Tigase Development Guide

Tigase Team

Tigase Development Guide
Tigase Team

Table of Contents

1. BASIC INFOMMIBLION ...ttt ettt ettt e e e et e et e et e e e e e e e e enaans 1
Tigase SErVEr EIEIMENESuiiiii e et 1
1000101070 01 0| £ PP PPR 1
PLUGFINS e 2
1070007 ot (o PP UPTUPTI 2
Data, Stanzas, Packets - Data Flow and Processingcoeoveveiiiiiiiieiiiiiiii e 2

2. Hack Tigase XMPP Server in ECliPSe . .coovviiiiii e 4
REQUITEIMENTS ...ttt ettt e et et e e e et e e e e rb e e e erba s 4
INSEBITALION ...t ettt e et e e e 4
LITIUX ettt ettt e e et a e e e 4
WVINOOWS ettt e ettt e et e et et e e e e e rb e e e eennaeeees 4

RS (] o PP 10
APl changes in the Tigase SEIVEN 5.Xiiiiui it e e eens 15
3. SarVEr COMPITALIONeueiei et ettt e 17
Tigase XMPP Server 5.2.0 and later - Compilation and Generating Distribution Packages....... 17
DistribUtion PaCKagEScoovueiieiiiii e 17
Building Server and Generating Packagescc.uuviiiiiiiiiiiiiiic e 17
RUNNING SNV ..ottt e e e et e e s 18
Tigase Packages Dependency Change - Server Compilation Version 4.x or Later 18
4. Component DEeVEIOPIMENTuuiiiii et e s 20
Component Implementation - Lesson 1 - BaSICSvvvvvuiiiiiiiiciiiiieceii e 20
Component Implementation - Lesson 2 - Configurationcovveieiiineeiiiineeciiieeeceinnen 23
Component Implementation - Lesson 3 - Multi-Threadingcooviiiiiiiiniiinc, 27
Component Implementation - LeSSon 4 - Service DiSCOVENYuvviiiiiiiiiiiiiiieeeiiiieeeeiieeees 31
Component Implementation - LeSSON 5 - SEaliStiCSuuvevvviiieiiiiiieecei e 37
Component Implementation - Lesson 6 - SCripting SUPPOITccevvuireerineiieiiieeeeiieeeeeeenn 41
Component Implementation - Lesson 7 - Data REPOSITONYc.uveviiiiinieiiiiiieeiciieeceiie 47
CONIGREDOSITONY ...ttt ettt ettt ettt ettt e et e e e e e eba s 47
REPOSITONYFACIONY ..ottt e e et e e e et e e e ena e eeens 47
Component Implementation - Lesson 8 - Startup Timeuveiiviiieiiie e 47
ConfigUIALioN AP ... et 48
INEFOTUCTION ...ttt ettt e e e e e e 48
Component SEArtUP SEOUENCEcvuiiieriieiiee ettt e e e ens 48
ConfigUIAtion APo 49
GEIDEFAUITS() ..eeeteeeeeit e 49
SEEPIOPEITIES() .. eeeeei ettt 50
USEFUL PrESEELS ...ttt et ettt e et e e e e e e enees 50
Global Configuration SELEINGSoeeiereieiieii et 50
Packet Filtering in COMPONENTSiiiiii et 51
The Packet FIIter APl ...t 51
1600]01 {10 U1 = 1 o) o U ST UPPP TP PPPPTPRTPPPIN 52
EVENEBUS APl 1N TIgBSE «.tuuiiiiii ettt ettt et e e e e na e e enaas 53
EVENTBUS AP .o 53
Distributed EVENTBUScooviiiiiiii e 53
LOCEl EVENIBUScciiiiieieit ettt 54
ClUStEr M INEEITACE ...t ettt e s 55
REQUITEMENTS ...ttt ettt ettt ettt et et e e e e e e eneas 55

VLB CIEALION ...ttt ettt e et e e ettt e e e et e e e et e e e e aea s 56

MBD ChANGES ...ttt ettt ettt e et e e e n e e e e eee 56

MBD DESITUCTION ...ttt ettt ettt e e et e e ettt e e e e nt e e e enba e eeenes 57

5. PlUgin DEVEIODMENTeiiiiti ettt ettt ettt enaas 58

Tigase Development Guide

WIHEING PIUGIN COOEiiiiicii e et e e e e e e e e e e e e et e e et e e eaaeees 58
USING aNNOLation SUPPOM ...vuuiiiieiiie e e e ee e e e e e e e e e e e et e e et e e e e e e e et e e eneeeens 59

Using older non-annotation based implementationcccoeeviieiiineciii e, 60
Implementation of processing MEthodcooiiiiii i 60

PIugin CoNfiQUIAioNciueiiiii e e e e e e e e e e et e e e e eanaas 62

How Packets are Processed by the SM and PIUgINSccuiviiiiiiiii e, 63
g1 o 18 o [o K OSSP 63

SASL Custom Mechanisms and Configurationccuveiiiiieiiin e ee e e 67
Basic SASL CoNfigUIrationiiiuuiiiiiee e e e e e e e e e e e e e e e e e et e eaanaees 67
Logging/AUthentiCationccouuiiiiiii e 69

BUIt-IN MECNANISIMSuiiieii et e e 69

Custom MechaniSMs DeVEIOPMENLccuuiiiiii i e e e e e e e e e e eaens 69

LS LS T aTo Y. = Y= o 71
Setting up Maven in WINCOWSoouuiiiiccii e e e e e e e e e ean s 71
R (U= 11 1 PN 71

Setting up Environment Variablescocouiiiiiiiii e 71

=== 11 0o 1Y, = Y= o S 73

A Very Short Maven GUIGEeiiieiii e e e e e e e e et e e e eeas 74
Snapshot Compilation and Snapshot Package Generationcooeveveviiiievieeeinneenn. 74

Release Compilation, GENEratioNcevuuiiiiiiieii e e e e e e et e e 74

Generating tar.gz, tar.bz2 File With Sources Onlyccooveiiiiiiiiiin e, 74

MAVEN 2.X SUDPIONT L.ttt e e e e e e e e e e e e a 74

2 L= £ P 76
LI =3 PP 76

[gei o B = PPN 76
PErfOrMANCE TESES ...ttt e e e e e e e e e e eees 78

Sz o] 11 1= T PRSPPI 80

T = T =S SN] (N 80
RUNNing Tigase Test SUILE (TTS) .uuiiiiiiiiiiiiii e e e e e e e 80

Test Suite SCripting LanNQUAGE «....u.cvveeiiieiie e e e e e e e e e e e e e et e et e et e e aaneeeens 82
WIHting TeSIS fOr PIUGINSiiiiiii et e e e e e e e e e eaaes 83

Test Case Parameters DESCIIPLONiiiiiiiii e e e e e e e e e e e e e e 85

Test RePOrt ConfigUIaLioNcceuuieiiiee e e e e e e e e e et e e e eans 85

2 o s R T 1 = PP 86

Test CaSe ParaMetersSiei it e e 87

S o= 111 1= 90
(Y = T o 0 = £ 20
Problem DESCIIPLIONciei e e e e e 90

Syntax and SEMEAMLICSu.iiiiieiii e e e e e e e e e e e et e e e raaaes 90

REHEVING CONLACt Daalu.ivvneiii i e e e e e e e e eaen 20
Updating/Saving Extra Information About the Contactcccoevviiieiiiiiiinecieeenn, 91

(©0 01110 8= 1 (o o PPN 92

MObil€ OPLIMIZBLIONSccviiiii e e e e e e e e e e e et e e et e e et e eaneees 92
Problem DESCIIPLIONiii e e e e e e 92

1S o] 11 o PSSP 92

QUEUING AlGOTTRIMS .. e e e e e e e eaas 93

(©0 01110 8= 1 (o o PPN 93

BOSN SESSION CACNE ..ottt 93
Problem DESCIIPLIONiii e e e e e e 93

Bosh Session Cache DESCIPLIONuuiii i e e e e 94

(0= o Sl . (0] (o oo PR 94

LSO Lo IS (1§ PSP 96
10. Tigase DB Schema EXPlaNedc..oiiuniiiiiiiii e e e e e e e e e 97
11. Why the MOSt reCENE JDK?iiiiiiii et e e e e e e e e e e e e et e e et e e e e e eaneees 99

Tigase Development Guide

12. Generating Tigase INSEAllErcoovniiiiiii e e 100
13. API Description for Virtual Domains Management in the Tigase Servero.ccoevvvviveevnnnnn. 101
14, SEANZA LIMITAIIONS ...iiieiiieeee et e e e et e e et e e e et e e e et e e e eaan s 103

S o= oLl O g = ot = SN 103

Chapter 1. Basic Information
Tigase Server Elements

To makeit easier to get into the code below are defined basic termsin the Tigase server world and thereis
a brief explanation how the server is designed and implemented. This document also points you to basic
interfaces and implementations which can be used as example code reference.

Logically all server code can be divided into 3 kinds of modules: components, plug-ins and connectors.

1.

Components are the main element of Tigase server. Components are a bigger piece of code which can
have separate address, receive and send stanzas, and be configured to respond to numerous events. Sam-
ple components implemented for Tigase server are: ¢2s connection manager, s2s connection manager,
session manager, XEP-0114 - external component connection manager, MUC - multi user char rooms.

. Plug-ins are usually small pieces of code responsible for processing specific XMPP stanzas. They

don’t have thier own address. As aresult of stanza processing they can produce new XM PP stanzas.
Plug-ins are loaded by session manager component or the ¢2s connection manager component. Sample
plug-insare: vCard stanza processing, jabber:iq:register to register new user accounts, presence stanza
processing, and jabber:ig:auth for non-sasl authentication.

. Connector sare modulesresponsible for accessto datarepositorieslike databases or LDAPto store and

retrieve user data. There are 2 kinds of connectors: authentication connectors and user data connectors.
Both of them are independent and can connect to different data sources. Sample connectors are: JDBC
database connector, XMLDB - embedded database connector, Drupal database connector, and the
LibreSource database connector.

Thereisan API defined for each kind of above modulesand all you haveto doisenabletheimplementation
of that specific interface. Then the modul e can be loaded to the server based on it’s configuration settings.
Thereis also abstract classes available, implementing these interfaces to make development easier.

Hereisabrief list of al interfacesto look at and for more details you haveto refer to the guide for specific
kind of module.

Components

Thisislist of interfacesto look at when you work on a new component:

1

tigase.ser ver .Server Component - Thisisthevery basicinterfacefor component. All components must
implement it.

. tigase.server .M essageReceiver - Thisinterface extends Ser ver Conponent and isrequired to im-

plement by components which want to receive data packets like session manager and c2s connection
manager.

. tigase.conf.Configurable - Implementing this interface is required to make it configurable. For each

object of this type, configuration is pushed to it at any time at runtime. This is necessary to make it
possibleto change configuration at runtime. Be careful to implement this properly asit can causeissues
for modules that cannot be configured.

. tigase.disco.XM PPSer vice - Objects using this interface can respond to " ServiceDiscovery” requests.

. tigase.stats.StatisticsContainer - Objects using thisinterface can return runtime statistics. Any object

can collect job statistics and implementing this interface guarantees that statistics will be presented in
consisted way to user who wants to see them.

Basic Information

Instead of implementing above interfaces directly | would recommend to extend one of existing abstract
classeswhich take care of the most of "dirty and boring" stuff. Hereisalist the most useful abstract classes:

* tigase.server.AbstractM essageReceiver - Implements 4 basic interfaces:

Server Conmponent , MessageRecei ver, Confi gurabl e and St ati sti csCont ai ner. Ab-
stractMessageReceiver also manages internal data queues using it's own threads which prevents dead-
locksfrom resource starvation. It offers even-driven data processing which meanswhenever packet arrives
theabstract void processPacket (Packet packet); method is called to processit. You
have to implement this abstract method in your component, if your component wants to send a packet (in
response to data it received for example).

bool ean addQut Packet (Packet packet)

* tigase.server.ConnectionManager - This is an extension of Abstract MessageRecei ver ab-
stract class. Asthe name says this class takes care of all network connection management stuff. If your
component needsto send and receive datadirectly from the network (like c2s connection, s2s connection
or external component) you should use this implementation as a basic class. It takes care of al things
related to networking, 1/O, reconnecting, listening on socket, connecting and so on. If you extend this
classyou have to expect data coming from to sources: from the MessageRout er and thisiswhen the

abstract void processPacket (Packet packet);

method is called and from network connection and then the

abstract Queue processSocket Dat a(XMPPI CSer vi ce serv);
method is called.

Plug-ins

All Tigase plugins currently implemented are located in package: tigase.xmpp.impl. You can use this
code as a sample code base. There are 3 types of plug-ins and they are defined in interfaces located in
ti gase. xnmpp package:

1. XMPPProcessorIfc - The most important and basic plug-in. This is the most common plug-in type
which just processes stanzas in normal mode. It receives packets, processes them on behalf of the user
and returns resulting stanzas.

2. XM PPPreprocessor | fc - This plugin performs pre-processing of the packet, intended for the pre-pro-
cessors to setup for packet blocking.

3. XM PPPostprocessor I fc - This plugin performs processing of packets for which there was no specific
processor.

Connector

Data, Stanzas, Packets - Data Flow and Processing

Data received from the network are read from the network sockets as bytes by codeintheti gase. i o
package. Bytes then are changed into charactersin classes of t i gase. net package and as characters
they are sent to the XML parser (t i gase. xn) which turnsthem to XML DOM structures.

All datainside the server is exchanged in XML DOM form as thisis the format used by XM PP protocol.
For basic XML data processing (parsing characters stream, building DOM, manipulate XML elements

Basic Information

and attributes) we use Tigase XML parser and DOM builder [https://projects.tigase.org/projects/tigase-
xmitools].

Each stanzaisstoredinthet i gase. xmi . El enent object. Every Element can contain any number of
chil d El enent s and any number of attributes. Y ou can access all these data through the class API.

To simplify some, most common operations Element is wrapped int i gase. server. Packet class
which offers another level of API for the most common operations like preparation of response stanza
based on the element it contains (swap to/from values, put type=result attribute and others).

https://projects.tigase.org/projects/tigase-xmltools
https://projects.tigase.org/projects/tigase-xmltools
https://projects.tigase.org/projects/tigase-xmltools

Chapter 2. Hack Tigase XMPP Server Iin
Eclipse

If you want to write code for Tigase server we recommend using Eclipse I DE [//https://eclipse.org/down-
loads/]. Either the IDE for Java or Java EE devel opers will work.

Requirements

Eclipse IDE currently requires the use of Java Runtime Environment 7 [http://www.oracle.com/technet-
work/javaljavase/downloadg/jre7-downl oads-1880261.html]. Although thisis an outdated version of Java
(and Tigase requires JDK version 8) Eclipse has not yet moved to the latest Java Build so you will need
both versions installed.

Y ou will also need the M2E plugin for Maven integration, however this can be done inside Elcipse now,
so refer to the Plugin Installation section for that.

Installation

Eclipse does not come as an installer, but rather an archive. Extract the directory to a working location
wherever you would like. Now install the JRE 7 software, location is not important as Eclipse will find
it autmoatically.

Before we begin, we will need to clone the repository from git.

Linux

For linux operating systems, navigate to a directory where you want the repository to be cloned to and
type the following into terminal .

git clone https://repository.tigase.org/git/tigase-server.git

Windows

Please see the Windows coding guide for instructions on how to obtain source code from git. If you don’t
want to install git software specifically, you can use Eclipse’s git plugin to obtain the repository without
any new software. First click on File, then Import... Next select from Git folder and the Projects from Git

//https://eclipse.org/downloads/
//https://eclipse.org/downloads/
//https://eclipse.org/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/jre7-downloads-1880261.html
http://www.oracle.com/technetwork/java/javase/downloads/jre7-downloads-1880261.html
http://www.oracle.com/technetwork/java/javase/downloads/jre7-downloads-1880261.html

Hack Tigase XMPP Server in Eclipse

Blmeor % I » =

Select \
Import one or more projects from a Git Repository. | g E |

Select an import source:

type filter text

[= General -
b = EIB
= Git
=% Projects from Git
= Install
= Java EE
= Mawven
= Comph
= Plug-in Development
= Remote Systermns
= Run/Debug
= Tasks
= Team

= Web
7= Weh eanviree

[

F Y TR Y YT T RFY YV T

H@ < Back Mext > Finish | | Cancel

Click next, and now select clone URI

Hack Tigase XMPP Server in Eclipse

Birrmesrenor o o Lo

Select Repository Source GIT
Select a location of Git Repositories
type filter text
| | Existing local repository
E Clone URI
I < Back Net> || Finsh || Cancel
@ _

[

Now click next, and in this window enter the following into the URI field
git://repository.tigase.org/git/tigase-server.git

The rest of the fields will populate automatically

Hack Tigase XMPP Server in Eclipse

83 it pojcts rom it S e

Source Git Repository GIT
Enter the location of the source repository.
Location
URL: ? git:ffrepusitur}r.tigase.crrgfgitftigase-semer.gitl | Local Fiie...|
Host: repository.tigase.org
Bepository path: /git/tigase-server.git
Connection
Protocol:
Port:
Authentication
User: | |
Fassword; | |
| | Store in Secure Store
" @ <Back || Nets> || Enish || Cancel

=

Select the master branch, and any branches you wish to edit. The master branch should be the only one
you need, branches are used for specific code changes

Hack Tigase XMPP Server in Eclipse

7§} Import Projects _i@ﬂu

Branch Selection -
1R
Select branches to clone from remote repository. Remote tracking branches —

will be created to track updates for these branches in the remote repositery.

Branches of git://repository.tigase.org/git/tigase-server.git:

: type filter text

] &= Task_2908
] & clustering_3
] = devel

] = fixes-for-5.2
V] =2 master
7] &5 new_cluster_api
] .z old-stable
[52 osgi

7] &= stable

[ticket 431
&, trunk

| Select All | | Deselect All

' @ < Back Met> || Finish || Cancel
¥

=

Now select the directory where you wanted to clone the repository to. This was function as the project
root directory you will use later on in the setup.

Hack Tigase XMPP Server in Eclipse

rﬂ Import Projects from Git W W’ -

Local Destination

Configure the local storage location for tigase-server.

ARE
F

Destination

Directony:

C:\Temp\Tigasg]

| Browse |

Initial branch: | master

Configuration

Femote name:

| Clone submodules

origin

! @

Finish

Cancel

=

Onceyou click next Eclipse will download the repository and any branches you selected to that directory.
Noteyouwill beunabletoimport thisgit directory sincethereareno git aproject specific filesdownl oaded.
However, once downloading is complete you may click cancel, and the git repository will remain in the

directory you have chosen.

Hack Tigase XMPP Server in Eclipse

Setup

Once you have the main window open and have established a workspace (where most of your working
fileswill be stored), click on Help and then Install New Software. ..

File Edit Mavigate 5earch Project Run Window EHEFpl

Eclipse Java

s Overview
X Get an overview of the feature

@{'- . Samples

- Try out the samples

@

.%-

273

[@ @ & & &

Welcome

Help Contents
Search

Dynamic Help

Key Assist...
Tips and Tricks...

Report Bug or Enhancermn

Cheat Sheets...
Perform Setup Tasks...

Check for Updates
Install New Software...
Installation Details
Eclipse Marketplace...

About Eclipse

Under the Work With field enter the following and press enter: http://download.eclipse.org/technolo-

gy/m2e/rel eases/

Note: You may wish to click the Add... button and add the above location as a per manent software

location to keep thelocation in memory

10

http://download.eclipse.org/technology/m2e/releases/
http://download.eclipse.org/technology/m2e/releases/

Hack Tigase XMPP Server in Eclipse

Available Software
Check the itermns that you wish to install,

Work with: -P-'i-‘.c;':i:::.;'.‘..'-’:_i.c;nluad.-;:.lipse.n:rrg.r‘tech nology/mle/releases/

Find mu

: type filter text

. Mame Wers

| a4 U Maven Integration for Eclipse

% mle - Maven Integration for Eclipse (includes Incubating components, 1.6.]
% mle - sifd] over logback legging (Cptional) 1.6.]
Select All | | Deselect Al 2 items selected
Details
Show only the latest versions of available software Hide i
Group items by category What &

|| Show only software applicable to target environment
Contact all update sites duning install to find required software

@

Hack Tigase XMPP Server in Eclipse

Y ou should see the M2 Eclipse software packages show in the main window. Click the check-box and
click Next. Once the installer isfinished it will need to restart Eclipse.

Oncethat is done, lets connect Eclipse to the cloned repository.

Click File and Import... to bring up the import dialog window. Select Maven and then Existing Maven
Project.

