the domain name is not sufficient for data processing. The domain may be temporarily disabled,
may have alimited number of users and so on. Instances of this class keep al the information about
the domain which might be needed by the server components.

5. VHostManager [https://github.com/ti gase/tigase-server/bl ob/master/src/main/javaltigase/vhosts/
VHostManager.java) - the default implementation of the VHostManagerlfc interface. It provides com-
ponents with the virtual hosts information and manages the virtual hosts list. Processes ad-hoc com-
mands for rel oading, updating and removing domains.

119

https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostItem.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostItem.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostItem.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostItem.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostItem.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostItem.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostListener.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostListener.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostListener.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostItem.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostItem.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostItem.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostManagerIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostManagerIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostManagerIfc.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostListener.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostListener.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostListener.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VhostConfigRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VhostConfigRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VhostConfigRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VhostConfigRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VhostConfigRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VhostConfigRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostItem.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostItem.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostItem.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostManager.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostManager.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostManager.java

Tigase Development Guide

6. VHostConfirRepository [https://github.com/tigase/tigase-server/bl ob/master/src/main/javaltigase/
vhosts/VhostConfigRepository.javal - a very basic implementation of the VHostRepository [https./
github.com/tigase/ti gase-server/bl ob/master/src/main/javaltigase/vhosts'VHostRepository.java] for
loading domains list from the configuration file.

7. VHostIDBCRepository [https://github.com/tigase/tigase-server/bl ob/master/src/main/javaltigase/
vhosts'VHostJDBCRepository.javal - the default implementation of the
VHostRepository [https://github.com/tigase/tigase-server/blob/master/src/main/javaltigase/vhosts/
VHostRepository.java] loaded by Tigase server. It allows to read and store virtual domains list in the
database accessible through UserRepository.

Extending Virtual Domain settings

In some cases it is desired to extend Virtual Domain to add some additional settings. Since version 8.1.0
it ispossible with use of VHost | t emExt ensi on and VHostltemExtensionProvider'.

To do so, you need to create aclassimplementing VHost | t enExt ensi on. Thisclasswill hold values
of settings for each virtual host. It isrequired to make it serializableto El enent and deserializable from
El ement . Moreover, it isrequired to make values of this class modifiable by ad-hoc commands.

It is recommended to provide additional methods allowing you to access values of this class.

Additionally, you need toimplement VHost | t enExt ensi onPr ovi der interface asabean and return
aclass of your implementation of VHost | t enExt ensi on.

Example VHostltemExtensionProvider " implementation for SeeQt her Host VHost | t enExt en-
si on.

@ean(nanme = SeeQ her Host VHost | t enExt ensi on. | D, parent = VHostltenExt ensi onManager
public static class SeeQ her Host VHost | t emExt ensi onProvi der inpl ements VHost |t enExt

@verride
public String getld() {
return SeeQ her Host VHost | t enExt ensi on. | D,

}

@verride
public O ass<SeeQ her Host VHost | t emExt ensi on> get Ext ensi onC azz() {
return SeeQ her Host VHost | t enExt ensi on. cl ass;

}
}

Stanza Limitations

Although XMPP isrobust and can process stanzas of any size in bytes, there are some limitations to keep
in mind for Tigase server.

Please keep these in mind when using default Tigase settings and creating custom stanzas.
 Limit to number of attributes of single element = 50 attributes

* Limit to number of elements = 1024 elements

* Limit to length of element name = 1024 characters

 Limit to length of attribute name = 1024 characters

120

https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VhostConfigRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VhostConfigRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VhostConfigRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostRepository.java
https://github.com/tigase/tigase-server/blob/master/src/main/java/tigase/vhosts/VHostRepository.java

Tigase Development Guide

 Limit to length of attribute value = 10240 characters
» Limit to length of content of single element CDATA = 1048576b or 1Mb
These values may be changed.

Note that these limitations are to elements and attributes that may be within a stanza, but do not
limit the overall stanza length.

Escape Characters

There are special characters that need to be escaped if they are included in the stanza to avoid conflicts.
Therulesare similar to normal XML escaping. Thefollowingisalist of charactersthat need to be escaped
and what to use to escape them:

& &anp;
< &l t;

> > ;

" " ;
' '

APl changes in the Tigase Server 5.x

THISINFORMATION ISFOR OLDER VERSIONS OF TIGASE

The API changes can effect you only if you develop own code to run inside Tigase server. The changes
are not extensive but in some circumstances may reguire many simple changesin afew files.

All the changes are related to introducing tigase.xmpp.JID and tigase.xmpp.BareJID classes. It is recom-
mended to use them for all operations performed on the user JID instead of the String class which was
used before changes.