EI] Import o [S1

Select

Import Bxisting Maven Projects |w

Select an import source:

type filter text

[+ = General -
b = EIB
b= Git
= Install
i > = Java EE
4 [Maven

7.::]' Check out Maven Projects from SCM

W, Existing Maven Projects|

.n-_;_lj I.n._r.-téI.I-I:n.r"élEpl.c.r;-a.ﬁ.;rtifact to a Maven repository
/ i._j‘ Materialize Maven Projects from 5CM
b = Comph e
b = Plug-in Development

m

I = Remote Systermns
b = Run/Debug

i o3, Taclke

® < Back [Mext >] Finish Cancel

12

Hack Tigase XM PP Server in Eclipse

Now click Next and point the root directory to where you cloned the git repository, Eclipse should auto-
matically see the pom.xml file and show up in the next window.

13

Hack Tigase XMPP Server in Eclipse

Maven Projects

Select Maven projects

Projects:

fpomxml tigasetigase-server7.1.0-5SMNAPSHOT:5{packaging.type]

Add project(s) to working set

| tigase-server

b Advanced

@ <Back | Medt> Finis!

14

Hack Tigase XM PP Server in Eclipse

Once theimport is finished, you are able to now begin working with Tigase's code inside Eclipse! Happy
coding!

APl changes in the Tigase Server 5.x

The API changes can effect you only if you develop own code to run inside Tigase server. The changes
are not extensive but in some circumstances may require many simple changesin afew files.

All the changes are related to introducing tigase.xmpp.JID and tigase.xmpp.BareJID classes. It is recom-
mended to use them for al operations performed on the user JID instead of the String class which was
used before changes.

There are a few advantages to using the new classes. First of all they do al the user JD checking and
parsing, they also perform stringprep processing. Therefore if you use data kept by instance of the JID or
BareJID you can be sure they are valid and correct.

These are not all advantages however. JID parsing code appears to use alot of CPU power to conduct it’s
operations. JIDs and parts of the JIDs are used in many places of the stanza processing and the parsing
is performed over and over again in all these places, wasting CPU cycles, memory and time. Therefore,
great performance benefits can be gained from these new class are in if, once parsed, JDs are reused in
all further stanza processing.

This is where the tigase.server.Packet class comesin handy. Instances of the Packet class encloses XML
stanza and pre-parses some, the most commonly used elements of the stanza, stanza source and destination
addresses among them. As an effect there are all new methods available in the class:

JI D get StanzaFrom();
JI D get StanzaTo();
JID getFrom();

JI D getTo();

JI D get Packet From();
JI D get Packet To() ;

Whereas following methods are still available but have been deprecated:

String getEl enfFrom();
String getEl emTo();

Please refer to the JavaDoc documentation for the Packet [http://docs.tigase.org/tigase-server/snap-
shot/javadoc/tigase/server/Packet.html] class and methods to learn al the details of these methods and
difference between them.

Another differenceisthat you can no longer createthe Packet instance using aconstructor. Instead there
are afew factory methods available:

static Packet packetlnstance(El enent elenj;
static Packet packetlnstance(El enent el em
JI D stanzaFrom JID stanzaTo);

Again, pleaserefer to the JavaDoc documentation for all the details. The main point of using these methods
is that they actually return an instance of one of the following classes instead of the Packet class: | q,
Presence or Message.

Thereis also a number of utility methods helping with creating a copy of the Packet instance preserving
as much pre-parsed data as possible;

15

http://docs.tigase.org/tigase-server/snapshot/javadoc/tigase/server/Packet.html
http://docs.tigase.org/tigase-server/snapshot/javadoc/tigase/server/Packet.html
http://docs.tigase.org/tigase-server/snapshot/javadoc/tigase/server/Packet.html

Hack Tigase XM PP Server in Eclipse

Packet copyEl emrentOnl y();
Packet errorResult(...);
Packet okResult(...);
Packet swapFronio();
Packet swapStanzaFronio();

We try to keep the JavaDoc [http://docs.tigase.org/tigase-server/snapshot/javadoc/] documentation as
complete as possible. Please contact usif you find missing or incorrect information.

Themain pointistoreuseJI Dor Bar eJI Dinstancesin your code as much as possible. Y ou never know,
your code may run in highly loaded systems with throughput of 100k XM PP packets per second.

Another change. Thisone abit risky asit isvery difficult to find all places where this could be used. There
areseveral utility classes and methods which accept source and destination address of astanzaand produce
something. There was agreat confusion with them, asin some of them thefirst was the source address and
in others the destination address. All the code has been re-factored to keep the parameter order the samein
all places. Right now the policy is: sour ce addressfirst. Thereforein all places where there was amethod:

Packet nethod(String to, String from;
it has been changed to:
Packet nethod(JID from JID to);

As far as | know most of these method were used only by myself so | do not expect much trouble for
other developers.

16

http://docs.tigase.org/tigase-server/snapshot/javadoc/
http://docs.tigase.org/tigase-server/snapshot/javadoc/

Chapter 3. Server Compilation

List of documents describing how to work with sources and how to compile them.
» Tigase XMPP Server 5.2.0 and Later - Compilation and Generating Distribution Packages
* Tigase Packages Dependency Change - Server Compilation Version 4.x or Later

» Server Compilation - Version 2.x and 3.x

Tigase XMPP Server 5.2.0 and later - Compila-
tion and Generating Distribution Packages

Starting with version 5.2.0 Tigase Server package distribution generation has switched from Ant to Maven.
Thiswill allow better dependency management as well as build repeatability.

For details on Maven and it’s use, please see the Maven Guide.

Distribution Packages

Starting from version 5.2.0 there will be two separate distribution archives:
» -distisaminimal version containing only tigase-server, tigase-xmiltools and tigase-utils

» -dist-max isaversion containing all additional tigase components (MUC, PubSub, HTTP API, OSGi
support, etc.) aswell as dependencies required by those components.

They will be available as both zip and tarball.

Building Server and Generating Packages

After cloning tigase-server repository:

git clone https://repository.tigase.org/git/tigase-server.git
cd tigase-server

Y ou compile server with maven using project distribution profile (dist):

nmvn --Pdist --f nodul es/ master/pom xm clean install

Thiswill:

» compile server binaries

* generate javadoc documentation

» grab al latest versions of al declared dependencies and put them in jars/ directory

* create both types of distribution packages (-dist and -dist-max) and place them in pack/ directory
In order to create installer packages you have to execute two shell scripts:

./scripts/installer-prepare.sh

17

Server Compilation

.Iscripts/installer-generate.sh

However, in order for them to succeed you have to build the server first using maven as described earli-
er. You should also have git, python2, docutils and LaTeX distributions installed (please see src/main/
izpack/README.txt for details).

Running Server

Afterwards you can run the server with the regular shell script:
./scripts/tigase.sh start etc/tigase. conf

Please bear in mind, that you need to provide correct setup in etc/init.properties configuration files for the
server to work correctly.

Tigase Packages Dependency Change - Server
Compilation Version 4.x or Later

The dependency for Tigase Utils Package [https.//projects.tigase.org/projects/tigase-utils] has changed.
This is important for everybody who builds the Tigase server manually from sources using Ant [http://
ant.apache.org/] tool. The Maven [http://maven.apache.org/] handles all the dependencies automatically
and scripts have been updated.

Please keep reading for more details how to compile the server from sources in current repositories.

If you havean old Tigase M UC or Tigase Extras packagelyingin the server/libg/ directory please remove
it now. You have to update it too and copy it over to the server/jars directory after you completed steps
below.

For all those who build the server from sources manually using Ant [http://ant.apache.org/] hereis a short
guide:

1. Checkout all the sources first:
* https://projects.tigase.org/proj ects/tigase-xmltool S/repository
« https://proj ects.tigase.org/proj ects/'tigase-util s/repository
« https://proj ects.tigase.org/proj ects/'tigase-server/repository
2. Build the Tigase XML Tools and copy the jar file over to the utils and* server* libs/ directory
* cd xnltools
« ant clean jar-dist
e cp jars/tigase-xmtools.jar ../utils/libs
e cp jars/tigase-xmtools.jar ../server/libs
3. Build the Tigase Utils and copy the jar file to the server libs/ directory
ecd ../utils

e ant clean jar-dist

18

https://projects.tigase.org/projects/tigase-utils
https://projects.tigase.org/projects/tigase-utils
http://ant.apache.org/
http://ant.apache.org/
http://ant.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://ant.apache.org/
http://ant.apache.org/
https://projects.tigase.org/projects/tigase-xmltools/repository
https://projects.tigase.org/projects/tigase-utils/repository
https://projects.tigase.org/projects/tigase-server/repository

Server Compilation

e cp jars/tigase-utils.jar ../server/libs
4. Build the Tigase Server binary
e cd ../server
e ant clean jar-dist
Thisisavery short guide but | hopeit helps. If you have any problems, please let me know.

Addendum: startingwith version 5.2.0 al librariesand jar filesfor the server areinjars directory; however
with that version we strongly encourage to switch to maven build system aswe are phasing out Ant - please
follow guide Tigase XM PP Server 5.2.0 and Later - Compilation and Generating Distribution Packages

19

Chapter 4. Component Development

A component in the Tigase is an entity with its own JID address. It can receive packets, process them,
and can also generate packets.

An example of the best known componentsis MUC or PubSub. In Tigase however, amost everything is
actually a component: Session Manager, s2s connections manager, Message Router, etc... Components
are loaded based on the server configuration, new components can be loaded and activated at run-time.
Y ou can easily replace a component implementation and the only change to make is a class name in the
configuration entry.

Creating components for Tigase server is an essential part of the server development hence thereis alot
of useful API and ready to use code available. This guide should help you to get familiar with the API and
how to quickly and efficiently create your own component implementations.

1. Component implementation - Lesson 1 - Basics

2. Component implementation - Lesson 2 - Configuration

3. Component implementation - Lesson 3 - Multi-Threading

4. Component implementation - Lesson 4 - Service Discovery

5. Component implementation - Lesson 5 - Statistics

6. Component implementation - Lesson 6 - Scripting Support

7. Component implementation - Lesson 7 - Data Repository

8. Component implementation - Lesson 8 - Startup Time

9. Configuration API

10.Packet Filtering in Component

Component Implementation - Lesson 1 - Basics

Creating a Tigase component is actually very simple and with broad API available you can create a pow-
erful component with just afew lines of code. Y ou can find detailed API description elsewhere. Thisseries
presents hands on lessons with code exampl es, teaching how to get desired resultsin the simplest possible
code using existing Tigase API.

Even though all Tigase components are just implementations of the Server Component interface | will
keep such alow level information to necessary minimum. Creating a new component based on just inter-
faces, while very possible, is not very effective. This guide intends to teach you how to make use of what
is aready there, ready to use with aminimal coding effort.

Thisisjust thefirst lesson of the serieswhere | cover basics of the component implementation.

Let's get started and create the Tigase component:

i mport java.util.logging. Logger;

20

Component Development

i mport tigase.server. Abstract MessageRecei ver;
i mport tigase.server. Packet;

public class Test Conmponent extends Abstract MessageRecei ver {
private static final Logger |og = Logger. getLogger (Test Conponent. cl ass. get Name()

@verride
public void processPacket (Packet packet) {
log.finest("My packet: -" + packet.toString());

-}
}

The only element mandatory when you extend AbstractM essageReceiver isthe implementation of void
processPacket(Packet packet) method. Thisis actually logical as the main task for your component is
processing packets. Class name for our new component is TestComponent and we have also initialized
a separated logger for thisclass. Doing Thisisvery useful asit allows usto easily find log entries created
by our class.

With these a few lines of code you have a fully functional Tigase component which can be loaded to
the Tigase server; it can receive and process packets, shows as an element on service discovery list (for
administrators only), responds to administrator ad-hoc commands, supports scripting, generates statistics,
can be deployed as an external component, and afew other things.

Before we go any further with the implementation let’s configure the component in Tigase server so it is
loaded next time the server starts. Assuming our init.properties file looks like this one:

config-type = ---gen-confi g-def

--debug = server

--user-db = derby

--adm ns = adm n@level .tigase. org
--user-db-uri = jdbc:derby:/Tigasel/tigasedb
--virt-hosts = devel .tigase.org

--conp-name-1 = nuc

--conp-class-1 = tigase. muc. MJCConponent
--conp- nane-2 = pubsub

--conp-class-2 = tigase. pubsub. PubSubConmponent

We can see that it already is configured to load two other components: MUC and PubSub. Let's add a
third - our new component to the configuration file by appending two following linesin the propertiesfile:

--conp-nanme-3 = test
--conp-cl ass-3 = Test Conponent

Now we have to remove the etc/tigase.xml file and restart the server.

There are afew ways to check whether our component has been loaded to the server. Probably the easiest
isto connect to the server from an administrator account and look at the service discovery list.

21

Component Development

aRrvice Discoverny

7 L 3 E B oga B o adminfidevel
Aeldress: | devel tigase.arg w | Naode: v | [Browse |
Kame i R
tof Tigase wer. 4.4.0-b1%58 davel tigase.amng
» LP Server canfiguration basic=canfiidevel.tig... canfig
» ¢ Bosh connection manager boshifidevel. tigase.org
4f Client connection manager c2sifdeveltigase.ong
U Sessian Mmanager e - manEkdewel tiga. ..
k i o " mamierd a1 e 1 Wit ELELEY
» Undefined description TS T

il [+ cEHETE = f
ﬂ";'.. Multl User Chat muc.dewel.tigase.arg
4] Fublish=%ubscribe pubsub.devel tigase.org

! Auto- browse into objects
~ Automatically get item information

s W
| Ml Closa

If everything goeswell you should see an entry on thelist similar to the highlighted one on the screenshot.
The component description is"Undefined description” which is adefault description and we can change it
later on, the component default JID is: test @devel .tigase.or g, where devel .tigase.or g isthe server domain
and test is the component name.

Another way to find out if the component has been loaded is by looking at the log files. Getting yoursel f
familiar with Tigase log files will be very useful thing if you plan on developing Tigase components. So
let’s look at the log file logs/tigase.log.0, if the component has been loaded you should find following
linesin the log:

MessageRout er . set Properties() FINER Loading and registering nmessage receiver: tes
MessageRout er . addRout er () | NFO Addi ng receiver: Test Conponent

MessageRout er . addConponent () | NFO Addi ng conponent: Test Conponent

MessageRout er . addConponent () FI NER: Addi ng: test component to basic-conf registrat
Confi gur at or. conponent Added() CONFI G conponent: test

If your component did not load you should first check configuration files. Maybe you forgot to remove the
tigase.xml file before restarting the server or aternatively the Tigase could not find your class at startup
time. Make sureyour classisin CLASSPATH or copy aJAR filewith your classto Tigaselibs/ directory.

Assuming everything went well and your component is loaded by the sever and it shows on the service
discovery list as on the screenshot above you can double click on it to get a window with a list of ad-
hoc commands - administrator scripts. A window on the screenshot shows only two basic commands for
adding and removing script which is a good start.

™™ Execute Command (test@devel tig. ..

Command:

Remove command script

| PSS | [Cancel | {FExecure)

22

Component Development

Moreover, you can browse the server statistics in the service discovery window to find your new test
component on the list. If you click on the component it shows you a window with component statistics,
very hasic packets counters.

- - [EL A~
B wl d i v ik x| [Bwmdd
(YD - e
[Tigane wrr 48 Geb il]
1 T R d D Sl « - [i 1 Dty
B f e b —anwes ke Fgae ey
TOChE LI Pt e L 2l
S = et [Wer] P
iltireyd Bogdria g whids
varefice CgEe By WL s
il ierid Eogrial gy WL
1mrefEirerl cgane ey wENely
I ehiidrer Egme erp BN I
AT EE TR
Co=pree= pspeemen patifiieer] Pgme srg vien - S
L Corpare™ maulddd LV DoEid B ERITELE]
R L LT] b s e
i WHEE Mardgs i |- gl |
= W el e O Fos e IR R
TN " E el ool dhare g oy
darg- bamas —wa gkl
F Al sy gl e el
Sl
| Ml Ched

Aswe can see with just afew lines of code our new component is quite mighty and can do alot of things
without much effort from the devel oper side.

Now, the time has come to the most important question. Can our new component do something useful,
that is can it receive and process XM PP packets?

Let'stry it out. Using you favorite client send a message to JID: test@devel .tigase.org (assuming your
server is configured for devel .tigase.org domain). Y ou can either use kind of XML console in your client
or just send a plain message to the component JID. According to our code in processPacket(...) method
it should log our message. For thistest | have sent a message with subject: "test message” and body: "this
isatest". Thelog file should contain following entry:

Test Conponent . processPacket () FI NEST: My packet: to=null, fronenull,
dat a=<message fron¥"adm n@level .tigase. org/ devel "

to="t est @evel .ti gase. org" id="abcaa" xm ns="jabber:client">

<subj ect >t est nessage</subj ect>

<body>this is a test</body>
</ message>, XM.NS=j abber:client, priority=NORVAL

If thisis a case we can be sure that everything works as expected and all we now have to do isto fill the
processPacket(...) method with some useful code.

Component Implementation - Lesson 2 - Con-
figuration

It might be hard to tell what the first important thing you should do with your new component implemen-
tation. Different developers may have a different view on this. It seemsto me however that it is awaysa
good ideato give to your component away to configure it and provide some runtime settings.

Thisguide describeshow to add configuration handling to your component. Thereisdetailed Configuration
API description available so again | am not getting deep into all details just the necessary code.

23

Component Development

To demonstrate how to implement component configuration let’ s say we want to configure which types of
packets will be logged by the component. There are three possible packet types. message, presence and
ig and we want to be able to configure logging of any combination of the three. Furthermore we also want
to be able to configure the text which is prepended to the logged message and to optionally switch secure
login. (Secure logging replaces all packet CData with text: CData size: NN to protect user privacy.)

Let’s create the following private variables in our component:
private String[] packetTypes = {"nmessage", -"presence", -"iq"};
private String prependText = -"My packet: -";

private bool ean securelLoggi ng = fal se;

As the component configuration is maintained in aform of a (key, value) map, we have to invent keys for
each of our configuration entry:

private static final String PACKET_TYPES KEY = -"packet-types";
private static final String PREPEND TEXT _KEY = -"| og-prepend”;
private static final String SECURE LOGAE NG KEY = -"secure-|oggi ng";

There are two methods used to maintain the component configuration: get Def aul t s(..) where the
component provides some configuration defaults and set Pr operti es(..) which setsaworking con-
figuration for the component:

@verride
public Map<String, Object> getDefaults(Map<String, Cbject> paranms) {
Map<String, Object> defs = super. getDefaul ts(parans);
def s. put (PACKET_TYPES_KEY, packet Types);
def s. put (PREPEND_TEXT_KEY, prependText);
def s. put (SECURE_LOGAE NG _KEY, secureloggi ng);
return defs;

}

@verride
public void setProperties(Map<String, Object> props) {
super. set Properti es(props);
if (props.get(PACKET_TYPES KEY -) -!= null -) {
packet Types = (String[]) props.get(PACKET_TYPES KEY -);
-}
if (props.get(PREPEND TEXT KEY -) -!= null -) {
prependText = (String) props.get(PREPEND TEXT_KEY -);
-}
if (props.get(SECURE LOGA NG KEY -) -!'= null -) {
secur eLoggi ng = (Bool ean) props. get(SECURE _LOGE NG KEY -);
-}
}

You do not have to implement the get Def aul t s(..) method and provide default settings for your
configuration, but doing so gives you afew benefits.

The first from adeveloper point of view, you don't have to check intheset Properti es(..) whether
thevalueisof acorrect type or convert it from String to the correct type asit always be either the default or
user provided. It will be of acorrect type as the configuration framework takes care of the types comparing
between the user provided settings and default values. So this just makes your set Pr operti es(..)

code much simpler and clearer.

24

Component Development

Please note that currently Tigase allows changing properties automatically. Hence you should check each
timeif agiven property was updated at the given call of set Properti es().

bBasic-contBdevel 1egase. ang

PasnpRRvRareful, you ar ydminmdevel tigase arg
test/ companent - id rastSdevel.tigase.nng
test [/ def-hositname: devel tigase.arg

west/inooming-filters: tigaseserver filters PacketCountes

test/log-prepend: My packet

et max-guene-Size: 466

testf outgoing-filters tigase.server filiers, PacketCounter

test) pack et -ty pes: MEsLage, Presence, ig

Eit f seripty-dir Soripds | sdemin

test) pecune=logging falew

0¥

Secondly this also makes the administrator’s life easier. Asyou can see on the screenshot, configuration
parameters provided with default values can be changed via configuration ad-hoc commands. So the ad-
ministrator can maintain your component durinmg run-time from his XM PP client.

Regardless, if you implemented the get Def aul t s(..) method or not you can aways manually add
parametersto thei ni t . properti es file

Thesyntaxini ni t. properti es fileisvery smpleand is described in detailsin the Admin Guide. As
it shows on the screenshot the configuration parameter name consists of: component name, property key.
To set the configuration for your componentini ni t. properti es file you have to append following
linesto thefile:

test/| og- prepend="My packet: -"

t est/ packet -t ypes[s] =message, presence, i q
t est/secure-1 oggi ng[B] =t rue

The sguare brackets denote the property type, have alook at the Admin Guide documentation for more
details.