There are a few advantages to using the new classes. First of all they do al the user JD checking and
parsing, they also perform stringprep processing. Therefore if you use data kept by instance of the JID or
BareJID you can be sure they are valid and correct.

These are not all advantages however. JID parsing code appears to use alot of CPU power to conduct it’s
operations. JIDs and parts of the JIDs are used in many places of the stanza processing and the parsing
is performed over and over again in al these places, wasting CPU cycles, memory and time. Therefore,
great performance benefits can be gained from these new class are in if, once parsed, JDs are reused in
all further stanza processing.

This is where the tigase.server.Packet class comesin handy. Instances of the Packet class encloses XML
stanza and pre-parses some, the most commonly used elements of the stanza, stanza source and destination
addresses among them. As an effect there are all new methods available in the class:

JI D get StanzaFrom();
JI D get StanzaTo();
JI D getFrom();

JI D getTo();

JI D get Packet From();
JI D get Packet To();

Whereas following methods are still available but have been deprecated:

String getStanzaFrom();

121

Tigase Development Guide

String getStanzaTo();

Please refer to the JavaDoc documentation for the Packet [http://docs.tigase.org/tigase-server/snap-
shot/javadoc/tigase/server/Packet.html] class and methods to learn al the details of these methods and
difference between them.

Another differenceisthat you can no longer createthe Packet instance using aconstructor. Instead there
are afew factory methods available:

static Packet packetlnstance(El enent elenj;
static Packet packetlnstance(El enent el em
JI D stanzaFrom JID stanzaTo);

Again, pleaserefer to the JavaDoc documentation for al the details. The main point of using these methods
is that they actually return an instance of one of the following classes instead of the Packet class: | q,
Presence or Message.

Thereis also a number of utility methods helping with creating a copy of the Packet instance preserving
as much pre-parsed data as possible:

Packet copyEl emrentOnl y();
Packet errorResult(...);
Packet okResult(...);
Packet swapFronio();
Packet swapStanzaFronio();

We try to keep the JavaDoc [http://docs.tigase.org/tigase-server/snapshot/javadoc/] documentation as
complete as possible. Please contact usif you find missing or incorrect information.

Themain pointistoreuseJI Dor Bar eJI Dinstancesin your code as much as possible. Y ou never know,
your code may run in highly loaded systems with throughput of 100k XM PP packets per second.

Another change. Thisone abit risky asit isvery difficult to find all places where this could be used. There
areseveral utility classes and methods which accept source and destination address of astanzaand produce
something. There was agreat confusion with them, asin some of them thefirst was the source address and
in others the destination address. All the code has been re-factored to keep the parameter order the samein
all places. Right now the policy is: sour ce addressfirst. Thereforein all places where there was amethod:

Packet nethod(String to, String from;
it has been changed to:
Packet nethod(JID from JID to);

As far as | know most of these method were used only by myself so | do not expect much trouble for
other developers.

122

http://docs.tigase.org/tigase-server/snapshot/javadoc/tigase/server/Packet.html
http://docs.tigase.org/tigase-server/snapshot/javadoc/tigase/server/Packet.html
http://docs.tigase.org/tigase-server/snapshot/javadoc/tigase/server/Packet.html
http://docs.tigase.org/tigase-server/snapshot/javadoc/
http://docs.tigase.org/tigase-server/snapshot/javadoc/

Chapter 2. REST API

Tigase' sHTTP APl component uses the REST module and Groovy scripts responsible for handling and
processing incoming HTTP. The end result is Tigase's REST API. This APl may be useful for various
integration scenarios.

In these sections we will describe the basic REST endpoints provided by Tigase HTTP APl and explain
the basics of creating new custom endpoaints.

Other endpoints, specific to particular Tigase XM PP Server modules, are described in documentation for
the modules providing them. You may alsolook at ht t p: / /| ocal host : 8080/ r est/ onyour local
Tigase XMPP Server installation at HTTP API, which will provide you with basic usage examples for
REST endpoints available at your installation.

For more informations about configuration of REST module please see section about ?7??.

Scripting introduction

Scriptsin the HTTP API component are used for processing all of requests.

To add a new action to the HTTP APl component, you will need to create a script written in Groovy
for which there will be implementation of classextendingt i gase. htt p. rest . Handl er class. The
URI of script will be created from the file's location of in the scripts folder. For example, if script
Test Handl er with regular expression will be setto/ t est and will be placed inscri pts/rest/
t est ed, the handler will be called for using the following URI: / r est / t est ed/ t est .

Properties

If you are extending classes you will need to set following properties:

* regex - Regular expression which is used to match the request URI and parse parameters embedded in
the URI. For example: /\/ () @[~@/])/

* requiredRole - Required role of user in order to be able to access this URI. Available values are: null,
"user”, and "admin". If r equi r edRol e isnot null, authentication will be required.

» isAsync - If set to true, it will be possible to wait for results, for example waiting for an response 1Q
stanza.

» decodeContent - If set to false, then content of the request will not be parsed and your script will receive
instance of Ht t pSer vl et Request to handleincoming content.

Properties containing closures

Extended class should also set closures for one or more of following properties: execGet, execPut, exec-
Post, and execDel ete depending on which HTTP action or actions you need to support for the URI. Each
closure hasa dynamic argumentslist. Below islist of arguments passed to closure which describes how
and when the list of arguments changes:

1. service- Implementation of Serviceinterface. Thisisused to accessthe server database or send/receive
XMPP stanzas.

2. callback - Thecal | back closure needs to be called to return data. cal | back accepts only one ar-
gument of type String,byte[],Map. If dataistype of Map it will be encoded to JSON or XML depending
of '‘Content-Type' header.

123

http://localhost:8080/rest/

REST API

3. user - Will be passed only if r equi r edRol e isnot null. In all other cases this argument will not
bein argumentslist!

4. request - Will be passed only if declared as instance of Ht t pSer vl et Request and it will be in-
stance of Ht t pSer vl et Request of the current HTTP request.

5. content - Parsed content of request. This closure will not be in arguments list if Content-Length of re-
quest isempty. If Content-Typeis XML or JSON returned as Map, otherwise (or if decodeCont ent
issettof al se)itwill beaninstanceof Ht t pSer vl et Request .

6. X - Additional arguments passed to callback are groups from regular expression matching the URI.
Groupsarenot passed asalist, but are added to list of arguments as next arguments.

If property for corresponding HTTP action is not set, then the component will return a404 HTTP error.

Accessing beans

It is possible to gain access to beans managed by Tigase XMPP Server from within groovy script imple-
menting REST handler. To achieve that implementation of the handler class within groovy script needsto
be annotated with @Bean annotation. In this annotation, you need to pass at least one parameter nane,
which should contain desired name of the bean under which this handler will be available within the REST
module kernel scope.

With that in place, it is possible to use @ nj ect annotation on any field of the Handl er implementa
tion classto tell Tigase Kernel to inject instance of a particular class (or instance of class implementing
particular interface).

For more details about Tigase Kernel and beans please check Ti gase Ker nel section of the Tigase
XMPP Server Development Guide.

Example.

@ean(nane = -"test-bean", active = true)
cl ass Test Handl er
extends tigase. http.rest. Handl er {

@ nj ect
private UserRepository userRepo;

-/1 inmplenentation of the handler...

Warning

Please remember that your bean is created and registered within the scope of the REST module
kernel. So other beans needs to be accessible there for you to access them.

Usage Examples

Retrieving user avatar

Request using GET method for url /rest/avatar/admin@test-domain.com will return an avatar image
for user admin@test-domain.com [mailto:admin@test-domain.com] if an avatar is set in user vCard
or will otherwise return a http error 404. Example of full url for avatar of user admin@domain.com
[mailto:admin@domain.com]

124

mailto:admin@test-domain.com
mailto:admin@test-domain.com
mailto:admin@domain.com
mailto:admin@domain.com

REST API

http://1 ocal host: 8080/ rest/avatar/adm n@lomai n. com

Entering this url in will execute GET request. It may be possible to use the url in your browser.
Retrieving list of available adhoc commands
Using XML format

To retrieve a list of available adhoc commands, make a request using GET method for / rest/
adhoc/ sess- nan@onai n. comwhere sess- man@lonai n. comis jid of component you wish
to see commands for. For example, entering the following url: http://localhost:8080/rest/adhoc/sess-
man@domain.com in your browser will retrieve a list of all ad-hoc commands available at sess-
man@lomai n. com Thisaction is protected by authentication doneusing HTTP Basi ¢ Aut hent i -
cat i on. Valid credentials will be those of users available in user database of this Tigase XM PP Server
installation (usernamein barejid form).

Below is example result of that request:

<items>
<itene
<j i d>sess- man@lomnai n. conx/ ji d>
<node>http://jabber. org/ protocol /adm n#get - acti ve- user s</ node>
<name>Cet |ist of active users</nane>
</itenp
<itene
<j i d>sess- man@lomnai n. conx/ ji d>
<node>del - scri pt </ node>
<nanme>Renove conmand scri pt </ nane>
</itenp
<itene
<j i d>sess- man@lomnai n. conx/ ji d>
<node>add- scri pt </ node>
<name>New conmand scri pt </ nane>
</itenp
</items>