And this is the complete code of the new component with a modified pr ocessPacket (..) method
taking advantage of configuration settings:

i mport java.util.Mp;

i mport java.util.logging. Logger;

i mport tigase.server. Abstract MessageRecei ver;
i mport tigase.server. Packet;

25

Component Development

public class Test Component extends Abstract MessageRecei ver {

private static final Logger log =
Logger . get Logger (Test Conponent . cl ass. get Name()) ;

private static final String PACKET_TYPES KEY = -"packet-types";

private static final String PREPEND TEXT _KEY = -"| og-prepend”;
private static final String SECURE LOGAE NG KEY = -"secure-|oggi ng";
private String[] packetTypes = {"nmessage", -"presence", -"iq"};

private String prependText = -"My packet: -"
private bool ean securelLoggi ng = fal se;

@verride
public void processPacket (Packet packet) {
for (String pType -: packet Types) {
if (pType == packet. get El enName()) {
| og. finest(prependText + packet.toString(securelLogging));

-}
-}

@verride
public Map<String, Object> getDefaults(Map<String, Cbject> paranms) {
Map<String, Object> defs = super. getDefaul ts(parans);
def s. put (PACKET_TYPES_KEY, packet Types);
def s. put (PREPEND_TEXT_KEY, prependText);
def s. put (SECURE_LOGAE NG _KEY, secureloggi ng);
return defs;

-}

@verride
public void setProperties(Map<String, Object> props) {
super. set Properti es(props);
if (props.get(PACKET_TYPES KEY -) -!= null -) {
packet Types = (String[]) props.get(PACKET_TYPES KEY -);
-}
-// Make sure we can conmpare el ement names by reference
-// instead of String content
for (int i = 0; i < packetTypes.length; i++) {
packet Types[i] = packet Types[i].intern();
-}
if (props.get(PREPEND TEXT KEY -) -!= null -) {
prependText = (String) props.get(PREPEND TEXT_KEY -);
-}
if (props.get(SECURE LOGA NG KEY -) -!'= null -) {
secur eLoggi ng = (Bool ean) props. get(SECURE _LOGE NG KEY -);
-}
-}

}

Of course we can do much more useful packet processing in the pr ocessPacket (..) method. This
isjust an example code. Please note: comparing packet element name with our packet type by reference

26

Component Development

isintentional and allowed in this context. All Element names are processed with St ri ng. i nt ern()
function to preserve memory and improve performance of string comparison.

Component Implementation - Lesson 3 - Mul-
ti-Threading

Multi core and multi CPU machines very common nowadays, especially for an application like the XM PP
server you most likely deployed your service on. Your new custom component however, processes all
packetsin asingle thread.

Thisisespecially important if the packet processing is CPU expensive like, for example, SPAM checking.
In such a case you could experience single Core/CPU usage at 100% while other Cores/CPUs are idling.
Ideally, you want your component to use all available CPUs.

Tigase API offers a very simple way to execute component’s pr ocessPacket (Packet pack-
et) method in multiple threads. Methods i nt processi ngQut Threads() and i nt pro-
cessi ngl nThreads() returnsnumber of threads assigned to the component. By default it returnsjust
1 as not all component implementations are prepared to process packets concurrently. By overwriting the
method you can return any value you think is appropriate for theimplementation. Please note, therearetwo
methods, oneisfor a number of threads for incoming packets to the component and another for outgoing
packets from the component. It used to be a single method but different components have different needs
and the best performance can be achieved when the outgoing queues have a separate threads pool from
incoming queues. Also some components only receive packets while other only send, therefore assigning
an equal number of threads for both that could be a waste of resources.

If the packet processing is CPU bound only, you normally want to have as many threads as there are CPUs
available:

@verride
public int processinglnThreads() {
return Runtime. getRuntine().avail abl eProcessors();
}
@verride
public int processingQutThreads() ({
return Runtime. getRuntine().avail abl eProcessors();

}

If the processing is 1/O bound (network or database) you probably want to have more threads to process
requests. It is hard to guess the ideal number of threads right on the first try. Instead you should run afew
tests to see how many threads is best for implementation of the component.

Now you have many threads for processing your packets, but thereisone slight problem with this. In many
cases packet order is essential. If our pr ocessPacket (..) method is executed concurrently by a few
threads it is quite possible that a message sent to user can takeover the message sent earlier. Especially
if the first message was large and the second was small. We can prevent this by adjusting the method
responsible for packet distribution among threads.

The algorithm for packets distribution among threads is very simple:
int thread_i dx = hashCodeFor Packet (packet) % threads_total;

So the key here is using the hashCodeFor Packet (..) method. By overwriting it we can make sure
that all packets addressed to the same user will always be processed by the same thread:

27

Component Development

@verride
public int hashCodeFor Packet (Packet packet) {
i f (packet.getElemlo() -!'= null) {
return packet. get El emTo(). hashCode();
-}
-// This should not happen, every packet nust have a destination
-// address, but naybe our SPAM checker is used for checking
-/1 strange kind of packets too...
if (packet.getEl enFrom() -!'= null) {
return packet. get El enfrom(). hashCode();
-}
-// If this really happens on your systemyou should | ook
-// carefully at packets arriving to your conmponent and
-// find a better way to cal cul ate hashCode
return 1,

}

The above two methods give control over the number of threads assigned to the packets processing in
your component and to the packet distribution among threads. Thisis not all Tigase API has to offer in
terms of multi-threading.

Sometimes you want to perform some periodic actions. Y ou can of course create Timer instance and load
it with TimerTasks. Asthere might be aneed for this, every level of the Class hierarchy could end-up with
multiple Timer (threads in fact) objects doing similar job and using resources. There are a few methods
which alow you to reuse common Timer object to perform all sorts of actions.

First, you have three methods allowing your to perform some periodic actions:

public synchronized void everySecond();
public synchronized void everyM nute();
public synchroni zed void everyHour();

An example implementation for periodic notifications sent to some address could |ook like this one;

@verride
public synchronized void everyM nute() {
super.everyM nute();
if ((++delayCounter) >= notificationFrequency) {
addQut Packet (Packet . get Message(abuseAddr ess, get Component | d(),
St anzaType. chat, -"Detected spam nessages:. -" + spanCounter,
-"Spam counter", null, newPacket!ld("spam")));
del ayCounter = O;
spanCounter = O0;
-}
}

This method sends every notificationFrequency minute a message to abuseAddress reporting
how many spam messages have been detected during last period. Please note, you have to call
super. ever yM nut e() to make sure other actions are executed as well and you have to also remem-
ber to keep processing in thismethod to minimum, especially if you overwriteever ySecond() method.

There are aso two methods which allow you to schedule tasks executed at certain time, they are very
similartothej ava. uti | . Ti mer APl withtheonly differenceisthat Timer isreused among all levelsof
Classhierarchy. Thereisaseparate Ti mer for each Classinstance though, to avoid interferences between
separate components:

28

Component Development

addTi mer Task(Ti mer Task task, long delay, TineUnit unit);
addTi mer Task(Ti mer Task task, |ong del ay);

Thereis one more method which can be used which is not directly related to multi-threading, but might be
very helpful for executing some actions at a very specific point of time. Thisis the point of time when the
server has just been initialized, that is al components have been created and received their configuration
for thefirst time. When thishappens Tigasecallsvoi d i niti al i zati onConpl et ed() method for
each server component. Y ou can overwrite this method to execute some actions at the time when you are
sure the Tigase has started and is fully functional.

Here is a code of an example component which uses al the API discussed in this article:

i mport java.util.Arrays;

i mport java.util.Map;

i mport java.util.logging. Logger;

i mport tigase.server. Abstract MessageRecei ver;
i mport tigase.server. Packet;

i mport tigase.util.JIDUtils;

i mport tigase.xnpp. StanzaType;

public class Test Component extends Abstract MessageRecei ver {

private static final Logger log =
Logger . get Logger (Test Conponent . cl ass. get Name()) ;

private static final String BAD WORDS KEY = -"bad-words";

private static final String WH TELI ST_KEY = -"white-list";

private static final String PREPEND TEXT _KEY = -"| og-prepend”;

private static final String SECURE LOGAE NG KEY = -"secure-|oggi ng";
private static final String ABUSE ADDRESS KEY = -"abuse-address";

private static final String NOTIFI CATI ON_ FREQ KEY = -"notification-freq";
private String[] badWwrds = {"wordl", -"word2", -"word3"};

private String[] whitelList {"adm n@ ocal host"};
private String prependText -"Spam detected: -";
private String abuseAddress = -"abuse@ ocahost";
private int notificationFrequency = 10;

private int delayCounter = O;

private bool ean securelLoggi ng = fal se;

private | ong spanCounter = O;

@verride
public void processPacket (Packet packet) {
-// Is this packet a nessage?
if ("nmessage” == packet.get El emNane()) ({
String from= JIDUtIils.get Nodel D(packet . get El enFrom()) ;
-// 1s sender on the whitelist?
if (Arrays. binarySearch(whitelList, from < 0) {
-// The sender is not on whitelist so let's check the content
String body = packet. get El enCDat a("/ nessage/ body") ;
if (body -!= null && -!body.isEnpty()) {
body = body. t oLower Case();
for (String word -: badWrds) ({
i f (body.contains(word)) {
| og. finest(prependText + packet.toString(securelLogging));

29

Component Development

++spanCount er ;
return;

-// Not a SPAM return it for further processing
Packet result = packet.swapFromlo();
addCut Packet (resul t);

-}

@verride
public int processinglnThreads() {
return Runtime. getRuntine().avail abl eProcessors();

-}

@verride
public int processingQut Threads() ({
return Runtime.getRuntine().avail abl eProcessors();

-}

@verride
public int hashCodeFor Packet (Packet packet) ({
i f (packet.getElemlo() -!'= null) {
return packet. get El emTo(). hashCode();
-}
-/1 This should not happen, every packet nust have a destination
-// address, but nmaybe our SPAM checker is used for checking
-/1 strange kind of packets too...
if (packet.getEl enFrom() -!'= null) {
return packet. get El enfrom(). hashCode();
-}
-// If this really happens on your systemyou should | ook carefully
-// at packets arriving to your component and decide a better way
-// to cal cul ate hashCode
return 1;

-}

@verride
public Map<String, Object> getDefaults(Map<String, Cbject> paranms) {
Map<String, Object> defs = super. getDefaul ts(parans);
def s. put (BAD_WORDS_KEY, badWords);
def s. put (WHI TELI ST_KEY, whitelList);
def s. put (PREPEND_TEXT_KEY, prependText);
def s. put (SECURE_LOGAE NG _KEY, secureloggi ng);
def s. put (ABUSE_ADDRESS KEY, abuseAddress);
def s. put (NOTI FI CATI ON_FREQ KEY, noti ficati onFrequency);
return defs;

-}

@verride
public void setProperties(Map<String, Cbject> props) {
super . set Properti es(props);

30

Component Development

badWwrds = (String[])props. get (BAD WORDS KEY) ;

whiteList = (String[])props. get(WH TELI ST_KEY) ;

Arrays. sort(whiteList);

prependText = (String)props. get (PREPEND TEXT_KEY) ;

secur eLoggi ng = (Bool ean) props. get (SECURE_LOGGE NG _KEY) ;
abuseAddress = (String)props. get (ABUSE_ADDRESS KEY) ;
notificationFrequency = (Integer)props.get (NOTI FI CATI ON_FREQ KEY);

-}

@verride
public synchronized void everyMnute() ({
super. everyM nute();
if ((++delayCounter) >= notificationFrequency) ({
addCut Packet (Packet . get Message(abuseAddr ess, get Conponent 1 d(),
St anzaType. chat, -"Detected spam nessages: -" + spanCounter,
-"Spam counter”, null, newPacketld("spam")));
del ayCounter = O;
spamCounter = O;
-}
-}

}

Component Implementation - Lesson 4 - Ser-
vice Discovery

Y ou component still shows in the service discovery list as an element with "Undefined description”. It
also doesn’t provide any interesting features or sub-nodes.

In this article | will show how to, in a simple way, change the basic component information presented
on the service discovery list and how to add some service disco features. As a bit more advanced feature
the guide will teach you about adding/removing service discovery nodes at run-time and about updating
existing elements.

Component description and category type can be changed by overriding two following methods:

@verride
public String getDi scoDescription() {
return -"Spamfiltering";

}

@verride
public String getDi scoCategoryType() {
return -"spant;

}

Please note, there is no such 'spam’ category type defined in the Service Discovery ldentities registry
[http://xmpp.org/registrar/disco-categories.html]. It has been used here as a demonstration only. Please
refer to the Service Discovery Identities registry document for alist of categories and types and pick the
one most suitable for you.

After you have added the two above methods and restarted the server with updated code, have alook at
the service discovery window. Y ou should see something like on the screenshot.

31

http://xmpp.org/registrar/disco-categories.html
http://xmpp.org/registrar/disco-categories.html

Component Development

MM 11 Service Discovery =
» O & . - admin@devel
Address: devel.tigase.org | Node: =l | Browse |
H.!l.l_'nt- o Mode
bl Tigase ver. 4.4.0-b1958 devel.tigase.org
1 Configuration commands basic-conf@devel.tigase.org config

'.

¢ 0F Bosh connection manager bosh@devel tigase.ong
1 Client connection manager c¢2sgdevel.tigase.org
[
s
3
E

S5 Multi User Chat muc.devel tigase.org
ti1 Publish-Subscribe pubsub.devel.tigase.org
I Session manager sess-man@devel.tigase.org
¥ Server statistics stats@devel.tigase.ong stats
¢ L VHost Manager ! vhost-man@devel.tigase.org

| Auto-browse into objects
E‘ Automatically get item information

i k'
(_Close)

Although this was easy, this particular change doesn't affect anything apart from just avisual appearance.
Let’s get then to more advanced and more useful changes.

One of the limitations of methods above is that you can not update or change component information at
run-time with these methods. They are called only once during set Properti es(..) method call and
the component service discovery information is created and prepared for later use. Sometimes, however
it is useful to be able to change the service discovery during run-time.

In our simple spam filtering component let’s show how many messages have been checked out as part of
the service discovery description string. Every time we receive a message we can to call:

updat eServi ceDi scoveryl tem(get Nanme(), null,
get Di scoDescription() + -": [" +
(++messagesCounter) + -"]", true);

A small performance note, in some cases calling updat eSer vi ceDi scoverylten(..) mightbean
expensive operation so probably a better idea would be to call the method not every time we receive a
message but maybe every 100 times or so.

Thefirst parameter is the component JID presented on the service discovery list. However, Tigase server
may work for many virtual hosts so the hostname part is added by the lower level functions and we only
provide the component name here. The second parameter is the service discovery node which is usually
null for top level disco elements. Third isthe item description (which is actually called namein the disco
specification). The last parameter specifiesif the element isvisible to administrators only.

32

Component Development

[B 11 Service Discovery —}
v G R o A - admin@devel
Address: devel.tigase.ong =] Node: | (Browse)
—_— —_— e —————
Pizma [14] Hode
t4] Tigase ver, 4.4.0-b1958 devel.tigase.org
P Server conflguration basic-confi@devel tigase.org config
= F Bosh connection manager boshi@Edevel tigase.org
 LF Client connection manager c2s@devel tigase.org
» ER Multi User Chat mug.devel tigase.org
F a1 Publish-Subscribe pubsub.devel tigase.org
B ¥ Session manager sess-mani@devel.tigase.org
B LT Server statistics statsdevel tigase.org srats
w : testiidevel tig g
B UF VHosts Manager vhost-maniidevel tigase.org

_ Auta-browse into objects
Autematically get itern information

I M | | Close |

The complete method code is presented below and the screenshot above shows how the element of the
service discovery for our component can change if we apply our code and send a few messages to the
component.

Using the method we can also add submodes to our component element. The XM PP service discovery
really is not for showing application counters, but this case it is good enough to demonstrate the AP
available in Tigase so we continue with presenting our counters via service discovery. This time, instead
of using null as a node we put some meaningful texts asin example below:

/1 This is called whenever a nessage arrives

/1 to the conponent

updat eServi ceDi scoveryl temget Nane(), -"nessages",
-"Messages processed: [" + (++nessagesCounter) + -"]1", true);

/1 This is called every tine the conponent detects

/1l spam nessage

updat eServi ceDi scoveryl tem(get Nanme(), -"spant', -"Spam caught: [" +
(++t ot al SpamCounter) + -"1", true);

Again, have alook at the full method body below for a complete code example. Now if we send a few
messages to the component and some of them are spam (contain words recognized as spam) we can browse
the service discovery of the server. Y our service discovery should show alist similar to the one presented
on the screenshot on the | eft.

Of course depending on the implementation, initially there might be no sub-nodes under our component
element if we call the updat eSer vi ceDi scoverylten{..) method only when a message is pro-
cessed. To make sure that sub-nodes of our component show from the very beginning you can call them
inset Properties(..) forthefirst timeto populate the service discovery with initial sub-nodes.

Please note, the updat eSer vi ceDi scoverylten{..) method is used for adding a new item and
updating existing one. There is a separate method though to remove the item:

voi d renoveServi ceDi scoveryltem(String jid,

33

Component Development

String node, String description)

Actualy only two first parameters are important: the jid and the node which must correspond to the
existing, previously created service discovery item.

There are two additional variants of the update method which give you more control over the service
discovery item created. Items can be of different categories and types and can al so present aset of features.

The simpler is a variant which sets a set of features for the updated service discovery item. There is a
document [http://xmpp.org/registrar/disco-features.html] describing existing, registered features. We are
creating an example which is going to be a spam filter and there is no predefined feature for spam filtering
but for purpose of this guide we can invent two feature identification strings and set it for our component.
Let's call updat e method with following parameters:

updat eServi ceDi scoveryl tenm(get Name(), null, getD scoDescription(),
true, -"tigase:x:spamfilter”, -"tigase:x:spamreporting");

The best place to call this method isthe set Properti es(..) method so our component gets a proper
servicediscovery settingsat startup time. Wehave set two featuresfor the component di sco: tigase: x; spam-
filter and tigase: x: spam-reporting. This method accepts a variable set of arguments so we can passtoit as
many features as we need or following Java spec we can just pass an array of Strings.

Update your code with call presented above, and restart the server. Have alook at the service discovery
for the component now.

The last functionality might be not very useful for our case of the spam filtering component, but it is for
many other cases like MUC or PubSub for which it is setting proper category and type for the service
discovery item. Thereisadocument listing all currently registered service discovery identities (categories
and types). Again thereis entry for spam filtering. Let’ s use the automation category and spamfilter type
and set it for our component:

updat eServi ceDi scoveryl tenm(get Name(), null, getD scoDescription(),
-"automation", -"spamfiltering", true,
-"tigase: x:spamfilter”, -"tigase:x:spamreporting”);

Of course all these setting can be applied to any service discovery create or update, including sub-nodes.
And hereis acomplete code of the component:;

i mport java.util.Arrays;

i mport java.util.Map;

i mport java.util.l ogging. Logger;

i mport tigase.server. Abstract MessageRecei ver;
i mport tigase.server. Packet;

i mport tigase.util.JIDUtils;

i mport tigase.xnpp. StanzaType;

public class Test Component extends Abstract MessageRecei ver {

private static final Logger log =
Logger . get Logger (Test Conponent . cl ass. get Name()) ;

private static final String BAD WORDS KEY = -"bad-words";

private static final String WH TELI ST_KEY = -"white-list";

private static final String PREPEND TEXT _KEY = -"| og-prepend”;
private static final String SECURE LOGAE NG KEY = -"secure-|oggi ng";
private static final String ABUSE ADDRESS KEY = -"abuse-address";

34

http://xmpp.org/registrar/disco-features.html
http://xmpp.org/registrar/disco-features.html

Component Development

private static final String NOTIFI CATI ON_FREQ KEY = -"notification-freq"

private String[] badWwrds = {"wordl", -"word2", -"word3"};
private String[] whitelList {"adm n@ ocal host"};

private String prependText -"Spam detected: -";

private String abuseAddress = -"abuse@ ocahost";

private int notificationFrequency = 10;

private int delayCounter = 0O;

private bool ean securelLoggi ng = fal se;

private | ong spanCounter = O;

private | ong total SpanCounter = O;

private | ong nessagesCounter = O;

@verride
public void processPacket (Packet packet) {
-// Is this packet a nessage?
if ("nmessage” == packet.get El emNane()) ({
updat eSer vi ceDi scoveryl ten(get Name(), -"messages”,
-"Messages processed: [" + (++nessagesCounter) + -"]1", true);
String from= JIDUtIils.get Nodel D(packet . get El enFrom());
-// 1s sender on the whitelist?
if (Arrays. binarySearch(whitelList, from < 0) {
-// The sender is not on whitelist so let's check the content
String body = packet. get El enCDat a("/ nessage/ body") ;
if (body -!'= null && -!body.isEnpty()) {
body = body. t oLower Case();
for (String word -: badWrds) ({
i f (body.contains(word)) {
| og. finest(prependText + packet.toString(securelLogging));
++spanCount er ;

updat eServi ceDi scoveryl ten(get Name(), -"spam', -"Spam caught:
(++t ot al SpamCounter) + -"]", true);
return;

-// Not a SPAM return it for further processing
Packet result = packet.swapEl enfronilo();
addCut Packet (resul t);

-}

@verride
public int processingThreads() {
return Runtime. getRuntine().avail abl eProcessors();

-}

@verride
public int hashCodeFor Packet (Packet packet) {
i f (packet.getElemlo() -!'= null) {
return packet. get El emTo(). hashCode();
-}

-/1 This should not happen, every packet nust have a destination

35

Component Development

-// address, but naybe our SPAM checker is used for checking
-/1 strange kind of packets too...
if (packet.getEl enFrom() -!'= null) {
return packet. get El enfrom(). hashCode();
-}
-// If this really happens on your systemyou should | ook carefully
-// at packets arriving to your component and decide a better way
-// to cal cul ate hashCode
return 1;

-}

@verride
public Map<String, Object> getDefaults(Mp<String, Cbject> parans) {
Map<String, Object> defs = super. getDefaults(parans);
def s. put (BAD_WORDS_KEY, badWords);
def s. put (WHI TELI ST_KEY, whitelList);
def s. put (PREPEND_TEXT_KEY, prependText);
def s. put (SECURE_LOGA NG _KEY, secureloggi ng);
def s. put (ABUSE_ADDRESS KEY, abuseAddress);
def s. put (NOTI FI CATI ON_FREQ KEY, noti ficati onFrequency);
return defs;

-}

@verride

public void setProperties(Map<String, Object> props) {
super. set Properti es(props);
badWwrds = (String[])props. get (BAD WORDS KEY) ;
whiteList = (String[])props. get(WH TELI ST_KEY) ;
Arrays. sort(whiteList);
prependText = (String)props. get (PREPEND TEXT_KEY) ;
secur eLoggi ng = (Bool ean) props. get (SECURE_LOGGE NG _KEY) ;
abuseAddress = (String)props. get (ABUSE_ADDRESS KEY) ;
notificationFrequency = (Integer)props.get(NOTI Fl CATI ON_FREQ KEY);
updat eServi ceDi scoveryl tenm(get Name(), null, getD scoDescription(),

-"automation", -"spamfiltering", true,

-"tigase: x:spamfilter”, -"tigase:x:spamreporting”);
-}
@verride

public synchronized void everyMnute() {
super. everyM nute();
if ((++delayCounter) >= notificationFrequency) ({
addCut Packet (Packet . get Message(abuseAddr ess, get Conponent 1 d(),
St anzaType. chat, -"Detected spam nessages: -" + spanCounter,
-"Spam counter”, null, newPacketld("spam")));
del ayCounter = O;
spanCounter = O,
-}
-}

@verride
public String getDi scoDescription() {
return -"Spamfiltering";

-}

36

Component Development

@verride
public String getDi scoCat egoryType() {
return -"spant;

-}
}

Component Implementation - Lesson 5 - Statis-

tics

In most cases you'll want to gather some run-time statistics from your component to see how it works,
detect possible performance issues or congestion problems. All server statistics are exposed and are ac-
cessible via XM PP with ad-hoc commands, HTTP, IMX and some selected statistics are also available
via SNMP. As a component developer you don’'t have to do anything to expose your statistic via any of
those protocoals, you just have to provide your statistics and the admin will be able to access them any
way he wants.

Thislesson will teach you how to add your own statistics and how to make surethat the statistics generation
doesn’t affect application performance.

[M N statsidevel.tigase,org
test/Last minute packers: F
test/Packets recelved: 3
test/Fackets senk: F
test/Spam messages found: 1

test/All messages processed: 3

Stats leval: FINE =]

(Y revious Newt | (Cancel) {(Finish)

Y our component from the very beginning generates some statistics by classes it inherits. Let’s add afew
statistics to our spam filtering component:

@verride
public void getStatistics(StatisticsList list) {
super.getStatistics(list);
list.add(getNanme(), -"Spam nessages found", total SpanCounter, Level.|lNFO;

list.add(getNanme(), -"All nessages processed”, nessagesCounter, Level.FINER);

if (list.checkLevel (Level.FINEST)) {
-// Some very expensive statistics generation code...

-}

37

Component Development

| think the code should be pretty much self-explanatory.

Youhavetocal super. get Stati stics(..) toupdatestatsof the parent class. St at i sti csLi st
is a collection which keeps all the statistics in a way which is easy to update, search, and retrieve them.
Y ou actually don’'t need to know all the implementation details but if you are interested please refer to the
source code and JavaDoc documentation.

The first parameter of the add(..) method is the component name. All the statistics are grouped by the
component names to make it easier to look at particular component data. Next is a description of the
element. The third parameter is the element value which can be any number or string.

The last parameter is probably the most interesting. The idea has been borrowed from the logging frame-
work. Each statistic item has importance level. Levels are exactly the same as for logging methods with
SEVERE the most critical and FINEST the least important. This parameter has been added to improve
performance and statistics retrieval. When the StatisticsList object is created it gets assigned a level re-
quested by the user. If theadd(..) method iscalled with lower priority level then the element is not even
added to thelist. This saves network bandwidth, improves statistics retrieving speed and is also more clear
to present to the end-user.

Onething which may be abit confusing at firstisthat, if thereisanumerical element added to statisticswith
0 value then the Level is always forced to FINEST . The assumption is that the administrator is normally
not interested zer o-value statistics, therefore unless he intentionally request the lowest level statistics he
won't see elements with zer os.

Theif statement requires some explanation too. Normally adding a new statistics element is not avery ex-
pensive operation so passing it with add(..) method at an appropriate level is enough. Sometimes, how-
ever preparing statistics data may be quite expensive, like reading/counting some records from database.
Statistics can be collected quite frequently therefore it doesn’t make sense to collect the statistics at all if
there not going to be used as the current level is higher then the item we pass anyway. In such a case it
is recommended to test whether the element level will be accepted by the collection and if not skip the
whole processing altogether.

Asyou can see, the API for generating and presenting component statisticsis very simple and straightfor-
ward. Just one method to overwrite and a simple way to pass your own counters. Below isthe whole code
of the example component:

i mport java.util.Arrays;

i mport java.util.Mp;

i mport java.util.logging.Level;

i mport java.util.logging. Logger;

i mport tigase.server. Abstract MessageRecei ver;
i mport tigase.server. Packet;

i mport tigase.stats. StatisticsList;

i mport tigase.util.JIDUtils;

i mport tigase.xnpp. StanzaType;

public class Test Conponent extends Abstract MessageReceiver {

private static final Logger log =
Logger . get Logger (Test Conponent . cl ass. get Nanme()) ;

private static final String BAD WORDS KEY = -"bad-words";

private static final String WH TELI ST_KEY = -"white-list";

private static final String PREPEND TEXT _KEY = -"| og-prepend";
private static final String SECURE LOGAE NG KEY = -"secure-|oggi ng";

38

Component Development

private static final String ABUSE ADDRESS KEY = -"abuse-address";
private static final String NOTIFI CATI ON_FREQ KEY = -"notification-freq"
private String[] badWwrds = {"wordl", -"word2", -"word3"};

private String[] whitelList {"adm n@ ocal host"};
private String prependText -"Spam detected: -";
private String abuseAddress = -"abuse@ ocahost";
private int notificationFrequency = 10;

private int delayCounter = 0O;

private bool ean securelLoggi ng = fal se;

private | ong spanCounter = O;

private | ong total SpanCounter = O;

private | ong nessagesCounter = O;

@verride
public void processPacket (Packet packet) {
-// Is this packet a nessage?
if ("nmessage” == packet.get El emNane()) ({
updat eSer vi ceDi scoveryl ten(get Name(), -"messages”,
-"Messages processed: [" + (++nessagesCounter) + -"]1", true);
String from= JIDUtIils.get Nodel D(packet . get El enFrom()) ;
-// 1s sender on the whitelist?
if (Arrays. binarySearch(whitelList, from < 0) {
-// The sender is not on whitelist so let's check the content
Stringbody = packet. get El enCDat a("/ nmessage/ body") ;
if (body -!'= null && -!body.isEnpty()) {
body = body. t oLower Case();
for (String word -: badWrds) ({
i f (body.contains(word)) {
| og. finest(prependText + packet.toString(securelLogging));
++spanCount er ;

updat eServi ceDi scoveryl ten(get Name(), -"spam', -"Spam caught:
(++t ot al SpamCounter) + -"]", true);
return;

-// Not a SPAM return it for further processing
Packet result = packet.swapEl enfronilo();
addCut Packet (resul t);

-}

@verride
public int processingThreads() {
return Runtime. getRuntine().avail abl eProcessors();

-}

@verride
public int hashCodeFor Packet (Packet packet) {
i f (packet.getElemlo() -!'= null) {
return packet. get El emTo(). hashCode();

-}

39

Component Development

-/1 This should not happen, every packet nust have a destination
-// address, but naybe our SPAM checker is used for checking
-/1 strange kind of packets too...
if (packet.getEl enFrom() -!'= null) {

return packet. get El enfrom(). hashCode();
-}
-// If this really happens on your systemyou should | ook carefully
-// at packets arriving to your component and decide a better way
-// to cal cul ate hashCode
return 1,

-}

@verride
public Map<String, Object> getDefaults(Map<String, Cbject> paramnms) {
Map<String, Object> defs = super. getDefaults(parans);
def s. put (BAD_WORDS KEY, badWords);
def s. put (WHI TELI ST_KEY, whitelList);
def s. put (PREPEND_TEXT_KEY, prependText);
def s. put (SECURE_LOGAE NG _KEY, secureloggi ng);
def s. put (ABUSE_ADDRESS KEY, abuseAddress);
def s. put (NOTI FI CATI ON_FREQ KEY, noti ficati onFrequency);
return defs;

-}

@verride

public void setProperties(Map<String, Object> props) {
super. set Properti es(props);
badWwrds = (String[])props. get (BAD WORDS KEY)
whiteList = (String[])props. get(WH TELI ST_KEY) ;
Arrays. sort(whiteList);
prependText = (String)props. get (PREPEND TEXT_KEY) ;
secur eLoggi ng = (Bool ean) props. get (SECURE_LOGGE NG _KEY) ;
abuseAddress = (String)props. get (ABUSE_ADDRESS KEY) ;
notificationFrequency = (Integer)props.get(NOTI Fl CATI ON_FREQ KEY);
updat eServi ceDi scoveryl tenm(get Name(), null, getD scoDescription(),

-"automation", -"spamfiltering", true

-"tigase: x:spamfilter”, -"tigase:x:spamreporting”);
-}
@verride

public synchronized void everyMnute() ({
super. everyM nute();
if ((++delayCounter) >= notificationFrequency) ({
addCut Packet (Packet . get Message(abuseAddr ess, get Conponent 1 d(),
St anzaType. chat, -"Detected spam nessages: -" + spanCounter
-"Spam counter”, null, newPacketld("spam")));
del ayCounter = O;
spamCounter = O;
-}
-}

@verride
public String getDi scoDescription() {
return -"Spamfiltering";

40

Component Development

-}

@verride
public String getDi scoCat egoryType() {
return -"spant;

-}

@verride
public void getStatistics(StatisticsList list) {
super.getStatistics(list);
ist.add(getNane(), -"Spam nessages found", total SpanCounter, Level.|lNFO;
list.add(getName(), -"All nessages processed”, nessagesCounter, Level.FINE);
if (list.checkLevel (Level.FINEST)) {
-// Some very expensive statistics generation code...
-}
-}

}

Component Implementation - Lesson 6 - Script-
Ing Support

Scripting support isabasic API built-in to Tigase server and automatically available to any component at
no extraresource cost. Thisframework, however, can only access existing component variableswhich are
inherited by your code from parent classes. It can not access any data or any structures you added in your
component. A little effort is needed to expose some of your data to the scripting API.

This guide shows how to extend existing scripting APl with your component specific data structures.

Integrating your component implementation with the scripting APl is as simple as the code below:

private static final String BAD WORDS VAR = -"badWrds";
private static final String WHI TE_LI ST_VAR = -"whiteList";
@verride

public void initBindings(Bindings binds) {
super . i ni t Bi ndi ngs(bi nds);
bi nds. put (BAD_WORDS VAR, badWords);
bi nds. put (WHI TE_LI ST_VAR, whi teList);

}

Thisway you expose two the component variables: badWbr ds and whi t eLi st to scripts under names
the same names - two defined constants. Y ou could use different names of course but it is always a good
idea to keep things straightforward, hence we use the same variable names in the component and in the
script.

Almost done, ailmost... In our old implementation these two variables are Java arrays of String*s. There-
forewe can only changetheir elementsbut we can not add or remove elementsfrom thesestructures
inside the script. Thisis not very practical and it puts some serious limits on the script’s code. To
over come this problem | have changed the test component code to keep bad words and whitelist in
*java.util.Set collection. This gives us enough flexibility to manipulate data.

As our component is now ready to cooperate with the scripting AP, | will demonstrate now how to add
remove or change elements of these collections using a script and ad-hoc commands.

41

Component Development

. A M M Execute Command (test@de ";-iaiiig...]
|

Command. El TR T ETT T
Remowve command script

Y Itwgm}

First, browse the server service discovery and double click on the test component. If you use Psi [http://
psi-im.org/] client this should bring to you a new window with ad-hoc commands list. Other clients may
present available ad-hoc commands differently.

The screenshot below shows how this may look. Y ou have to provide some description for the script and
an ID string. We use Groovy in this guide but you can as well use any different scripting language.

test@idevel.tigase.org

Description: .l.iit bad words

Command Id: badwords-list

Language GrO0Y

badw = (java.util SetibadWards

def regult = =

for (L in badw) | retullt += % % “\n" §
return resule

Script text:

Save to disk:

M4 Previous Mext . Cancel | [Finish

Pleaserefer to the Tigase scripting documentation for all the detail show to add support for more languages.
From the Tigase API point of view it al looks the same. Y ou have to select a proper language from the
pull-down list on windows shown on the right. If your preferred language is not on thelist, it meansit is
not installed properly and Tigase is unable to detect it.

The script to pull alist of current bad words can be as simple as the following Groovy code:

def badw = (java.util. Set)badWrds

def result = -""

for (s in badw) { result += s + -"\n" -}
return result

Asyou see from the code, you have to reference your component variablesto avariablesin your script to
make sure a correct typeis used. The rest is very simple and is a pure scripting language stuff.

42

http://psi-im.org/
http://psi-im.org/
http://psi-im.org/

Component Development

Load the script on to the server and execute it. You should receive a new window with alist of all bad
words currently used by the spam filter.

Below is another simple script which allows updating (adding/removing) bad words from the list.

i mport tigase.server. Command
i mport tigase.server. Packet

def WORDS LI ST KEY = -"words-1ist"
def OPERATI ON_KEY = -"operation"
def REMOVE = -"Renove"

def ADD = -"Add"

def OPERATI ONS = [ADD, REMOVE]

def badw = (java.util. Set)badWrds

def Packet p = (Packet)packet

def words = Command. get Fi el dVal ue(p, WORDS LI ST_KEY)
def operation = Command. get Fi el dVal ue(p, OPERATI ON_KEY)

if (words == null) {
-/ No data to process, let's ask user to provide
-// a list of words
def res = (Packet)p.commandResul t (Conmand. Dat aType. f orn
Conmand. addFi el dval ue(res, WORDS LI ST KEY, -"", -"Bad words list")
Conmand. addFi el dVal ue(res, OPERATI ON_KEY, ADD, -"Qperation",
(String[]) OPERATI ONS, (String[]) OPERATI ONS)
return res

}

def words_list = words.tokenize(",")

if (operation == ADD) {
words_list.each { badw add(it.trim)) -}
return -"Words have been added."

}

if (operation == REMOVE) {
words _|ist.each { badw.renove(it.trim)) -}
return -"Wrds have been renoved."

}

return -"Unknown operation: -" + operation

These two scripts are just the beginning. The possibilities are endless and with the simple afew lines of
code in your test component you can then extend your application at runtime with scripts doing various
things; you can reload scripts, add and remove them, extending and modifying functionality as you need.
No need to restart the server, no need to recompile the code and you can use whatever scripting language
you like.

Of course, scripts for whitelist modifications would look exactly the same and it doesn’t make sense to
attach them here.

Here is a complete code of the test component with the new method described at the beginning and data
structures changed from array of String*sto Java * Set:

i mport java.util.Arrays;

43

Component Development

i mport java.util.Collections;

i mport java.util.Map;

i mport java.util. Set;

i mport java.util.concurrent.CopyOnWiteArraySet;
i mport java.util.logging.Level;

i mport java.util.logging. Logger;

i mport javax.script. Bindi ngs;

i mport tigase.server. Abstract MessageRecei ver;
i mport tigase.server. Packet;

i mport tigase.stats. StatisticsList;

i mport tigase.util.JIDUtils;

i mport tigase.xnpp. StanzaType;

public class Test Component extends Abstract MessageRecei ver {

private static final Logger log =
Logger . get Logger (Test Conponent . cl ass. get Name()) ;

private static final String BAD WORDS KEY = -"bad-words";

private static final String WH TELI ST_KEY = -"white-list";

private static final String PREPEND TEXT _KEY = -"| og-prepend”;

private static final String SECURE LOGAE NG KEY = -"secure-|oggi ng";

private static final String ABUSE ADDRESS KEY = -"abuse-address";

private static final String NOTIFI CATI ON_ FREQ KEY = -"notification-freq";
private static final String BAD WORDS VAR = -"badWrds";

private static final String WH TE LI ST _ VAR = -"whiteList";

private static final String[] INITIAL_BAD WORDS = {"word1", -"word2", -"word3"};
private static final String[] INNTIAL_ WH TE LI ST = {"adnm n@ ocal host"};

_/**
* This m ght be changed in one threads while it is iterated in
* processPacket(...) in another thread. W expect that changes are very rare

* and small, nost of operations are just iterations.

*/

private Set<String> badWwrds = new CopyOnWiteArraySet<String>();
_/**

* This m ght be changed in one threads while it is iterated in
* processPacket(...) in another thread. W expect that changes are very rare

* and small, nost of operations are just contains(...).

*/

private Set<String> whiteList = new Concurrent Ski pLi st Set<String>();
private String prependText = -"Spam detected: -";

private String abuseAddress = -"abuse@ ocahost";

private int notificationFrequency = 10;
private int delayCounter = 0O;

private bool ean securelLoggi ng = fal se;
private | ong spanCounter = O;

private | ong total SpanCounter = 0;
private | ong nessagesCounter = O;

@verride
public void processPacket (Packet packet) {
-// Is this packet a nessage?

44

Component Development

if ("nmessage"” == packet.get El emNane()) ({
updat eServi ceDi scoveryl ten(get Name(), -"messages”,
-"Messages processed: [" + (++nessagesCounter) + -"]1", true);
String from= JIDUtIils.get Nodel D(packet . get El enFrom()) ;
-// 1s sender on the whitelist?
if (!'whiteList.contains(from) {
-// The sender is not on whitelist so let's check the content
String body = packet. get El enCDat a("/ nessage/ body") ;
if (body -!'= null && -!body.isEnpty()) {
body = body. t oLower Case();
for (String word -: badWrds) {
i f (body.contains(word)) {
| og. finest(prependText + packet.toString(securelLogging));
++spanCount er ;

updat eServi ceDi scoveryl ten(get Name(), -"spam', -"Spam caught:
(++t ot al SpamCounter) + -"]", true);
return;
-}

-// Not a SPAM return it for further processing
Packet result = packet.swapEl enfronilo();
addCut Packet (resul t);

-}

@verride
public int processingThreads() {
return Runtime. getRuntine().avail abl eProcessors();

-}

@verride
public int hashCodeFor Packet (Packet packet) {
i f (packet.getElemlo() -!'= null) {
return packet. get El emTo(). hashCode();
-}
-/1 This should not happen, every packet nust have a destination
-// address, but naybe our SPAM checker is used for checking
-/1 strange kind of packets too...
if (packet.getEl enFrom() -!'= null) {
return packet. get El enfrom(). hashCode();
-}
-// If this really happens on your systemyou should | ook carefully
-// at packets arriving to your component and decide a better way
-// to cal cul ate hashCode
return 1,

-}

@verride

public Map<String, Object> getDefaults(Mp<String, Cbject> parans) {
Map<String, Object> defs = super. getDefaul ts(parans);
Col |l ecti ons. addAl | (badWords, | N Tl AL_BAD WORDS) ;
Col I ections. addAl | (whiteList, INTIAL_WH TE_LI ST);

45

Component Development

-}

def s. put (BAD_WORDS_KEY, | N TI AL_BAD WORDS) ;

def s. put (WHI TELI ST_KEY, | N TI AL_WH TE_LI ST);

def s. put (PREPEND_TEXT_KEY, prependText);

def s. put (SECURE_LOGAE NG _KEY, secureloggi ng);

def s. put (ABUSE_ADDRESS KEY, abuseAddress);

def s. put (NOTI FI CATI ON_FREQ KEY, noti ficati onFrequency);
return defs;

@verride
public void setProperties(Map<String, Object> props) {

super. set Properti es(props);

Col | ecti ons. addAl | (badWords, (String[])props. get(BAD WORDS KEY));
Col I ections. addAl | (whiteList, (String[])props.get(WH TELI ST_KEY));
prependText = (String)props. get (PREPEND TEXT_KEY) ;

secur eLoggi ng = (Bool ean) props. get (SECURE_LOGGE NG _KEY) ;
abuseAddress = (String)props. get (ABUSE_ADDRESS KEY) ;
notificationFrequency = (Integer)props.get(NOTI FI CATI ON_FREQ KEY);
updat eServi ceDi scoveryl tenm(get Name(), null, getD scoDescription(),

-"automation", -"spamfiltering", true,

-"tigase: x:spamfilter”, -"tigase:x:spamreporting”);
-}
@verride

public synchronized void everyMnute() {

-}

super. everyM nute();
if ((++delayCounter) >= notificationFrequency) ({
addCut Packet (Packet . get Message(abuseAddr ess, get Conponent 1 d(),
St anzaType. chat, -"Detected spam nessages: -" + spanCounter,
-"Spam counter”, null, newPacketld("spam")));
del ayCounter = O0;
spamCounter = O;
-}

@verride
public String getDi scoDescription() {

-}

return -"Spamfiltering";

@verride
public String getDi scoCat egoryType() {

-}

return -"spant;

@verride

public void getStatistics(StatisticsList list) {

super.getStatistics(list);

ist.add(getNanme(), -"Spam nessages found"”, total SpanCounter,
Level . I NFO);
list.add(getNanme(), -"All nessages processed”, nessagesCounter,
Level . FI NE);

if (list.checkLevel (Level.FINEST)) {
-// Some very expensive statistics generation code...