Using JSON format

Toretrievealist of available adhoc commandsin JSON, we need to passCont ent - Type: appl i ca-
tion/jsontoHTTP header of request or addt ype parameter settoappl i cat i on/ j son. Example

result below:
{
-"items": |
{
-"jid": -"sess-man@lomai n. cont,
-"node": -"http://jabber.org/protocol/adm n#get-active-users",
-"nane": -"Cet list of active users”
_}'
{
-"jid": -"sess-man@lomai n. cont,
-"node": -"del-script",
-"nane": -"Renmpve conmand script”
_}'
{

125

http://localhost:8080/rest/adhoc/sess-man@domain.com
http://localhost:8080/rest/adhoc/sess-man@domain.com

REST API

-"jid": -"sess-man@lomai n. cont
-"node": -"add-script",
-"nane": -"New conmand script"”

-}
-]
}

Retrieving command form

In order to retrieve form with required fields for particular command, you have to sent POST request with
only j i d and narre from the list with all available commands (returned using above command)

Using XML

For example, to get form for adding VHost item make a request using POST method for / r est / ad-
hoc/ vhost - man@lonai n. comsending the following content (request requires authentication using
Basic HTTP Authentication):

<command>
<node>conp-repo-item add</ node>
</ conmand>

Below is example result for request presented above:

<conmand>
<j i d>vhost - man@onmai n. conx/j i d>
<node>conp-repo-item add</ node>
<fiel ds>
<itenp
<var >Domai n nane</var >
<val ue/ >
</itenp
<itenp
<var >Enabl ed</ var >
<t ype>bool ean</type>
<val ue>t rue</val ue>
</itenp
<itenp
<var >Anonynous enabl ed</var >
<t ype>bool ean</type>
<val ue>t rue</val ue>
</itenp
<itenp
<var >l n-band regi strati on</var>
<t ype>bool ean</type>
<val ue>t rue</val ue>
</itenp
<itenp
<var >TLS</ var >
<type>fixed</type>
<val ue>This installation forces VHost to require TLS. If you need to u
property to &anp; apos;fal se&anp; apos; in the installation configur

</ val ue>
</litenp
<itenp

126

REST API

<var >Max users</var>
<val ue>0</ val ue>
</litenp

</fields>
<instructions>a##NOTE: Options w thout value set will use configuration define
</ command>

Using JSON

For example, to get form for adding VHost item make a request using POST method for / r est / ad-
hoc/ vhost - man@lomai n. comusing Cont ent - Type: appli cati on/j son and sending the
following content (request requires authentication using Basic HTTP Authentication) :

{
-"command": {
-"node" -: -"conp-repo-item add"
-}
}
Below is an example result for request presented above:
{
-"command": {
-"jid": -"vhost-man@omai n. cont',
-"node": -"conmp-repo-item add",
-"fields": |
{
-"var": -"Domain nane",
-"value": null
_}'
{
-"var": -"Enabl ed",
-"type": -"bool ean",
-"value": -"true"
_}'
{
-"var": -"Anonynous enabl ed",
-"type": -"bool ean",
-"value": -"true"
_}'
{
-"var": -"In-band registration”,
-"type": -"bool ean",
-"value": -"true"
_}'
{
-"var": -"TLS",
-"type": -"fixed",
-"value": -"This installation forces VHost to require TLS. If you need to
_}'
{
-"var": -"Max users",
-"val ue": -"0"
-}

127

REST API

1,

-"instructions”: -"#NOTE: Options w thout value set will use configuration def
-}
}

Executing example ad-hoc commands
Retrieving list of active users

Using XML

To execute the command to get alist of active users, make a request using POST method for / r est /
adhoc/ sess- man@omnai n. comsending the following content (request requires authentication using

Basic HTTP Authentication):
<conmand>
<node>http://jabber. org/ protocol /adm n#get - acti ve- user s</ node>
<fields>
<itene

<var >donai nj i d</ var >
<val ue>donai n. conx/ val ue>

</itenp

<itenp
<var>mex_i t ems</var >
<val ue>25</ val ue>

</itenp

</fields>
</ comand>

In this request we passed all the parameters needed to execute adhoc command. We passed the node of
the adhoc command and values for fields required by that command. We passed values of "domain.com”
for "domainjid” field and "25" for "max_items" field. We also need to pass Cont ent - Type: text/
xm to HTTP header of request or addt ype parameter settot ext / xmi .

Note

In case of multi value fields use following format:

<val ue>
<itempfirst-value</itenp
<i tenmpsecond-val ue</itene
</ val ue>

Below is example result for request presented above:

<conmand>
<j i d>sess- man@lomai n. conx/ j i d>
<node>http://jabber. org/ protocol /adm n#get - acti ve- user s</ node>
<fields>
<itemnp
<var>Users: 2</var>
<| abel >text-multi </ abel >
<val ue>adni n@onmi n. conx/ val ue>
<val ue>user 1@onni n. conx/ val ue>

128

REST API

</litenp
</fields>
</ conmand>

Using JSON

To execute the command to get active users in JSON format, make a request using POST method for /

rest/adhoc/sess-man@domain.com sending the following content (this request al so requires authentication
using Basic HTTP Authentication):

{
-"command" -: {
-"node" -: -"http://jabber. org/protocol/admn n#get-active-users",
-"fields" -: [
{
-"var" -: -"donminjid",
-"val ue" -: -"domain.cont
_},
{
-"var" -: -"max_itens",
-"val ue" -: -"25"
-}
-1
-}
}

In this request we passed all parameters needed to execute adhoc command. We passed the node of adhoc
command and valuesfor fields required by adhoc command. In this case we passed value of "domain.com”
for "domainjid" field and "25" for "max_items' field.

Below is an example result for request presented above:

{
-"command": {
-"jid": -"sess-man@lomai n. cont,
-"node": -"http://jabber.org/protocol /adm n#get-active-users",
-"fields": |
{
-"var": -"Users: 1",
-"label": -"text-multi",
-"value": [
-"adm n@onai n. com',
-"user1@onai n. cont
-]
-}
-]
-}
}

Ending a user session

To execute the end user session command, make a request using POST method for / r est / ad-
hoc/ sess- man@lonmai n. com The Context of what is sent, may differ depending on circumstance.
For example, it may require authentication using Basic HTTP Authentication with admin credentials. sess-
man@domain.com in URL is the JID of session manager component which usualy is in form of sess-
man@domain where donai n is hosted domain name.

129

REST API

Using XML

To execute the command using XML content you need to set HTTP header Cont ent - Type toappl i -
cation/xm

<comand>
<node>http://jabber. org/ protocol /adm n#end- user - sessi on</ node>
<fiel ds>
<itenp
<var >accountj i ds</var >
<val ue>
<i tenpt est @onmai n. conk/itenr
</ val ue>
</itenp
</fields>
</ conmand>

Wheret est @onmai n. comisJID of user which should be disconnected.
Asaresult server will return following XML:

<conmand>
<j i d>sess- man@lomnai n. conx/ ji d>
<node>http://jabber. org/ protocol / adm n#end- user - sessi on</ node>
<fields>
<itemp
<var >Not es</ var >
<type>text-multi</type>
<val ue>Qperati on successful for user test@onain.coniresource</val ue>
</itemp
</fields>
</ comrand>

Thiswill confirm that user t est @onai n. comwith resourcer esour ce was connected and has been
disconnected.

If the user was not connected server will return following response:

<command>
<j i d>sess- man@lomai n. conx/ ji d>
<node>htt p://jabber. org/ protocol / adni n#end- user - sessi on</ node>
<fields -/>

</ comand>

Using JSON

To execute the command using JSON you will need to set HTTP header Cont ent - Type to appl i -
cation/json

{
-"command” -: {
"node": -"http://]abber. org/protocol/adm n#end- user-sessi on",
"fields": [
{
"var" -: -"accountjids",
"val ue" -: |

"t est @onai n. cont

130

REST API

-}
}

Wheret est @onmai n. comisJID of user who will be disconnected

As aresult, the server will return following JSON:

{
-"command" -: {
-"jid" -: -"sess-man@onai n. cont',
-"node" -: -"http://]jabber. org/protocol/adm n#end- user-sessi on",
-"fields" -: |
{
-"var" -: -"Notes",
-"type" -: -"text-multi",
-"value" -: |
-"QOperation successful for user test@onain.coniresource"”
-1
-}
-1
-}
}
Toconfirmthat usert est @onmai n. comwith resourcer esour ce was connect and it was disconnect-
ed.

If user was not connected server will return the following response:

{
-"command" -: {
-"jid" -: -"sess-man@onai n. cont',
-"node" -: -"http://]jabber. org/protocol/adm n#end- user-sessi on",
-"fields" -: []
-}
}

Operations on VHosts/Domains

All operations on VHosts are done by making a POST request to /rest/adhoc/vhost -
man@lomai n. com(it may require authentication using Basic HTTP Authentication with admin creden-
tials). When deciding to use XML or JSON set relevant Cont ent - Type header.

Adding VHost

Adding domain is done using conp-r epo-i t em add command sent with al required and desired
fields (if something is missing form-to-fill-out will be returned). For the instructions how to retrieve the
form/available fields please see the section called “ Retrieving command form™.

Using XML

To execute the command using XML content you need to set HTTP header Cont ent - Type toappl i -
cati on/ xm andthefilled out form (below istrimmed example, see the section called “ Retrieving com-
mand form” for details how to get complete form):

131

REST API

Note

It's essential to include command- mar ker in the request, otherwise the form will be returned
without adding the VHost.