46

Component Development

-}
-}
@verride
public void initBindi ngs(Bi ndi ngs binds) {
super . i ni t Bi ndi ngs(bi nds);
bi nds. put (BAD_ WORDS VAR, badWbrds);
bi nds. put (WHI TE_LI ST_VAR, whiteList);
-}

}

Component Implementation - Lesson 7 - Data
Repository

ConfigRepository

There are cases when you want to store some data permanently by your component. Y ou can of course use
the component configuration to provide some database connection settings, implement your own database
connector and store records you need. There is, however, a very simple and useful framework which
allows you to read and store some data transparently in either a database or a disk file. The framework
also supports ad-hoc command interface straight away so you can manipulate your component data using
an XMPP client.

In order to use it one needsto extend t i gase. db. conp. Confi gReposi t ory abstract class.

RepositoryFactory

In order to have more freedom while accessing repositories it's possible to use
ti gase. db. Reposi t or yFact or y and any of the methods that pertain to desired type of repository
one wants to access (auth, user, data):

* RepositoryFactory. get Aut hRepository()

* RepositoryFactory. get User Repository()

* RepositoryFactory. get Dat aRepository()

Each method takes same set of arguments:

 class_name - qualified name of the class that implements af orementioned repositories type
* URI - repository URI

» params - map containing additional configuration for the connection.

If there is already available repository for the <cl ass_nanme><URI > identifier then it’s returned, oth-
erwise new instance is created.

Component Implementation - Lesson 8 - Start-
up Time

A startup hook in the Tigase is different from the shutdown hook.

47

Component Development

Thisisbecauseyou cannot really tell when exactly the startup timeis. Isit when the application started, isit
when configurationisloaded, isit when all objectsareinitialized. And thismight be even different for each
component. Therefore, in fact, there is no startup hook in Tigase in the same sense as the shutdown hook.

There are afew methods which are called at startup time in the following order:

1. Constructor - thereis of course constructor which has no parameters. However it does not guarantee
that thisinstance of the component will be used at all. The object could be created just to call get De-
faul t s(..) and may be destroyed afterwards.

2. void setName(String name) - the second call for the component is to set it's unique name within a
Tigase instance. It still does not mean too much from the component run-time point of view but some
components initialize service discovery data at this point.

3. void start() - thisis a second void which means the component can start it's internal jobs or worker
threads or whatever it needs for future activity. Component’ s queues and threads are initialized at this
point.

4. Map<String, Object> getDefaults(M ap params) - thisisthe next call made by configuration manager
to collect al the default settings for the component. To help generate default settings, configuration
manager passes general properties (starting with --) in the Map as parameter to the component. As a
result it expects specific settings applicable to the component only (not starting with --).

5. setProperties(M ap<String, Object> props) - after collecting component’s defaults, the connection
manager combinesthem with configuration options (not starting with --, but starting with the component
name) loaded from configuration repository (init.properties file, database, possibly other files). Then
thefinal configuration is passed to the component with set Pr operti es(..) method cal. Database
connections are usually initialized at this point.

6. void initializationCompleted() - this method is called for al components after all components are
loaded and configuration was set (viaset Properti es(..) method call) for al components.

Therefore, theinitializati onConpl et ed() hook is the best point if you want to be sure that
Tigase server isfully loaded, initialized and functional.

Configuration API

Introduction

The component configuration API is quite smple, it consists of two methods:

Map<String, Object> getDefaults(Map<String, Object> parans);
voi d setProperties(Map<String, Object> properties);

The first method retrieves configuration defaults from the component while the second sets the new con-
figuration for the component. Although it looks simple, and it is, we should go over some details in order
to use them more effectively.

Component Startup Sequence

Beforewegointo all the detailsit might be hel pful to know thefull component initialization sequence, how
the component is brought to life and when the configuration is set. The component loading and starting
sequence looks like this:

48

Component Development

. Component classisloaded and anew class instance s created using public constructor with no param-

eters.

. Component setName(conpNane); method is called to set a name for the component. This method is

(should) be called only once in the components operation.

. Component st art () ; method iscalled which startsall the component internal threads. This method,

together with st op() ; can be called many times to put the component processing on hold or restart
processing. Developers should normally not be concerned about these, unless he decided to overwrite
these methods.

. Component get Def aul t s(); method is called to retrieve initial settings for the component. This

method is normally called only once during operation.

. User provided configuration is mixed with the component defaults. Settingswhich the user has provided

overwrite existing defaults, leaving the rest unchanged.

. Component set Properti es(); iscalledto set new configuration for the component. This method

can be called many times at any point during the component life time.

. Componenti ni tializati onConpl et ed(); method is called to notify the component that the

global server initialization has been finished. This method is called only once during the server startup
time, after al components have beeninitialized and configured. This method ismainly used by network
connection managers which wait with activating socket listeners until the server is fully functional.

The important thing about all the configuration stuff is that the component does not read/ask/request con-
figuration. The configuration is pushed to the component by the configuration manager. The set -
Properti es() method can becalled at any time and any number of times while the server is running.
This design allows for the server reconfiguration during runtime. Developers should be aware of thisand
properly code the method to allow for the component reconfiguration at runtime.

Configuration API

Both APl methods operate on Map<String, Object>, hence, essentially the component configurationisjust
alistof (key, val ue) pairs. The Object can any of following:

String
Integer
Long
Double
Boolean

Array of any of above

It is guaranteed that if the component returns a default configuration entry in any of above types, the
set Properti es() method setsthe configuration entry in the same exact type. Thisis quite convenient
asyou can limit type conversions (numbers parsing for example) in your code.

getDefaults()

Map<String, Cbject> getDefaults(Map<String, bject> parans);

49

Component Development

This method is normally called only once, just after the component instance has been created. It is used to
get someinitial settings from the component and create a default/initial configuration which can be mod-
ified by the user. It isrecommended that the component returns all possible settingswith it’ s default values
so they can be presented to the end-user for configuration or diagnostic purposes. No component initial-
isation can take place here and the devel oper can not assume that this method is called only once. Every
time this method is called it should return only defaults not the settings set with set Pr operti es().
The Map<String, Object > paramsprovided asa parameter to this method can contain some hints
or pre-initial parameters which can affect generating default configuration. Thisis because configuration
for some components may be complex and can have many different presets or optimisations depending
on the use case. These presets can be used to generate proper default configuration. If the component
implementation extends AbstractMessageReceiver then the implementation of the method should always
look like this:

@verride

public Map<String, bject> getDefaults(Map<String, Cbject> parans) {
Map defs = super. get Def aul t s(paramns);
def s. put (CONF_ENTRY_KEY, conf_entry val);
return defs;

}
setProperties()

voi d setProperties(Map<String, Object> properties);

This method is called to set configuration for the component. It can be called at any time and many times
during the server run-time. The configuration will always contain all entriesreturned by get Def aul t s
method but some of them might be overwritten by user provided settings. If the component implementation
extends Abst r act MessageRecei ver thentheimplementation of the method should always look like
this:

@verride
public void setProperties(Map properties) {

super. set Properti es(properties);

int conf_entry val = (Integer) properties.get(CONF_ENTRY_KEY);
}

Useful Presets

Normally configuration presets depend on the component implementation and are different for each com-
ponent. There are afew presets however which are often used commonly by different components:

e test If setit meansthat the server runsin atest mode, which may mean different things for different
components. The component may use this parameter to turn testing mode on.

e adm ns If setit provides alist of administrator IDs. These user may have special access permissions
for the component. They usually can execute administrator ad-hoc commands.

e user-db-uri If setit contains the main database connection string. The component may keep its
own data.

Global Configuration Settings

There are some global settings which are provided to all components and can be used by all of them.
Usually they point so some shared resources which can be used by all components.

50

Component Development

e SHARED USER_REPO_PROP_KEY is aconfiguration key for the user repository instance. This
instance can be shared among components and used to store component data in database as well as
access to user data. To access the use repository instance you can use the following code:

User Repository user_repo;
user_repo = (UserRepository) properties.get(RepositoryFactory. SHARED USER REPO PRC

» SHARED _USER_REPO_POOL_PROP_KEY is a configuration key for the user repository pool
which in most casesisjust an SQL database. To improve the access to the database a connection pool is
created which is realized by creating many UserRepository instances connecting to the same database.
To access the use repository instance you can use the following code:

User Reposi tory user_repo;
user_repo = (UserRepository) properties.get(RepositoryFactory. SHARED USER REPO PQC

» SHARED_AUTH_REPO_PROP_KEY isaconfiguration key for the authentication repository. Com-
ponents normally do not need access to this repository unless they deal with user authentication and
authentication datais kept separately from therest of the user data. To accessthe use repository instance
you can use the following code:

Aut hReposi tory auth_repo;
auth_repo = (Aut hRepository) properties. get(RepositoryFactory. SHARED AUTH REPO PRC

Packet Filtering in Components
The Packet Filter API

Tigase server offers an API to filter packet traffic inside every component. Y ou can separately filter in-
coming and outgoing packets.

By filtering we mean intercepting apacket and possibly making some changesto the packet or just blocking
the packet completely. By blocking we mean stopping from any further processing and just dropping the
packet.

The packet filtering is based on the PacketFilterlfc [https://projects.tigase.org/projects/tigase-serv-
er/repository/changes/src/main/javaltigase/server/PacketFilterlfc.java] interface. Please have a look in
the JavaDoc documentation to this interface for all the details. The main filtering method is +Packet
filter(Packet packet); + which takes packets as an input, processes it, possibly alerting the packet content
(may add or remove some payloads) and returns a Packet for further processing. If it returnsnull it means
the packet is blocked and no further processing is permitted otherwise it returns a Packet object whichis
either the same object it received as a parameter or a modified copy of the original object.

Please note, although Packet object is not unmodifiable instance it is recommended to not make any
changes on the existing object. The same Packet might be processed at the sametime by other components
or threads, therefore modification of the Packet may lead to unpredictable results.

Please refer to an example code in PacketCounter [https://proj ects.tigase.org/proj ects/tigase-server/repos-
itory/changes/src/main/javaltigase/server/PacketFilterlfc.java] which is avery simple filter counting dif-
ferent types of packets. This filter is by default loaded to al components which might be very helpful
for assessing traffic shapes on newly deployed installation. Y ou can get counters for all types of packets,
where they are generated, where they flow, what component they put the most load on.

Thisisbecause packet filter can also generate and present its own statistics which are accessible vianormal
statistics monitoring mechanisms. To take advantage of the statistics functionality the packet filter has

51

https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/server/PacketFilterIfc.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/server/PacketFilterIfc.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/server/PacketFilterIfc.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/server/PacketFilterIfc.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/server/PacketFilterIfc.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/server/PacketFilterIfc.java

Component Development

toimplement voi d get Statistics(StatisticsList |ist); method. Normaly the method
can be empty but you can generate and add to the list own statistics from the filter. Please refer to Pack-
etCounter [https://projects.tigase.org/proj ects/'tigase-server/repository/changes/src/main/javaltigase/serv-
er/filters/PacketCounter.javal for an example implementation code.

Configuration

Packet filtersare configurable, that isalist of packet filters can be providedin Tigase server’ sconfiguration
for each component separately and for each traffic direction. This gives you agreat flexibility and control
over the data flow inside the Tigase server.

You can for example, load specific packet filters to all connections managers to block specific traffic or
specific packet source from sending messages to users on your server. You could also reduce the server
overall load by removing certain payload from all packets. The possibilities are endless.

The default configuration is generated in such a way that each component loads a single packet filter -
PacketCounter for each traffic direction:

nessage-router/incomng-filters=tigase.server.filters. Packet Counter
nessage-rout er/outgoing-filters=tigase.server.filters. Packet Counter
sess-man/incom ng-filters=tigase.server.filters.Packet Counter
sess-man/ out goi ng-filters=tigase.server.filters. Packet Counter
c2s/incom ng-filters=tigase.server.filters.Packet Counter
c2s/outgoing-filters=tigase.server.filters. Packet Counter
s2s/inconming-filters=tigase.server.filters.Packet Counter

s2s/outgoi ng-filters=tigase.server.filters.Packet Counter
bosh/incom ng-filters=tigase.server.filters.Packet Counter

bosh/ out goi ng-filters=tigase.server.filters. Packet Counter
muc/incom ng-filters=tigase.server.filters. Packet Counter

muc/ out goi ng-filters=tigase.server.filters. Packet Counter

Now, let’s say you have a packet filter implemented in class: com.company.SpamBlocker. Y ou want to
disable PacketCounter on most of the components leaving it only in the message router component and
you want to install SpamBlocker in all connection managers.

Please note, in case of the connection managers incoming and outgoing traffic is probably somehow
opposite from what you would normally expect.

 incomingistraffic whichissubmitted to acomponent by message router and hasto be further processed.
For connection managers this further processing means sending it out to the network.

 outgoingistraffic whichisgenerated by the component and goes out of the component. Such apacket is
submitted to message router which then decides where to send it for further processing. For connection
managers outgoing traffic is all the packets just received from the network.

According to that we have to apply the SpamBlocker filter to al outgoing traffic in all connection man-
agers. You may also decide that it might be actually useful to compare traffic shape between Bosh con-
nections and standard XM PP ¢2s connections. So let’s leave packet counters for this components too.

Hereisour new configuration applying SpamBlocker to connection managers and PacketCounter to afew
other components:

message-router/incomng-filters=tigase.server.filters. Packet Counter
nmessage-rout er/outgoing-filters=tigase.server.filters. Packet Counter
sess-man/incom ng-filters=

52

https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/server/filters/PacketCounter.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/server/filters/PacketCounter.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/server/filters/PacketCounter.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/server/filters/PacketCounter.java

Component Development

sess-man/ out goi ng-filters=

c2s/incom ng-filters=tigase.server.filters. Packet Counter
c2s/outgoing-filters=tigase.server.filters. Packet Counter, com conmpany. SpanBl ocker
s2s/incom ng-filters=

s2s/ out goi ng-filters=com conpany. SpanBl ocker

bosh/incom ng-filters=tigase.server.filters. Packet Counter

bosh/ out goi ng-filters=tigase.server.filters.Packet Counter, com conpany. SpanBl ocker
muc/ i ncom ng-filters=

muc/ out goi ng-filters=

The simplest way to apply the new configuration is viathe init.properties file which isin details described
in the Admin Guide.

EventBus APl in Tigase

EventBus is a custom publish-subscribe mechanism which allows for the use of Event Listener within
Tigase Server. EventBus consists of two separated parts: Distributed EventBus and Local EventBus. Lo-
cal EventBus is only concerned with local event listener, and will operate events locally. Distributed
EventBus is designed to distribute events among cluster nodes. For a more detailed overview of Event-
Bus and it's features, please visit The Administration Guide [http://docs.tigase.org/tigase-server/snap-
shot/Administration_Guide/html/#eventBus].

EventBus API

To create instance of EventBus use the following code:
Event Bus event Bus = Event BusFactory. getl nstance();

NOTE: Remember, that EventBus is asynchronous. All handlers are called in a different thread than the
thread that initially fired the event.

Distributed EventBus

Distributed EventBus is designed to distribute events among cluster nodes. Events must extends
ti gase. xm . El enent:

<Event Nanme xm ns="ti gase: demn" >
<sanpl e_val ue>1</ sanpl e_val ue>
</ Event Nane>

Events are identified by two elements: name of event and namespace.

Registering events handlers

To catch and handle an event published in any node of cluster, EventsHandler must be registered first.

Event Handl er handl er = new Event Handl er () {

@verride
public void onEvent(String name, String xm ns, Element event) {
-/ TODO
-}
b
event Bus. addHandl er (" Event Nane", -"tigase:demp", handler);

53

http://docs.tigase.org/tigase-server/snapshot/Administration_Guide/html/#eventBus
http://docs.tigase.org/tigase-server/snapshot/Administration_Guide/html/#eventBus
http://docs.tigase.org/tigase-server/snapshot/Administration_Guide/html/#eventBus

Component Development

It is possible to register handler for all events with a specific xmlns such as tigase:demo below:
event Bus. addHandl er (nul I, -"tigase: deno", handl er);

Events created on others cluster node, will have attributer enpt e settot r ue and attribute sour ce set
to event creator node name;

<Event Nane xm ns="ti gase: demp" renote="true" source="nodel. exanpl e">

<sanpl e_val ue>1</ sanpl e_val ue>
</ Event Nanme>

Publishing events

The only limitation for events are the requirements of name and xmins. Internal structure may be defined
by programmer.

El enent event = new El enent (" Event Nane", new String[]{"xm ns"}, new String[]{"tiga
event. addChi | d(new El enent ("sanpl e_val ue", -"1"));

event Bus. fire(event);

This event will be received by all handlers that are registered for exactly this event, or al events usint
the tigase:demo namespace on all cluster nodes. It is possible to limit event delivery only to the current
Tigase instance (current cluster node), by setting the attribute | ocal :

El ement event = new El enent ("Event Nane", new String[]{"xm ns", -"local"}, new Stri
event . addChi | d(new El enent ("sanpl e_val ue", -"1"));

eventBus.fire(event);

Local EventBus

Local EventBusisthe mechanism to distribute eventsto all listeners on the sameinstance of Tigase Server.
Local EventBus uses Java Objects as events and allowsfor the transmission instance of object (for example
Map or Set).

Defining events and handlers classes
Local EventBus uses own structures of events and handlers.
SampleEvent.java.
public static class Sanpl eEvent inplements Event {
private final String data;

public Sanpl eEvent (String data) {
this.data = data;

-}

public String getData() ({
return data;

-}

Component Development

}
Registering events handlers
To catch an event, Event Handl er must be registered in EventBus:

Event Handl er handl er = new Event Handl er () {
@verride

public void onEvent (Event event) {

-}
}s

event Bus. addHandl er (Sanpl eEvent . cl ass, handl er);

The other way to register ahandler is by using annotations. Event consumer class must contain the method
with a single parameter, and its type must be equal to expected event type.

SampleConsumer .java.

public static class Sanpl eConsuner {

@+andl| eEvent
public void onCat chSomeNi ceEvent (Sanmpl eEvent event) {
}
@+andl| eEvent
public void onEvent 01(| nportant Event event) {
}
}

Theinstance of class must be registered in Eventbus:
event Bus. regi ster Al | (consumer);

Oncethisisin place, EventBus will be added as the event handler for two different events.
Publishing events
Publishing eventsis simple:

Sanpl eEvent event = new Sanpl eEvent ("data");
event Bus.fire(event);

Cluster Map Interface

Starting with v7.1.0, a cluster map interface has been implemented. The cluster map is aided by use of the
distributed event bus system to communicate between al clusters.

Requirements

Any full distribution of Tigase will support the Cluster Map API so long as the eventbus component is
not disabled. JDK v1.8 isrequired for this feature, however since Tigase v1.7.0 requires this, you should
aready haveit installed.

55

Component Development

The cluster map is stored in memory and follows the map.util.interface java standards can be used to
improve cluster connections, and help clustered servers keep track of each other.

Map creation

Map must be created with the following command:
java.util.Map<String, String> map = C usterMapFactory.get().createMap("type", Strin

Where "type" isthe map ID. This creates the map locally and then fires an event to all clustered servers.
Each cluster server has an event handler waiting for, in this case, NewVapCr eat e event. Map Key class
and Map Value class are used to type conversion. Arrays of strings are parameters, for example 1D of
user session.