<conmand>
<j i d>vhost - man@onai n. conx/j i d>
<node>conp-repo-item add</ node>
<fields>
<itenp
<var >Donmai n nane</var >
<val ue>ny- new donmi n. conx/ val ue>
</itenp
<itenp
<var >Enabl ed</ var >
<val ue>t rue</ val ue>
</itenp
<itenp
<var >conmand- mar ker </ var >
<val ue>conmand- nar ker </ val ue>
</itenp

</fields>
</ conmand>

If the domain was added correctly you will receive response with Oper ati on successful . Note
field:

<conmand>
<j i d>vhost - man@lomai n. conx/ j i d>
<node>conp-repo-item add</ node>
<fields>
<itene
<var >Not e</ var >
<type>fi xed</type>
<val ue>Qperati on successful . </val ue>
</itenp
</fields>
</ comrand>

Using JSON

To execute the command using XML content you need to set HTTP header Cont ent - Type toappl i -
cation/j son and the filled out form (below is trimmed example, see the section called “Retrieving
command form” for details how to get complete form):

Note

It's essential to include command- mar ker in the request, otherwise the form will be returned
without adding the VHost.

-"command": {
-"jid": -"vhost - man@omai n. cont',
-"node": -"conp-repo-item add”,

132

REST API

-"fields": |
{
-"var": -"Domai n nanme",
-"val ue": -"ny-new awesone- domai n. cont
_}'
{
-"var": -"Enabl ed",
-"value": -"true"
_}'
{
-"var": -"conmand- marker",
-"val ue": -"command- nmarker™
-}
-]
-}
}
If the domain was added correctly you will receive response with Oper ati on successful . Note
field:
{
-"command": {
-"jid": -"vhost-man@onai n. cont',
-"node": -"conp-repo-item add",
-"fields": [
{
-"var": -"Note",
-"type": -"fixed",
-"val ue": -"Operation successful."
-}
-]
-}
}

Configuring VHost

Modifying domain configuration is done using conp-r epo-i t em updat e command sent with all
required and desired fields (if something is missing form-to-fill-out will be returned). For the instructions
how to retrieve the form/available fields please see the section called “ Retrieving command form”.

Using XML

To execute the command using XML content you need to set HTTP header Cont ent - Type toappl i -
cati on/ xm andthefilled out form (below istrimmed example, see the section called “ Retrieving com-
mand form” for details how to get complete form):

Note

It's essential to include command- mar ker in the request (otherwise the form will be returned
without adding the VHost) andi t em | i st with value set to the name of the VHost that’ sbeing
configured.

<conmand>
<j i d>vhost - man@onai n. conx/j i d>

133

REST API

<node>conp-repo-it em updat e</ node>
<fields>
<itenp
<var >Domai n nane</var >
<val ue>ny- vhost . conk/ val ue>
</itenp
<itenp
<var >Enabl ed</ var >
<val ue>t rue</ val ue>
</itenp

<itenp
<var >conmand- mar ker </ var >
<val ue>comrand- mar ker </ val ue>
</itenp
<itenp
<var>itemlist</var>
<val ue>ny- vhost . conk/ val ue>
</itenp
</fields>
</ conmand>

If the domain was added correctly you will receive response with Oper ati on successful . Note
field:

<conmand>
<j i d>vhost - man@onai n. conx/j i d>
<node>conp-repo-i t em updat e</ node>
<fields>
<itene
<var >Not e</ var >
<type>fi xed</type>
<val ue>Qper ati on successful.</val ue>
<litenmp
</fields>
</ comrand>

Using JSON

To execute the command using XML content you need to set HTTP header Cont ent - Type toappl i -
cation/j son and the filled out form (below is trimmed example, see the section called “Retrieving
command form” for details how to get complete form):

Note

It's essential to include command- mar ker in the request (otherwise the form will be returned
without adding the VHost) andi t em | i st with value set to the name of the VHost that’ sbeing

configured.
{
-"command": {
-"jid": -"vhost - man@omai n. cont'
-"node": -"conp-repo-item update”,
-"fields": |

{

134

REST API

-"var": -"Domai n nanme",
-"val ue": -"ny-domain. cont
_}'
{
-"var": -"Enabl ed",
-"value": -"true"
_}'
{
-"var": -"conmand- marker",
-"val ue": -"commuand- nmarker™
_}'
{
-"var": -"itemlist",
-"val ue": -"ny-donmain. cont
-}
-1
-}
}
If the domain was added correctly you will receive response with Qper ati on successful . Note
field:
{
-"command": {
-"jid": -"vhost-man@onai n. con',
-"node": -"conp-repo-item update”,
-"fields": [
{
-"var": -"Note",
-"type": -"fixed",
-"val ue": -"Operation successful."
-}
-1
-}
}
To confirmthat user t est @omai n. comwith resourcer esour ce was connect and it was disconnect-
ed.