Once received, the distributed eventbus will create alocal map.

event Bus. addHandl er (MapCr eat edEvent Handl er. MapCr eat edEvent . cl ass, new MapCreat edEv

@verride
public void onMapCreat ed(Map map, String type, String... paraneters) {
-}

1)
A brief example of amap creation is shown here;
java.util.Map<String, String> map = C usterMapFactory. get().createMap("Very_I nport

This will fire event MapCreatedEvent on al other cluster nodes. Strings
"Very_Important Map_In_User_Session" and "user-session-identifier-123" are given as parameters in
onMapCreated() method. The event consumer code must know what to do with map with type
"Very_Important_ Map_In_User_Session". It may retrieve user session "user-session-identifier-123" and
put this map in this session. It should be used to tell other nodes how to treat the event with anewly created
map, and it should be stored in user session.

Map Changes

Changesto the map on one cluster will trigger AddVal ue or RenoveVal ue eventsin eventbus. Stanzas
sent betweeen clusters will ook something like this:

<El enent Add xm ns="ti gase: cl ust ered: nap" >
<ui d>1- 2- 3</ ui d>
<itene
<key>xKEY</ key>
<val ue>xVALUE</ val ue>
</itenp
<itene
<key>yKEY</ key>
<val ue>yVALUE</ val ue>
</itenp
</ El ement Add>

Code to handle adding an item:

event Bus. addHandl er (El enent Add, tigase: cl ustered: map, new Event Handl er () ({

@verride
public void onEvent(String name, String xm ns, Element event) {

56

Component Development

-1);
Where the element event is the UID, and the name string is the name of the map key/value pair.
This example removes an element from the cluster map. Removal of items look similar:

<El enent Renove xm ns="ti gase: cl ust er ed: map" >
<ui d>1- 2- 3</ ui d>
<itene
<key>xKEY</ key>
<val ue>xVALUE</ val ue>
<litenmp
</ El ement Renmove>

with the code also being similar:

event Bus. addHandl er (El enent Renove, tigase: clustered: map, new EventHandl er () ({

@verride
public void onEvent(String name, String xmns, Elenment name) ({
-1);

Map Destruction

Java Garbage Collector will normally remove alocal map if it isno longer used. Clustered maps however
are not removed in this manner. These maps must be destroyed manually if they are no longer used:

Cl ust er MapFact ory. get (). destroyMap(cl map) ;
Calling this, the map named clmap will be destroyed on each cluster node.
The event handler will catch event when map is destroyed on another cluster node:

event Bus. addHandl er (MapDest r oyedEvent Handl er . MapDest r oyedEvent . cl ass, new MapDestr

@verride
public void onMapDestroyed(Map mapX, String type) {
-}

1),

57

Chapter 5. Plugin Development

Thisisaset of documents explaining details what is a plugin, how they are designed and how they work
inside the Tigase server. The last part of the documentation explains step by step creating the code for
anew plugin.

Writing Plugin Code
Plugin Configuration
How Packets are Processed by the SM and Plugins

SASL Custom Mechanisms and Configuration

Writing Plugin Code

Stanza processing takes place in 4 steps. A different kind of plugin is responsible for each step of pro-

cessing:
1. XMPPPreprocessorlfc [https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/

javaltigase/xmpp/X M PPPreprocessorifc.java) - isthe interface for packets pre-processing plugins.

. XMPPProcessorlfc [https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/ja

valtigase/xmpp/X M PPProcessor.java] - isthe interface for packets processing plugins.

. XMPPPostprocessorlfc [https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/

javaltigase/xmpp/X M PPPostprocessorifc.java) - isthe interface for packets post-processing plugins.

. XMPPPacketFilterlfc [https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/

javaltigase/xmpp/X M PPPacketFilterlfc.javal - isthe interface for processing results filtering.

If you look inside any of these interfaces you will only find a single method. Thisis where al the packet
processing takes place. All of them take a similar set of parameters and below is a description for all of
them:

Packet packet - packet iswhich being processed. This parameter may never be null. Even though this
is not an immutable object it mustn’'t be altered. None of it’ s fields or attributes can be changed during
processing.

XM PPResour ceConnection session - user session which keeps all the user session dataand also gives
access to the user’s data repository. It allows for the storing of information in permanent storage or in
memory only during the life of the session. This parameter can be null if thereis no online user session
at the time of the packet processing.

NonAuthUser Repository repo - thisisauser datastorage which isnormally used when the user session
(parameter above) is null. This repository allows for avery restricted access only. It allows for storing
some user private data (but doesn’'t allow overwriting existing data) like messages for offline users and
it also allows for reading user public datalike V Cards.

Queue<Packet> results - this a collection with packets which have been generated as input packet
processing results. Regardless a response to a user request is sent or the packet is forwarded to it's
destinationit isalwaysrequired that acopy of theinput packet is created and stored in ther esults queue.

58

https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/XMPPPreprocessorIfc.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/XMPPPreprocessorIfc.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/XMPPPreprocessorIfc.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/XMPPProcessor.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/XMPPProcessor.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/XMPPProcessor.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/XMPPPostprocessorIfc.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/XMPPPostprocessorIfc.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/XMPPPostprocessorIfc.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/XMPPPacketFilterIfc.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/XMPPPacketFilterIfc.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/XMPPPacketFilterIfc.java

Plugin Devel opment

e Map<String, Object> settings - this map keeps plugin specific settings loaded from the Tigase server
configuration. In most casesit is unused, however if the plugin needsto access an external database that
thisis away to pass the database connection string to the plugin.

After a closer look in some of the interfaces you can see that they extend another interface: XMP-
PImpllifc [https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/javaltigase/xmpp/
XMPPImplifc.java] which provides a basic meta information about the plugin implementation.
Please refer to JavaDoc [http://docs.tigase.org/tigase-server/snapshot/javadoc/tigase/xmpp/impl/pack-
age-summary.html] documentation for all details.

For purpose of this guide we are implementing a simple plugin for handling all <message/>
packets that is forwarding packets to the destination address. Incoming packets are forwarded to
the user connection and outgoing packets are forwarded to the external destination address. This
message plugin [https://projects.tigase.org/proj ects/tigase-server/repository/changes/src/main/javaltigase/
xmpp/impl/Message.java) is actually implemented aready and it is available in our Git repository. The
code has some comments inside already but this guide goes deeper into the implementation details.

First of al you have to choose what kind of plugin you want to implement. If thisis going to be a packet
processor you have to implement the XM PPPr ocessor | fc interface, if thisis going to be a pre-processor
then you have to implement the XM PPPreprocessor | fc interface. Of course your implementation can
implement more than one interface, even all of them. There are also two abstract helper classes, one of
which you should use as a base for al you plugins XM PPProcessor or use AnnotatedX M PPPr ocessor
for annotation support.

Using annotation support

The class declaration should look like this (assuming you are implementing just the packet processor):

public class Message extends Annot at edXMPPProcessor
i mpl enents XMPPProcessorlfc

Thefirst thing to createis the plugin I D. Thisis a unique string which you put in the configuration file to
tell the server to load and use the plugin. In most cases you can use XMLNS if the plugin wants packets
with elements with avery specific name space. Of course there is no guarantee there is no other packet for
this specific XML element too. As we want to process al messages and don’t want to spend whole day
on thinking about acool ID, let’s say our ID is: message.

A plugin informs about it’s presence using a static I D field and @I d annotation placed on class:

@d(1D)
public class Message extends Annot at edXMPPProcessor
i mpl enents XMPPProcessorlfc {
protected static final String ID = -"nessage";

}

As mentioned before, this plugin receives only this kind of packets for processing which it is interested
in. In this example, the plugin is interested only in packets with <message/> elements and only if they
areinthe "jabber:client" namespace. To indicate all supported elements and namespaces we have to add
2 more annotations:

@d(1D)
@Handl es({
@Handl e(pat h={ -"message" -}, xm ns="jabber:client")

1)

public class Message extends Annot at edXMPPProcessor

59

https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/XMPPImplIfc.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/XMPPImplIfc.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/XMPPImplIfc.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/XMPPImplIfc.java
http://docs.tigase.org/tigase-server/snapshot/javadoc/tigase/xmpp/impl/package-summary.html
http://docs.tigase.org/tigase-server/snapshot/javadoc/tigase/xmpp/impl/package-summary.html
http://docs.tigase.org/tigase-server/snapshot/javadoc/tigase/xmpp/impl/package-summary.html
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/impl/Message.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/impl/Message.java
https://projects.tigase.org/projects/tigase-server/repository/changes/src/main/java/tigase/xmpp/impl/Message.java

Plugin Devel opment

i mpl enents XMPPProcessorlfc {
private static final String ID = -"nmessage";

}
Using older non-annotation based implementation

The class declaration should look like this (assuming you are implementing just the packet processor):

public class Message extends XMPPProcessor
i mpl enents XMPPProcessorlfc

Thefirst thing to create is the plugin 1D like above.
A plugin informs about it’s ID using following code:

private static final String ID = -"nessage";
public String id() { return ID;, -}

As mentioned before this plugin receives only this kind of packets for processing which it is interested
in. In this example, the plugin is interested only in packets with <message/> elements and only if they
arein "jabber:client" namespace. To indicate all supported elements and namespaces we have to add 2
more methods:

public String[] supEl enments() {
return new String[] {"message"};

}

public String[] supNamespaces() {
return new String[] {"jabber:client"};

}
Implementation of processing method

Now we have our plugin prepared for loading in Tigase. The next step is the actual packet processing
method. For the complete code, please refer to the plugin in the Git. | will only comment here on elements
which might be confusing or add afew more lines of code which might be helpful in your case.

@verride

public void process(Packet packet, XWMPPResourceConnection session,
NonAut hUser Reposi tory repo, Queue<Packet> results, Map<String, Object> settings)
t hrows XMPPException {

/1 For performance reasons it is better to do the check
/1l before calling |ogging nmethod.
if (log.isLoggabl e(Level.FINEST)) ({

| og. 1 og(Level . FI NEST, -"Processing packet: {0}", packet);

}
/1 You may want to skip processing conpletely if the user is offline.
if (session == null) {
return;
} -/l end of if (session == null)
try {

60

Plugin Development

/1 Renmenber to cut the resource part off before conparing JlDs
BareJdI D id = (packet.getStanzaTo() -!= null) -? packet.get StanzaTo(). getBareJdl X

/1 Checking if this is a packet TO the owner of the session
if (session.isUserld(id)) {

/1l Yes this is message to -"this' client
Packet result = packet.copyEl emrentOnly();

/1 This is where and how we set the address of the conponent

/1 which should receive the result packet for the final delivery
/! to the end-user. In nost cases this is a c2s or Bosh conponent
/1 which keep the user connection.

resul t. set Packet To(sessi on. get Connect i onl d(packet . get St anzaTo()));

/1 1n nost cases this mght be skipped, however if there is a
/1 problemduring packet delivery an error mght be sent back
resul t. set Packet From packet. get To());

/1 Don't forget to add the packet to the results queue or it
/1 will be |ost.
results.offer(result);

return;
} -/1 end of else

/1 Renmenber to cut the resource part off before conparing JlDs
id = (packet.getStanzaFrom() -!= null) -? packet.getStanzaFron().getBaredlD() -:

/1 Checking if this is maybe packet FROM the client
if (session.isUserld(id)) {

/1l This is a packet FROMthis client, the sinplest action is
/1 to forward it to its destination:

/1 Sinple clone the XM. el ement and...

/1l -... putting it to results queue is enough

resul ts. of fer(packet.copyEl enentOnl y());

return;

}

/1 Can we really reach this place here?

/'l Yes, some packets don't even have fromor to address.

/1 The best exanple is | Q packet which is usually a request to

/1l the server for some data. Such packets may not have any addresses
/1 And they usually require nore conpl ex processing

/1 This is how you check whether this is a packet FROM the user

/1 who is owner of the session:

JID jid = packet.getFrom);

/1 This test is in nost cases equal to checking getEl enfFrom()
i f (session.getConnectionld().equals(jid)) {

61

Plugin Devel opment

/1 Do sone packet specific processing here, but we are dealing
/1 with nessages here which normally need just forwarding
El ement el _result = packet.getEl enent().clone();

/1 1f we are here it neans FROM address was m ssing fromthe
/1 packet, it is a place to set it here:
el _result.setAttribute("front', session.getJID().toString());

Packet result = Packet.packetlnstance(el _result, session.getJI),
packet . get St anzaTo());

/1l -... putting it to results queue is enough
results.offer(result);
}
} catch (Not Aut horizedException e) ({
| og. war ni ng(" Not Aut hori zedExcepti on for packet: -" + packet);
resul ts. of fer(Aut horizati on. NOT_AUTHORI ZED. get ResponseMessage(packet ,
"You must authorize session first.", true));
} -// end of try-catch

}
Plugin Configuration

Plugin configuration is not very straightforward at the moment but we are going to change it soon.

For now, the best and the simplest way to tell the Tigase server to load or not to load the plugin is via
i nit.propertiesfile The--sm pl ugi ns property takes acomma separated list of plugin IDsto
active at the runtime. Please refer to the documentation for a more complete description.

Obviously you haveto know thelist of standard plugin IDsto add your to the set. There are 2 waysto find
out the list. Oneisthe log file: logstigase-console.log. If you look inside you can find following outpuit:

Loadi ng plugin: jabber:ig:register -...

Loadi ng plugin: jabber:ig:auth -...

Loadi ng plugin: urn:ietf:paramnms:xm:ns: xnmpp-sasl -...
Loadi ng plugin: urn:ietf:params:xm:ns:xnmpp-bind -...
Loadi ng plugin: urn:ietf:paranms: xm :ns: xmpp-session -...
Loadi ng plugin: roster-presence -...

Loadi ng plugin: jabber:iqg:privacy -...

Loadi ng plugin: jabber:iqg:version -...

Loadi ng plugin: http://jabber.org/protocol/stats -...
Loadi ng plugin: starttls -...

Loadi ng plugin: vcard-tenmp -...

Loadi ng plugin: http://jabber. org/protocol/comrmands -...
Loadi ng plugin: jabber:iqg:private -...

Loadi ng plugi n: urn:xnmpp:ping -...

and thisisalist of plugins which are loaded in your installation.
Another way isto look inside the session manager source code which has the default list hardcoded:
private static final String[] PLUGJ NS FULL_PROP_VAL =

{"]jabber:iqg:register”, -"jabber:iqg:auth", -"urn:ietf:paranms:xm :ns:xnmpp-sasl"”,
-"urn:ietf:paranms: xm :ns: xmpp-bi nd", -"urn:ietf:paramnms:xm :ns: xmpp-sessi on”,

62

Plugin Devel opment

-"roster-presence”, -"jabber:iq:privacy", -"jabber:iqg:version",
-"http://jabber.org/protocol /stats”, -"starttls", -"nmsgoffline",
-"vcard-temp", -"http://jabber.org/protocol/conmands”, -"jabber:iq:private”,
-"urn: xnpp: ping", -"basic-filter", -"domain-filter"};

In you wish to load a plugin outside these defaults, you have to edit the list and add your plugin IDs as a
value to the plugin list property. Let’s say our plugin ID is message asin our al examples:

---smpl ugi ns=j abber:iq:register,jabber:iqg:auth,...... , message
Assuming your plugin classisin the classpath it will be loaded and used at the runtime.

There is another part of the plugin configuration though. If you looked at the Writing Plugin Code guide
you can remember the M ap settings processing parameter. Thisis amap of properties you can set in the
configuration file and these setting will be passed to the plugin at the processing time.

Againinit.propertiesis the place to put the stuff. These kind of properties start with a string: sess-man/
plugins-conf/, then you add your plugin ID and at the end and follow it with key and value pair for your
setting:

sess- man/ pl ugi ns- conf/ pl ugi nl D/ keyl=val 1

sess- man/ pl ugi ns- conf/ pl ugi nl D/ key2=val 2

sess- man/ pl ugi ns- conf/ pl ugi nl D/ key3=val 3

It is possible to provide settings for afew plugins within one configuration string by specifying multiple
pluginl Ds separated with a comma like below:

sess- man/ pl ugi ns- conf/ pl ugi nl, pl ugi n2, pl ugi n3/ keyl=val 1

Thiswill make key/pair setting available only to listed plugins, in above case pluginl, plugin2 and plugin3.
Last but not least - in case you have omitted plugin I D:

sess- man/ pl ugi ns-conf/ keyl=val 1

then the configured key-value pair will be a global/common plugin setting available to all loaded plugins.

How Packets are Processed by the SM and Plu-
gins

For Tigase server plugin development it is important to understand how it all works. There are different
kind of plugins responsible for processing packets at different stages of the data flow. Please read the
introduction below before proceeding to the actual coding part.

Introduction

In Tigase server pluginsare pieces of code responsiblefor processing particular XM PP stanzas. A separate
plugin might be responsible for processing messages, a different one for processing presences, a separate
plugins responsible for iq roster, and a different one for iq version and so on.

A plugin provides information about what exact XML element(s) name(s) with xmins it is interested in.
So you can create a plugin which isinterested in all packets containing caps child.

There might be no plugin for a particular stanza element, in this case the default action is used which is
simple forwarding stanzato a destination address. There might be also more than one plugin for a specific

63

Plugin Devel opment

XML element and then they all process the same stanza simultaneously in separate threads so there is no
guarantee on the order in which the stanza is processed by a different plugins.

Each stanza goes through the Session Manager component which processes packets in afew steps. Have
alook at the picture below:

USerA]| Process

i

Postprocess

Filter

The picture shows that each stanzais processed by the session manager in 4 steps:

1

Pre-processing - All loaded pre-processors receive the packet for processing. They work within session
manager thread and they have no internal queue for processing. As they work within Session Manager
thread it isimportant that they limit processing timeto absol ute minimum asthey may affect the Session
Manager performance. The intention for the pre-processors is to use them for packet blocking. If the
pre-processing result is true then the packet is blocked and no further processing is performed.

. Processing - Thisisthe next step the packet gets through if it wasn’t blocked by any of the pre-proces-

sors. It gets inserted to all processors queues with requested interest in this particular XML element.
Each processor works in a separate thread and has own internal fixed size processing queue.

. Post-processing - If thereisno processor for the stanzathen the packet goesthrough all post-processors.

The last post-processor that is built into session manager post-processor tries to apply a default action
to a packet which hasn't been processed in step 2. Normally the default action is just forwarding the
packet to a destination. Most commonly it is applied to <message/> packets.

. Finally, if any of above 3 steps produced output/result packets all of them go through all filters which

may or may not block them.

An important thing to note is that we have two kinds or two places where packets may be blocked or
filtered out. One place is before packet is processed by the plugin and another place is after processing
wherefiltering is applied to all results generated by the processor plugins.

It isalso important to note that session manager and processor plugins act as packet consumers. The packet
is taken for processing and once processing is finished the packet is destroyed. Therefore to forward a
packet to adestination one of the processor must create acopy of the packet, set al propertiesand attributes
and return it as a processing result. Of course processor can generate any number of packets as a resullt.
Result packets can be generated in any of above 4 steps of the processing. Have alook at the picture below:

Plugin Development

P1

USerA]| Process

i

Postprocess

Filter

Some other place:

MUC, PubSub,

user on another server...

If the packet P1 is sent from outside of the server, for example to a user on another server or to some
component (MUC, PubSub, transport), then one of the processor must create acopy (P2) of the packet and
set all attributes and destination addresses correctly. Packet P1 has been consumed by the session manager
during processing and a new packet has been generated by one of the plugins.

The same of course happens on the way back from the component to the user:

65

Plugin Devel opment

USerA

Some other place:

MUC, PubSub,
user on another server...

P2

The packet from the component is processed and one of the plugins must generate a copy of the packet
to deliver it to the user. Of course packet forwarding is a default action which is applied when there is no
plugin for the particular packet.

It isimplemented thisway because theinput packet P1 can be processed by many plugins at the sametime
therefore the packet should be in fact immutable and must not change once it got to the session manager
for processing.

The most obvious processing work flow is when a user sends request to the server and expects aresponse
from the server:

P1 [get|sef]

USerA]| Process

—_—

i

SM

Post

Filter

il

P2 [result]

66

Plugin Devel opment

This design has one surprising consequence though. If you look at the picture bel ow showing communica
tion between 2 users you can see that the packet is copied twice beforeit isdelivered to afinal destination:

I

USerA

—_—

(Cpocess | (a7

Postprocess

SM

Filter

P3

The packet has to be processed twice by the session manager. The first time it is processed on behalf
of the User A as an outgoing packet and the second time it is processed on behalf of the User B as an
incoming packet.

This is to make sure the User A has permission to send a packet out and all processing is applied to the
packet and also to make surethat User B has permission to receive the packet and all processing is applied.

If, for example, the User B is offline there is an offline message processor which should send the packet
to a database instead of User B.

SASL Custom Mechanisms and Configuration

ThisAPI isavailablefrom Tigase XM PP Server version 5.2.0 or later on our current master branch.

Note that API is under active development. This description may be updated at any time.

Basic SASL Configuration

SASL implementation in Tigase XMPP Server is compatible with Java API, the same exact interfaces
are used.

The SASL implementation consists of following parts:
1. mechanism
2. CallbackHandler

Propertieslist for SASL plugin (sess-man/plugins-conf/urn\:ietf\: params\: xml\: ns\: xmpp-sadl):

Property Description ‘

Plugin Development

factory A factory classfor SASL mechanisms. De-
tailed description at Mechanisms configura-
tion

callbackhandler A default callback handler class. Detailed de-
scription at CallbackHandler configuration

callbackhandler-${ MECHANISM} A callback handler class for a particular

mechanism. Detailed description at Callback-
Handler configuration

mechani sm-sel ector A classfor filtering SASL mechanisms avail-
ablein astream. Detailed description at Se-
lecting mechanisms

Mechanisms Configuration

To add anew mechanism, anew factory for the mechanism hasto be registered. It can be done with anew
lineinthei nit. properti es filelikethisone:

sess-man/ pl ugi ns-conf/urn\:ietf\:parans\:xm\:ns\: xnmpp-sasl/
fact ory=com exanpl e. OamFact ory

The class must implement the Sas| Ser ver Fact ory interface. All mechanisms returned by get -
Mechani sniNanes() method will be registered automatically.

The default factory that is available and registered by default is
ti gase. aut h. Ti gaseSasl| Server Fact ory which provides PLAI N and ANONYMOUS mecha
nisms.

CallbackHandler Configuration

TheCal | backHandl er isahelper classused for |oading/retrieving authentication datafrom datarepos-
itory and providing them to a mechanism.

Toregister anew callback handler anew lineinthei ni t . properti es filelikethisonehasto be added:

sess-man/ pl ugi ns-conf/urn\:ietf\:parans\:xm\:ns\:xmpp-sasl/
cal | backhandl er =com exanpl e. Def aul t Cal | backHandlI er

It isalso possibleto register different callback handlers for different mechanisms:

sess-man/ pl ugi ns-conf/urn\:ietf\:parans\:xm\:ns\:xmpp-sasl/
cal | backhandl er - PLAI N=com exanpl e. Pl ai nCal | backHandl| er

sess-man/ pl ugi ns-conf/urn\:ietf\:parans\:xm\:ns\:xmpp-sasl/
cal | backhandl er - CAUTH=com exanpl e. QAut hCal | backHandl| er

During the authentication process, Tigase server always checks for a handler specific to selected mecha
nisms, and if there is no specific handler the default one is used.

Selecting Mechanisms Available in the Stream

Theti gase. aut h. Mechani snel ect or interfaceis used for selecting mechanisms availablein a
stream. Method fi | t er Mechani sns() should return a collection with mechanisms available based
on:

68

Plugin Devel opment

1. al registered SASL factories
2. XMPP session data (from XMPPResour ceConnect i on class)

The default selector returns mechanisms from Tigase' s default factory (Ti gaseSasl| Ser ver Fact o-
ry) only.

It is possible to use a custom selector by specifyingit'sclassint thei ni t . properti es file

sess-man/ pl ugi ns-conf/urn\:ietf\:parans\:xm\:ns\: xnmpp-sasl/
mechani sm sel ect or=com exanpl e. OmSel ect or

Logging/Authentication

After the XMPP stream is opened by a client, the server checks which SASL mechanisms are available
for the XM PP session. Depending on whether the stream is encrypted or not, depending on the domain,
the server can present different available authentication mechanisms. MechanismSelector is responsible
for choosing mechanisms. List of allowed mechanismsis stored in the XM PP session object.

When the client/user beginsthe authentication procedure it uses one particular mechanism. It must use one
of the mechanisms provided by the server as available for this session. The server checks whether mecha-
nisms used by the client is on the list of allowed mechanisms. It the check is successful, the server creates
Sasl Ser ver class instance and proceeds with exchanging authentication information. Authentication
datais different depending on the mechanism used.

When the SASL authentication is completed without any error, Tigase server should have authorized user
name or authorized BareJID. In the first case, the server automatically builds user’s JD based on the
domain used in the stream opening element in t o attribute.

If, after a successful authentication, method call: get Negot i at edProperty("1S_ANONYMOUS")
returns Bool ean. TRUE then the user session is marked as anonymous. For valid and registered users
this can be used for cases when we do not want to load any user data such as roster, vcard, privacy lists
and so on. Thisis a performance and resource usage implication and can be useful for use cases such as
support chat. The authorization is performed based on the client database but we do not need to load any
XMPP specific data for the user’s session.

More details about implementation can be found in the custom mechanisms devel opment section.

Built-in Mechanisms

PLAIN
TODO!
ANONYMOUS

TODO!
Custom Mechanisms Development

Mechanism

get Aut hori zat i onl D() method from Sasl Ser ver class should return bare JID authorized user.
In case that the method returns only user name such as romeo for example, the server automatically ap-

69

Plugin Devel opment

pends domain name to generate avalid BareJID: romeo@example.com. In case the method returns afull,
valid BarelID, the server does not change anything.

handl eLogi n() method from Sessi onManager Handl er will be called with user’s Bare JID pro-
vided by get Aut hori zat i onl D() (or created later using stream domain name).

CallbackHandler

For each session authorization, the server creates anew and separate empty handler. Factory which creates
handler instance allows to inject different objects to the handler, depending on interfaces implemented by
the handler class:

» Aut hReposi t or yAwar e - injects Aut hReposi t ory;
» Domai nAwar e - injects domain name within which the user attempts to authenticate

e NonAut hUser Reposi t or yAwar e - injects NonAut hUser Reposi t ory, athough | have no
ideawhat for...

General Remarks

Jabber | gAut h used for non-SASL authentication mechanisms uses the same callback as the SASL
mechanisms.

Methods aut h in Reposi t ory interfaces will be deprecated. These interfaces will be treated as user
details providers only. There will be new methods available which will allow for additional login opera-
tions on the database such as last successful login recording.

Known Problems

Because Jabber | gAut h is initialized separately, we strongly recommend to use more general prefix
ininit.properties:

sess- man/ pl ugi ns- conf/ ${ KEY} =${ VALUE}
instead of
sess-man/ pl ugi ns-conf/urn\:ietf\:paranms\:xm\:ns\: xmpp-sasl / ${ KEY} =${ VALUE}

If Jabber | gAut h isdisabled, then thisis not necessary.

70

Chapter 6. Using Maven

Documents Describing Maven Use with the Tigase Projects

Setting up Maven in Windows

Here at Tigase, we employ Apache Maven to download latest builds, compile codes for export, and check
for errorsin the code during build. This guide will go over installing and running Maven from aWindows
operating environment. We will consider windows versions 7, 8, and 8.1 for this guide. Because Maven
does not come with an installer, there is a manual install process which might be a bit daunting for the
new user, but setup and useisfairly simple.

Requirements

1. Maven requires Java Development Kit (JDK) 6 or later. As Tigase requires the latest JDK to run, that
will do for our purposes. If you haven't installed it yet, download the installer from this website [http:/
www.oracle.com/technetwork/javaljavase/downl oads/index.html]. Once you install JDK and restart
your machine, be sure that you have the JAVA_HOME variable entered into Environment Variables
so callsto Javawill work from the command line.

2. Download the Maven package from here [https.//maven.apache.org/download.cgi] and unpack it into
adirectory of your choice. For this guide we will use C: \ Maven\ .

Setting up Environment Variables

The Environment Variables pand is brought up from the Control Panel by clicking System and Security

Environment Varables...
> System > Advanced System Settings. Now click the [

bottom of the panel and the Environment Variables panel will show.

! button at the

IMPORTANT NOTICE: CHANGING THESE SETTINGS CAN BREAK OTHER FUNCTIONS
IN THE OPERATING SYSTEM. DO NOT FOLLOW THIS GUIDE IF YOU DO NOT KNOW
WHAT YOU ARE DOING!

71

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi

Using Maven

User variables for Skyjay

Variable Value
C:\Program Files\Javaljdk1.8.0_45\hin;...
YlSERPROFILE%:\AppDataLocaliTemp
%eUSERPROFILES G \AppData\Local \Temp

System variables

Variable Value

ComSpec C:Windows\system32\omd. exe
FF_NO_HOST C... NO

JAVA_HOME C:VProgram Files\Javaljdk1.8.0_45
M2_HOME C:\Program Files\Maven

|| Edit...

We need to first add two variable paths to the System variablesto account for Maven' sinstall location. As
there are some programs that look for M2_HOME, and others that look for MAVEN_HOME, it's easier
to just add both and have all the bases covered.

Click on New...

72

Using Maven

MNew System Varnable I&J

Yariable name:

Variable value:

For the Name, use M2_HOME, and for the variable enter the path to maven, which in thiscaseis
C:\ Maven

Create another new variable with the MAVEN_HOM E name and add the same directory. Thesevariable
valuesjust point to where you have unpacked maven, so they do not haveto bein the C directory.

Go down to the system variables dial og and select Path, then click on Edit. The Path variables are separated
by semicolons, find the end of the Variable value string, and add the following after the last entry:

; %v2_HOVE% bi n; %VAVEN_HOVE% bi n;

We have added two variables using the %% wildcards surrounding our Variable names from earlier.

Testing Maven

Now we must test the command line to be sure everything installed correctly. Bring up the command line
either by typing cnd in search, or navigating the start menu.

From the prompt, you do not need to change directory as setting Path allows you to reference it. Typethe
following command: nvn -v

something like this should show up

Apache Maven 3. 3.3 (7994120775791599e205a5524ec3e0df e41d4a06; 2015-04-22T04:57: 3
7-07:00)

Maven home: C:\ Maven

Java version: 1.8.0_45, vendor: Oracle Corporation

Java home: C \Program Fil es\Java\jdkl.8.0_45\jre

Default | ocale: en_US, platformencoding: Cpl252

CS nane: -"windows 7", version: -"6.1", arch: -"and64", famly:

dos

If you see this message, success! You have finished installation and are ready to use Maven! If not,
go back on your settings and insure that JDK is installed, and the JAVA_HOME, M2 HOME, and
MAVEN_HOME variables are set properly.

73

Using Maven

A Very Short Maven Guide

If you don’t use Maven [http://maven.apache.org/] at all or useit once ayear you may find the document
auseful maven commands reminder:

Snapshot Compilation and Snapshot Package Genera-
tion

 nvn conpi | e - compilation of the snapshot package

* nvn package - create snapshot jar file

* nvn install -installinlocal repository shanpshot jar file

* nvn depl oy - deploy to the remote repository snapshot jar file

Release Compilation, Generation

 mvn rel ease: prepar e prepare the project for a new version release

 nvn rel ease: per f or mexecute new version rel ease generation

Generating tar.gz, tar.bz2 File With Sources Only

e nvn -Ddescriptorld=src assenbly: assenbly

Any of these commands will work when your commandline is in a directory with a pom.xml file. This
file will instruct what Maven will do.

Maven 2.x Support

Addendum: for amore recent guide please follow Tigase XMPP Server 5.2.0 and Later - Compilation and
Generating Distribution Packages.

Thanks to bmalkow [http://www.tigase.org/user/2] you can now build Tigase server from sources using
Maven 2.x [http://maven.apache.org/] tool. This should greatly simplify first steps with Tigase code and
it was requested by many of those trying to get the server running from sources. Maven repository with
Tigase packages is located at address. maven.tigase.org [http://maven.tigase.org/]. Now al you need to
compile sources and generate packages needed to run the server isjust afew simple steps below:

1. Download and install Maven 2.x

2. Checkout Tigase server sources from Subversion [http://www.tigase.org/content/=] repository:

svn co https://svn.tigase.org/reps/tigase-server/trunk/ tigase-server
1. Now go to directory with server code:

cd tigase-server

1. And run maven command to generate server package:

nvn assenbl y: assenbl y

74

http://maven.apache.org/
http://maven.apache.org/
http://www.tigase.org/user/2
http://www.tigase.org/user/2
http://maven.apache.org/
http://maven.apache.org/
http://maven.tigase.org/
http://maven.tigase.org/
http://www.tigase.org/content/=
http://www.tigase.org/content/=

Using Maven

1. After maven finished his work there should be new subdirectory created: target. Go to this directory
now:

cd target/

1. and list content of this directory. On Linux, Unix system:
ls --1

+ On MS Windows system:

+

dir

1. You should see at least 2 files like these:

ti gase-server- 2. 4. 0- SNAPSHOT- pr odenv. tar. gz
ti gase-server-2. 4. 0- SNAPSHOT- pr odenv. zi p

2. Unpack one of these files whichever you like:
tar --xzvf tigase-server-2.4.0- SNAPSHOT- prodenv.tar. gz
or
unzi p tigase-server-2.4.0- SNAPSHOT- pr odenv. zi p

3. New directory will be created in our caseit will be: t i gase- server-2. 4. 0- SNAPSHOT/ . Now
go to this directory:

cd tigase-server-2.4.0- SNAPSHOT/

4. Now almost everything is ready to run the server. Almost because sometimes on Unix like (including
Linux) operating systems you have to change script execution bit before you can runit;

chrmod u+x bin/*
5. Now you can run Tigase server:
./Ibin/tigase.sh run etc/tigase. conf

Y ou can get afew warnings about missing configuration file (which will be automatically created) and
user repository file (which will be automatically created when you register first user).

For your convenience there are afew other startup filesinet ¢/ directory. Y ou can ook and modify them
according to your needs.

75

Chapter 7. Tests

Tests

Tests are very important part of Tigase server development process.

Each rel ease goes through fully automated testing process. All server functions are considered implement-
ed only when they pass the testing cycle. Tigase test suite is used for all our automatic tests which allows
to define different test scenarios.

There is no tweaking on databases for tests. All databases are installed in a standard way and run with
default settings. Databases are cleared each time before the test cycle starts.

There are no modifications needed to be madeto Tigase' sconfiguration fileaswell. All testsare performed
on a default configuration generated by the configuration wizards.

The server istested in al supported environments:

1

XMLDB - tests with built-in ssimple XML database. Thisis a simple and efficient solution for small
installations. It is recommended for services with up to 100 user accounts although it has been success-
fully tested with 10,000 user accounts.

. MySQL - testswithaMySQL [http://www.mysgl.com/] database. Much slower than XML DB but may

handle many more user accounts.

. PostgreSQL - testswith a PostgreSQL [http://www.postgresql.org/] database. Again it is much slower

than XMLDB but may handle much more user accounts. Thisis basically exactly the same code as for
MySQL database (SQL Connector) but tests are executed to make sure the code is compatible with all
supported SQL databases and to compare performance.

. Distributed - isatest for distributed installation where ¢2s and s2s components run on separated ma-

chine which connects using external an component protocol (XEP-0114 [http://www.xmpp.org/exten-
sions/xep-0114.html]) to another machine with SessionManager running.

Functional Tests

Basic checking to seeif all the functionswork at correctly. These tests are performed every time the code

isS sent to source repository.

Version XMLDB MySQL PGSQL Distributed

3.3.2-b889 00:00:12 00:00:17 00:00:17 none
[tests/3.3.2-b88Y/ | [tests/3.3.2-b88Y/ | [tests/3.3.2-b889/
func/xmldb/func- | func/mysgl/func- | func/pgsgl/func-
tional-tests.html] |tional-tests.html] |tional-tests.html]

3.3.2-b880 00:00:13 00:00:15 00:00:15 None
[tests/3.3.2-b880/ | [tests/3.3.2-b880/ | [tests/3.3.2-b880/
func/xmldb/func- | func/mysgl/func- | func/pgsgl/func-
tional-tests.html] |tional-tests.html] |tional-tests.html]

3.0.2-b700 00:00:22 00:00:24 00:00:25 00:00:25
[tests/3.0.2-b700/ | [tests/3.0.2-b700/ |[tests/3.0.2-b700/ |[tests/3.0.2-
func/xmldb/func- | func/mysgl/func- |func/pgsgl/func- |b700/func/sm-
tional-tests.html] |tional-tests.html] |tional-tests.html] | mysgl/function-

al-tests.html]

76

http://www.mysql.com/
http://www.mysql.com/
http://www.postgresql.org/
http://www.postgresql.org/
http://www.xmpp.org/extensions/xep-0114.html
http://www.xmpp.org/extensions/xep-0114.html
http://www.xmpp.org/extensions/xep-0114.html
tests/3.3.2-b889/func/xmldb/functional-tests.html
tests/3.3.2-b889/func/xmldb/functional-tests.html
tests/3.3.2-b889/func/xmldb/functional-tests.html
tests/3.3.2-b889/func/xmldb/functional-tests.html
tests/3.3.2-b889/func/mysql/functional-tests.html
tests/3.3.2-b889/func/mysql/functional-tests.html
tests/3.3.2-b889/func/mysql/functional-tests.html
tests/3.3.2-b889/func/mysql/functional-tests.html
tests/3.3.2-b889/func/pgsql/functional-tests.html
tests/3.3.2-b889/func/pgsql/functional-tests.html
tests/3.3.2-b889/func/pgsql/functional-tests.html
tests/3.3.2-b889/func/pgsql/functional-tests.html
tests/3.3.2-b880/func/xmldb/functional-tests.html
tests/3.3.2-b880/func/xmldb/functional-tests.html
tests/3.3.2-b880/func/xmldb/functional-tests.html
tests/3.3.2-b880/func/xmldb/functional-tests.html
tests/3.3.2-b880/func/mysql/functional-tests.html
tests/3.3.2-b880/func/mysql/functional-tests.html
tests/3.3.2-b880/func/mysql/functional-tests.html
tests/3.3.2-b880/func/mysql/functional-tests.html
tests/3.3.2-b880/func/pgsql/functional-tests.html
tests/3.3.2-b880/func/pgsql/functional-tests.html
tests/3.3.2-b880/func/pgsql/functional-tests.html
tests/3.3.2-b880/func/pgsql/functional-tests.html
tests/3.0.2-b700/func/xmldb/functional-tests.html
tests/3.0.2-b700/func/xmldb/functional-tests.html
tests/3.0.2-b700/func/xmldb/functional-tests.html
tests/3.0.2-b700/func/xmldb/functional-tests.html
tests/3.0.2-b700/func/mysql/functional-tests.html
tests/3.0.2-b700/func/mysql/functional-tests.html
tests/3.0.2-b700/func/mysql/functional-tests.html
tests/3.0.2-b700/func/mysql/functional-tests.html
tests/3.0.2-b700/func/pgsql/functional-tests.html
tests/3.0.2-b700/func/pgsql/functional-tests.html
tests/3.0.2-b700/func/pgsql/functional-tests.html
tests/3.0.2-b700/func/pgsql/functional-tests.html
tests/3.0.2-b700/func/sm-mysql/functional-tests.html
tests/3.0.2-b700/func/sm-mysql/functional-tests.html
tests/3.0.2-b700/func/sm-mysql/functional-tests.html
tests/3.0.2-b700/func/sm-mysql/functional-tests.html
tests/3.0.2-b700/func/sm-mysql/functional-tests.html

Tests

2.9.5-b606

00:00:22
[tests/2.9.5-b606/
func/xmldb/func-
tional-tests.html]

00:00:24
[tests/2.9.5-b606/
func/mysgl/func-
tional-tests.htmi]

00:00:24
[tests/2.9.5-b606/
func/pgsgl/func-
tional-tests.html]

00:00:24
[tests/2.9.5-
b606/func/sm-
mysqgl/function-
al-tests.html]

2.9.3-b548

00:00:22
[tests/2.9.3-b548/
func/xmldb/func-
tional-tests.html]

00:00:23
[tests/2.9.3-b548/
func/mysgl/func-
tional-tests.html]

00:00:25
[tests/2.9.3-b548/
func/pgsal/func-
tional-tests.html]

00:00:25
[tests/2.9.3-
b548/func/sm-
mysqgl/function-
al-tests.html]

2.9.1-b528

00:00:21
[tests/2.9.1-b528/
func/xmldb/func-
tional-tests.htmi]

00:00:23
[tests/2.9.1-b528/
func/mysal/func-
tional-tests.html]

00:00:24
[tests/2.9.1-b528/
func/pgsal/func-
tional-tests.html]

00:00:25
[testy/2.9.1-
b528/func/sm-
mysql/function-
al-tests.html]

2.8.6-b434

00:00:21
[tests/2.8.6-b434/
func/xmldb/func-
tional-tests.html]

00:00:24
[tests/2.8.6-b434/
func/mysgl/func-
tional-tests.html]

00:00:24
[tests/2.8.6-b434/
func/pgsgl/func-
tional-tests.html]

00:00:25
[tests/2.8.6-
b434/func/sm-
mysqgl/function-
al-tests.html]

2.8.5-b422

00:00:21
[tests/2.8.5-b422/
func/xmldb/func-
tional-tests.htmi]

00:00:24
[tests/2.8.5-b422/
func/mysgl/func-
tional-tests.htmi]