If user was not connected server will return the following response:

{
-"command” -: {
-"jid" -: -"sess-man@onmai n. cont',
-"node" -: -"http://]jabber. org/protocol/adm n#end- user-sessi on",
-"fields" -: []
-}
}

Sending any XMPP Stanza

XMPP messages or any other XM PP stanza can be sent using this API by sending an HTTP POST request
to (by default) ht t p: / /| ocal host : 8080/ rest/ streani ?api - key=API _KEY with serialized

135

http://localhost:8080/rest/stream/?api-key=API_KEY

REST API

XMPP stanzaasacontent, where APl _ KEY isthe API key for HTTPAPI. Thiskey issetin etc/config.tdsl.
Also, each request needs to be authorized by sending avalid administrator JID and password as user and
password of BASIC HTTP authorization method. Content of HTTP request should be encoded in UTF- 8
and Cont ent - Type should besettoappl i cati on/ xm .

Handling of request

If the sent XM PP stanza does not contain af r omattribute, then the HTTP APl component will provide
itsown JID. If i g stanza is being sent, and no f r omattribute is set then the received response will be
returned as the content of the HT TP response. Successful requests will return HT TP response code 200.

Examples

Sending an XM PP message with from set to HTTP APl component to full JID. Data needs to be
sent asaHTTP POST request content to / r est / st r eant ?api - key=API _KEY URL of the HTTP
API component to deliver the message Example message 1 to test@example.com/resource-1.

<nmessage xm ns="jabber:client" type="chat" to="test @xanpl e.conlresource-1">
<body>Exanpl e nessage 1</ body>
</ message>

Sending an XM PP message with f r omset to HTTP API component to abareJID. Dataneedsto
besent asaHTTP POST request contentto/ r est / st r eam ?api - key=API _KEY URL of theHTTP
API component to deliver message Example message 2 to test@example.com.

<nmessage xml ns="jabber:client" type="chat" to="test@xanple.coni>
<body>Exanpl e nessage 2</body>
</ nessage>

Sending an XM PP message with f r omset to specified JID and to a recipients full JID. Data
needs to be sent asa HTTP POST request contentto/ r est / st r eam ?api - key=API _KEY URL of
the HTTP APl component to deliver message Example message 3 to test@example.convresource-1 with
sender of message set to sender @example.com.

<nmessage xm ns="jabber:client" type="chat" from="sender @xanpl e. com' to="test @xan
<body>Exanpl e nessage 1</ body>
</ message>

Setting XMPP user status

By default XMPP user is visible as unavailable when his client is disconnected. However in some cases
we may want to present user a active with some particular presence being set. To control this presence of
unavailable XM PP user we can use this feature.

Example contents shown below needs to be sent to (by default) ht t p: / /1 ocal host : 8080/ r est/
user/{user-jid}/status?api - key=APl _KEY, where:

e APl _KEYisthe APl key for HTTP API
e {user-jid} isabarejid of the user for which you want to set presence.
Tip

Youmay add/ {r esour ce} tothe URL after / st at us part, where {r esour ce} isname
of the resource for which you want to set presence.

136

http://localhost:8080/rest/user/{user-jid}/status?api-key=API_KEY
http://localhost:8080/rest/user/{user-jid}/status?api-key=API_KEY

REST API

Warning

Youneedtoadd' user - st at us- endpoi nt @t tp. {cl usterNode}"' tothelist of trust-
ed jids to allow UserStatusEndpoint module to properly integrate with Tigase XMPP Server.

Using XML
To set user status you need to set HTTP header Cont ent - Type toappl i cati on/ xnl

<conmand>
<avai | abl e>true</ avai |l abl e>
<priority>1</priority>
<show>xa</ show>
<status>On t he phone</status>
</ comuand>

where:

e avai | abl e - may be:
* true - user isavailable/connected (default)
 fal se - user isunavailable/disconnected

e priority -aninteger of presence priority. (It should be always set as a negative value to make sure
that messages are not dropped) (default: -1)

* show- may beoneof pr esence/ showelement values (optional)

e chat

* away

* Xxa

e dnd
* st at us - message which should be sent as a presence status message (optional)
Asaresult server will return following XML:

<st at us>
<user >t est @omai n. coni ti gase- ext er nal </ user >
<avai | abl e>t rue</ avai | abl e>
<priority>priority</priority>
<show>xa</ show>
<status>On t he phone</status>
<success>t rue</ success>

</ st at us>

This will confirm that user t est @lonai n. comwith resource t i gase- ext er nal has it presence
changed (look for success element value).

Using JSON

To set user status you need to set HTTP header Cont ent - Type toappl i cati on/j son

137

REST API

{
-"avail able": -"true",
-"priority": -"-1",
-"show': -"xa",
-"status": -"On the phone”
}
where;

e avai | abl e - may be:
e true - userisavailable/connected (default)
« fal se - user isunavailable/disconnected

e priority -aninteger of presence priority. (It should be always set as a negative value to make sure
that messages are not dropped) (default: -1)

* show- may beoneof pr esence/ showelement values (optional)
e chat
e away
* xa
e dnd
» st at us - message which should be sent as a presence status message (optional)

Asaresult, the server will return following JSON:

{
-"status": {
-"user": -"test@omain.comtigase-external ",
-"avail able": -"true",
-"priority": -"-1",
-"show': -"xa",
-"status": -"On the phone",
-"success": true
-}
}

This will confirm that user t est @lonai n. comwith resource t i gase- ext er nal has it presence
changed (look for success element value).

BOSH HTTP Pre-Binding
Bosh (HTTP) Pre-Binding

Binding a user session is done by sending a request using HTTP POST method for / r est / ad-
hoc/ bosh@onai n. comwith the following content:

Note

Request requires authentication using Basic HTTP Authentication

138

REST API

<comrand>
<node>pr e- bi nd- bosh- sessi on</ node>
<fields>
<itenp
<var >f ronx/ var >
<val ue>user _j i d@lomai n/ r esour ce</ val ue>
</itenp
<itenp
<var >hol d</ var >
<val ue>1</ val ue>
</itenp
<itenp
<var >wai t </ var >
<val ue>60</ val ue>
</itenp
</fields>
</ conmand>

Configuration

The Following parameters can be adjusted:

» from Thiswill be the JID of the user. Y ou may change the <val ue/ > node of the item identified by
the f r omvariable; this can be either a FullJID or a BarelID. In the latter case, a random resource will
be generated for the session being bound.

* hold value. By changing value of <val ue/ > node of theitem identified by hol d variable. Thisvalue
matchesthe hol d attribute specified in XEP-0124: Session Creation Response [http://xmpp.org/exten-
sions/xep-0124.html#session-request]

» wait value. By changing value of <val ue/ > node of theitem identified by wai t variable. Thisvalue
matchesthewai t attribute specified in XEP-0124: Session Creation Response [http://xmpp.org/exten-
sions/xep-0124.html#session-request]

Asaresponse onewill receive and XML with the result containing additionally available session and RID
that can be used in the client to attach to the session, e.g.:

<comand>
<j i d>bosh@host</jid>
<node>pr e- bi nd- bosh- sessi on</ node>
<fields>
<itene
<var >f ronx/ var >
<l abel >j i d-si ngl e</| abel >
<val ue>user _j i d@lomai n/ r esour ce</ val ue>
<litenmp
<itene
<var >host nane</ var >
<l abel >j i d-si ngl e</| abel >
<val ue>node_host nane</ val ue>
<litenmp
<itene
<var >ri d</var>
<l abel >t ext - si ngl e</ | abel >

139

http://xmpp.org/extensions/xep-0124.html#session-request
http://xmpp.org/extensions/xep-0124.html#session-request
http://xmpp.org/extensions/xep-0124.html#session-request
http://xmpp.org/extensions/xep-0124.html#session-request
http://xmpp.org/extensions/xep-0124.html#session-request
http://xmpp.org/extensions/xep-0124.html#session-request

REST API

<val ue>9929332</ val ue>
</itenp
<itenp
<var >si d</ var >
<l abel >t ext - si ngl e</ | abel >
<val ue>3f 1b6e70- 8528- 44bb- 8f 23- 77e7c4a8cf 1la</ val ue>
</itenp
<itenp
<var >hol d</ var >
<l abel >t ext - si ngl e</ | abel >
<val ue>1</ val ue>
</itenp
<itenp
<var >wai t </ var >
<l abel >t ext - si ngl e</ | abel >
<val ue>60</ val ue>
</itenp
</fields>
</ conmand>

For example, having the above XML request stored in pr ebi nd file, one can execute the request using
$curl :

>curl --X POST --d @rebind http://adm n%0domai n: pass@lomnai n: 8080/ r est / adhoc/ bosh

Using JSON

To execute the command to pre-bind BOSH session in JSON format, make a request using POST method
to/ rest/ adhoc/ bosh@onmai n. comsending the following content:

{
-"command" -: {
-"node" -: -"pre-bind-bosh-session"",
-"fields" -: [
{
-"var" -: -"front,
-"value" -: -"user_jid@onuain/resource"
-},
{
-"var" -: -"hold",
-"val ue" -: -"1"
-},
{
-"var" -1 -"wait",
-"val ue" -: -"60"
-}
-1
-}
}

This exampl e replicates the same request presented above in XML format.

140