00:00:24
[tests/2.8.5-b422/
func/pgsgl/func-
tional-tests.html]

00:00:26
[tests/2.8.5-
b422/func/sm-
mysqgl/function-
al-tests.html]

2.8.3-b409

00:00:27
[tests/2.8.3-b409/
func/xmldb/func-
tional-tests.html]

00:00:29
[tests/2.8.3-b409/
func/mysgl/func-
tional-tests.html]

00:00:29
[tests/2.8.3-b409/
func/pgsal/func-
tional-tests.html]

00:00:32
[tests/2.8.3-
b409/func/sm-
mysqgl/function-
al-tests.html]

2.7.2-b378

00:00:30
[tests/2.7.2-b378/
func/xmldb/func-
tional-tests.htmi]

00:00:34
[tests/2.7.2-b378/
func/mysal/func-
tional-tests.html]

00:00:33
[tests/2.7.2-b378/
func/pgsal/func-
tional-tests.html]

00:00:35
[tests/2.7.2-
b378/func/sm-
mysql/function-
al-tests.html]

2.6.4-b300

00:00:30
[tests/2.6.4-b300/
func/xmldb/func-
tional-tests.html]

00:00:32
[tests/2.6.4-b300/
func/mysgl/func-
tional-tests.html]

00:00:35
[tests/2.6.4-b300/
func/pgsgl/func-
tional-tests.html]

00:00:39
[tests/2.6.4-
b300/func/sm-
mysqgl/function-
al-tests.html]

2.6.4-b295

00:00:29
[tests/2.6.4-b295/
func/xmldb/func-
tional-tests.html]

00:00:32
[tests/2.6.4-b295/
func/mysgl/func-
tional-tests.htmi]

00:00:45
[tests/2.6.4-b295/
func/pgsgl/func-
tional-tests.html]

00:00:36
[testy/2.6.4-
b295/func/sm-
mysqgl/function-
al-tests.html]

2.6.0-b287

00:00:31
[tests/2.6.0-b287/
func/xmldb/func-
tional-tests.html]

00:00:34
[tests/2.6.0-b287/
func/mysgl/func-
tional-tests.html]

00:00:47
[tests/2.6.0-b287/
func/pgsal/func-
tional-tests.html]

00:00:43
[tests/2.6.0-
b287/func/sm-
mysqgl/function-
al-tests.html]

77

tests/2.9.5-b606/func/xmldb/functional-tests.html
tests/2.9.5-b606/func/xmldb/functional-tests.html
tests/2.9.5-b606/func/xmldb/functional-tests.html
tests/2.9.5-b606/func/xmldb/functional-tests.html
tests/2.9.5-b606/func/mysql/functional-tests.html
tests/2.9.5-b606/func/mysql/functional-tests.html
tests/2.9.5-b606/func/mysql/functional-tests.html
tests/2.9.5-b606/func/mysql/functional-tests.html
tests/2.9.5-b606/func/pgsql/functional-tests.html
tests/2.9.5-b606/func/pgsql/functional-tests.html
tests/2.9.5-b606/func/pgsql/functional-tests.html
tests/2.9.5-b606/func/pgsql/functional-tests.html
tests/2.9.5-b606/func/sm-mysql/functional-tests.html
tests/2.9.5-b606/func/sm-mysql/functional-tests.html
tests/2.9.5-b606/func/sm-mysql/functional-tests.html
tests/2.9.5-b606/func/sm-mysql/functional-tests.html
tests/2.9.5-b606/func/sm-mysql/functional-tests.html
tests/2.9.3-b548/func/xmldb/functional-tests.html
tests/2.9.3-b548/func/xmldb/functional-tests.html
tests/2.9.3-b548/func/xmldb/functional-tests.html
tests/2.9.3-b548/func/xmldb/functional-tests.html
tests/2.9.3-b548/func/mysql/functional-tests.html
tests/2.9.3-b548/func/mysql/functional-tests.html
tests/2.9.3-b548/func/mysql/functional-tests.html
tests/2.9.3-b548/func/mysql/functional-tests.html
tests/2.9.3-b548/func/pgsql/functional-tests.html
tests/2.9.3-b548/func/pgsql/functional-tests.html
tests/2.9.3-b548/func/pgsql/functional-tests.html
tests/2.9.3-b548/func/pgsql/functional-tests.html
tests/2.9.3-b548/func/sm-mysql/functional-tests.html
tests/2.9.3-b548/func/sm-mysql/functional-tests.html
tests/2.9.3-b548/func/sm-mysql/functional-tests.html
tests/2.9.3-b548/func/sm-mysql/functional-tests.html
tests/2.9.3-b548/func/sm-mysql/functional-tests.html
tests/2.9.1-b528/func/xmldb/functional-tests.html
tests/2.9.1-b528/func/xmldb/functional-tests.html
tests/2.9.1-b528/func/xmldb/functional-tests.html
tests/2.9.1-b528/func/xmldb/functional-tests.html
tests/2.9.1-b528/func/mysql/functional-tests.html
tests/2.9.1-b528/func/mysql/functional-tests.html
tests/2.9.1-b528/func/mysql/functional-tests.html
tests/2.9.1-b528/func/mysql/functional-tests.html
tests/2.9.1-b528/func/pgsql/functional-tests.html
tests/2.9.1-b528/func/pgsql/functional-tests.html
tests/2.9.1-b528/func/pgsql/functional-tests.html
tests/2.9.1-b528/func/pgsql/functional-tests.html
tests/2.9.1-b528/func/sm-mysql/functional-tests.html
tests/2.9.1-b528/func/sm-mysql/functional-tests.html
tests/2.9.1-b528/func/sm-mysql/functional-tests.html
tests/2.9.1-b528/func/sm-mysql/functional-tests.html
tests/2.9.1-b528/func/sm-mysql/functional-tests.html
tests/2.8.6-b434/func/xmldb/functional-tests.html
tests/2.8.6-b434/func/xmldb/functional-tests.html
tests/2.8.6-b434/func/xmldb/functional-tests.html
tests/2.8.6-b434/func/xmldb/functional-tests.html
tests/2.8.6-b434/func/mysql/functional-tests.html
tests/2.8.6-b434/func/mysql/functional-tests.html
tests/2.8.6-b434/func/mysql/functional-tests.html
tests/2.8.6-b434/func/mysql/functional-tests.html
tests/2.8.6-b434/func/pgsql/functional-tests.html
tests/2.8.6-b434/func/pgsql/functional-tests.html
tests/2.8.6-b434/func/pgsql/functional-tests.html
tests/2.8.6-b434/func/pgsql/functional-tests.html
tests/2.8.6-b434/func/sm-mysql/functional-tests.html
tests/2.8.6-b434/func/sm-mysql/functional-tests.html
tests/2.8.6-b434/func/sm-mysql/functional-tests.html
tests/2.8.6-b434/func/sm-mysql/functional-tests.html
tests/2.8.6-b434/func/sm-mysql/functional-tests.html
tests/2.8.5-b422/func/xmldb/functional-tests.html
tests/2.8.5-b422/func/xmldb/functional-tests.html
tests/2.8.5-b422/func/xmldb/functional-tests.html
tests/2.8.5-b422/func/xmldb/functional-tests.html
tests/2.8.5-b422/func/mysql/functional-tests.html
tests/2.8.5-b422/func/mysql/functional-tests.html
tests/2.8.5-b422/func/mysql/functional-tests.html
tests/2.8.5-b422/func/mysql/functional-tests.html
tests/2.8.5-b422/func/pgsql/functional-tests.html
tests/2.8.5-b422/func/pgsql/functional-tests.html
tests/2.8.5-b422/func/pgsql/functional-tests.html
tests/2.8.5-b422/func/pgsql/functional-tests.html
tests/2.8.5-b422/func/sm-mysql/functional-tests.html
tests/2.8.5-b422/func/sm-mysql/functional-tests.html
tests/2.8.5-b422/func/sm-mysql/functional-tests.html
tests/2.8.5-b422/func/sm-mysql/functional-tests.html
tests/2.8.5-b422/func/sm-mysql/functional-tests.html
tests/2.8.3-b409/func/xmldb/functional-tests.html
tests/2.8.3-b409/func/xmldb/functional-tests.html
tests/2.8.3-b409/func/xmldb/functional-tests.html
tests/2.8.3-b409/func/xmldb/functional-tests.html
tests/2.8.3-b409/func/mysql/functional-tests.html
tests/2.8.3-b409/func/mysql/functional-tests.html
tests/2.8.3-b409/func/mysql/functional-tests.html
tests/2.8.3-b409/func/mysql/functional-tests.html
tests/2.8.3-b409/func/pgsql/functional-tests.html
tests/2.8.3-b409/func/pgsql/functional-tests.html
tests/2.8.3-b409/func/pgsql/functional-tests.html
tests/2.8.3-b409/func/pgsql/functional-tests.html
tests/2.8.3-b409/func/sm-mysql/functional-tests.html
tests/2.8.3-b409/func/sm-mysql/functional-tests.html
tests/2.8.3-b409/func/sm-mysql/functional-tests.html
tests/2.8.3-b409/func/sm-mysql/functional-tests.html
tests/2.8.3-b409/func/sm-mysql/functional-tests.html
tests/2.7.2-b378/func/xmldb/functional-tests.html
tests/2.7.2-b378/func/xmldb/functional-tests.html
tests/2.7.2-b378/func/xmldb/functional-tests.html
tests/2.7.2-b378/func/xmldb/functional-tests.html
tests/2.7.2-b378/func/mysql/functional-tests.html
tests/2.7.2-b378/func/mysql/functional-tests.html
tests/2.7.2-b378/func/mysql/functional-tests.html
tests/2.7.2-b378/func/mysql/functional-tests.html
tests/2.7.2-b378/func/pgsql/functional-tests.html
tests/2.7.2-b378/func/pgsql/functional-tests.html
tests/2.7.2-b378/func/pgsql/functional-tests.html
tests/2.7.2-b378/func/pgsql/functional-tests.html
tests/2.7.2-b378/func/sm-mysql/functional-tests.html
tests/2.7.2-b378/func/sm-mysql/functional-tests.html
tests/2.7.2-b378/func/sm-mysql/functional-tests.html
tests/2.7.2-b378/func/sm-mysql/functional-tests.html
tests/2.7.2-b378/func/sm-mysql/functional-tests.html
tests/2.6.4-b300/func/xmldb/functional-tests.html
tests/2.6.4-b300/func/xmldb/functional-tests.html
tests/2.6.4-b300/func/xmldb/functional-tests.html
tests/2.6.4-b300/func/xmldb/functional-tests.html
tests/2.6.4-b300/func/mysql/functional-tests.html
tests/2.6.4-b300/func/mysql/functional-tests.html
tests/2.6.4-b300/func/mysql/functional-tests.html
tests/2.6.4-b300/func/mysql/functional-tests.html
tests/2.6.4-b300/func/pgsql/functional-tests.html
tests/2.6.4-b300/func/pgsql/functional-tests.html
tests/2.6.4-b300/func/pgsql/functional-tests.html
tests/2.6.4-b300/func/pgsql/functional-tests.html
tests/2.6.4-b300/func/sm-mysql/functional-tests.html
tests/2.6.4-b300/func/sm-mysql/functional-tests.html
tests/2.6.4-b300/func/sm-mysql/functional-tests.html
tests/2.6.4-b300/func/sm-mysql/functional-tests.html
tests/2.6.4-b300/func/sm-mysql/functional-tests.html
tests/2.6.4-b295/func/xmldb/functional-tests.html
tests/2.6.4-b295/func/xmldb/functional-tests.html
tests/2.6.4-b295/func/xmldb/functional-tests.html
tests/2.6.4-b295/func/xmldb/functional-tests.html
tests/2.6.4-b295/func/mysql/functional-tests.html
tests/2.6.4-b295/func/mysql/functional-tests.html
tests/2.6.4-b295/func/mysql/functional-tests.html
tests/2.6.4-b295/func/mysql/functional-tests.html
tests/2.6.4-b295/func/pgsql/functional-tests.html
tests/2.6.4-b295/func/pgsql/functional-tests.html
tests/2.6.4-b295/func/pgsql/functional-tests.html
tests/2.6.4-b295/func/pgsql/functional-tests.html
tests/2.6.4-b295/func/sm-mysql/functional-tests.html
tests/2.6.4-b295/func/sm-mysql/functional-tests.html
tests/2.6.4-b295/func/sm-mysql/functional-tests.html
tests/2.6.4-b295/func/sm-mysql/functional-tests.html
tests/2.6.4-b295/func/sm-mysql/functional-tests.html
tests/2.6.0-b287/func/xmldb/functional-tests.html
tests/2.6.0-b287/func/xmldb/functional-tests.html
tests/2.6.0-b287/func/xmldb/functional-tests.html
tests/2.6.0-b287/func/xmldb/functional-tests.html
tests/2.6.0-b287/func/mysql/functional-tests.html
tests/2.6.0-b287/func/mysql/functional-tests.html
tests/2.6.0-b287/func/mysql/functional-tests.html
tests/2.6.0-b287/func/mysql/functional-tests.html
tests/2.6.0-b287/func/pgsql/functional-tests.html
tests/2.6.0-b287/func/pgsql/functional-tests.html
tests/2.6.0-b287/func/pgsql/functional-tests.html
tests/2.6.0-b287/func/pgsql/functional-tests.html
tests/2.6.0-b287/func/sm-mysql/functional-tests.html
tests/2.6.0-b287/func/sm-mysql/functional-tests.html
tests/2.6.0-b287/func/sm-mysql/functional-tests.html
tests/2.6.0-b287/func/sm-mysql/functional-tests.html
tests/2.6.0-b287/func/sm-mysql/functional-tests.html

Tests

2.5.0-b279 00:00:30 00:00:34 00:00:45 00:00:43
[tests/2.5.0-b279/ | [tests/2.5.0-b279/ |[tests/2.5.0-b279/ | [tests/2.5.0-
func/xmldb/func- | func/mysgl/func- | func/pgsgl/func- | b279/func/sm-
tional-tests.html] |tional-tests.html] |tional-tests.html] | mysgl/function-

al-tests.html]

2.4.0-b263 00:00:29 00:00:33 00:00:45 00:00:44
[tests/2.4.0-b263/ | [tests/2.4.0-b263/ |[tests/2.4.0-b263/ | [tests/2.4.0-
func/xmldb/func- | func/mysgl/func- |func/pgsgl/func- |b263/func/sm-
tional-tests.html] |tional-tests.html] |tional-tests.ntml] | mysgl/function-

al-tests.html]
2.3.4-b226 None 00:00:48 [tests/ |None None
function-
al-tests.html]
Performance Tests

Checking to see whether the function performs well enough.

Version XMLDB MySQL PGSQL Distributed

3.3.2-b889 00:12:17 00:13:42 00:17:10 none
[tests/3.3.2- [tests/3.3.2- [tests/3.3.2-
b889/perf/ b889/perf/ b889/perf/
xmldb/perfor- mysql/perfor- pgsql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html]

3.3.2-b880 00:13:39 00:14:09 00:17:39 None
[tests/3.3.2- [tests/3.3.2- [tests/3.3.2-
b880/perf/ b880/perf/ b880/perf/
xmldb/perfor- mysgl/perfor- pgsql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html]

3.0.2-b700 00:10:26 00:11:00 00:12:08 00:24:05
[tests/3.0.2- [tests/3.0.2- [tests/3.0.2- [tests/3.0.2-
b700/perf/ b700/perf/ b700/perf/ b700/perf/sm-
xmldb/perfor- mysql/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.htmi]

2.9.5-b606 00:09:54 00:11:18 00:37:08 00:16:20
[tests/2.9.5- [tests/2.9.5- [tests/2.9.5- [tests/2.9.5-
b606/perf/ b606/perf/ b606/perf/ b606/perf/sm-
xmldb/perfor- mysql/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.htmi]

2.9.3-b548 00:10:00 00:11:29 00:36:43 00:16:47
[tests/2.9.3- [tests/2.9.3- [tests/2.9.3- [tests/2.9.3-
b548/perf/ b548/perf/ b548/perf/ b548/perf/sm-
xmldb/perfor- mysql/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.htmi]

2.9.1-b528 00:09:46 00:11:15 00:36:12 00:16:36
[tests/2.9.1- [tests/2.9.1- [tests/2.9.1- [tests/2.9.1-
b528/perf/ b528/perf/ b528/perf/ b528/perf/sm-
xmldb/perfor- mysgl/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.html]

78

tests/2.5.0-b279/func/xmldb/functional-tests.html
tests/2.5.0-b279/func/xmldb/functional-tests.html
tests/2.5.0-b279/func/xmldb/functional-tests.html
tests/2.5.0-b279/func/xmldb/functional-tests.html
tests/2.5.0-b279/func/mysql/functional-tests.html
tests/2.5.0-b279/func/mysql/functional-tests.html
tests/2.5.0-b279/func/mysql/functional-tests.html
tests/2.5.0-b279/func/mysql/functional-tests.html
tests/2.5.0-b279/func/pgsql/functional-tests.html
tests/2.5.0-b279/func/pgsql/functional-tests.html
tests/2.5.0-b279/func/pgsql/functional-tests.html
tests/2.5.0-b279/func/pgsql/functional-tests.html
tests/2.5.0-b279/func/sm-mysql/functional-tests.html
tests/2.5.0-b279/func/sm-mysql/functional-tests.html
tests/2.5.0-b279/func/sm-mysql/functional-tests.html
tests/2.5.0-b279/func/sm-mysql/functional-tests.html
tests/2.5.0-b279/func/sm-mysql/functional-tests.html
tests/2.4.0-b263/func/xmldb/functional-tests.html
tests/2.4.0-b263/func/xmldb/functional-tests.html
tests/2.4.0-b263/func/xmldb/functional-tests.html
tests/2.4.0-b263/func/xmldb/functional-tests.html
tests/2.4.0-b263/func/mysql/functional-tests.html
tests/2.4.0-b263/func/mysql/functional-tests.html
tests/2.4.0-b263/func/mysql/functional-tests.html
tests/2.4.0-b263/func/mysql/functional-tests.html
tests/2.4.0-b263/func/pgsql/functional-tests.html
tests/2.4.0-b263/func/pgsql/functional-tests.html
tests/2.4.0-b263/func/pgsql/functional-tests.html
tests/2.4.0-b263/func/pgsql/functional-tests.html
tests/2.4.0-b263/func/sm-mysql/functional-tests.html
tests/2.4.0-b263/func/sm-mysql/functional-tests.html
tests/2.4.0-b263/func/sm-mysql/functional-tests.html
tests/2.4.0-b263/func/sm-mysql/functional-tests.html
tests/2.4.0-b263/func/sm-mysql/functional-tests.html
tests/functional-tests.html
tests/functional-tests.html
tests/functional-tests.html
tests/functional-tests.html
tests/3.3.2-b889/perf/xmldb/performance-tests.html
tests/3.3.2-b889/perf/xmldb/performance-tests.html
tests/3.3.2-b889/perf/xmldb/performance-tests.html
tests/3.3.2-b889/perf/xmldb/performance-tests.html
tests/3.3.2-b889/perf/xmldb/performance-tests.html
tests/3.3.2-b889/perf/mysql/performance-tests.html
tests/3.3.2-b889/perf/mysql/performance-tests.html
tests/3.3.2-b889/perf/mysql/performance-tests.html
tests/3.3.2-b889/perf/mysql/performance-tests.html
tests/3.3.2-b889/perf/mysql/performance-tests.html
tests/3.3.2-b889/perf/pgsql/performance-tests.html
tests/3.3.2-b889/perf/pgsql/performance-tests.html
tests/3.3.2-b889/perf/pgsql/performance-tests.html
tests/3.3.2-b889/perf/pgsql/performance-tests.html
tests/3.3.2-b889/perf/pgsql/performance-tests.html
tests/3.3.2-b880/perf/xmldb/performance-tests.html
tests/3.3.2-b880/perf/xmldb/performance-tests.html
tests/3.3.2-b880/perf/xmldb/performance-tests.html
tests/3.3.2-b880/perf/xmldb/performance-tests.html
tests/3.3.2-b880/perf/xmldb/performance-tests.html
tests/3.3.2-b880/perf/mysql/performance-tests.html
tests/3.3.2-b880/perf/mysql/performance-tests.html
tests/3.3.2-b880/perf/mysql/performance-tests.html
tests/3.3.2-b880/perf/mysql/performance-tests.html
tests/3.3.2-b880/perf/mysql/performance-tests.html
tests/3.3.2-b880/perf/pgsql/performance-tests.html
tests/3.3.2-b880/perf/pgsql/performance-tests.html
tests/3.3.2-b880/perf/pgsql/performance-tests.html
tests/3.3.2-b880/perf/pgsql/performance-tests.html
tests/3.3.2-b880/perf/pgsql/performance-tests.html
tests/3.0.2-b700/perf/xmldb/performance-tests.html
tests/3.0.2-b700/perf/xmldb/performance-tests.html
tests/3.0.2-b700/perf/xmldb/performance-tests.html
tests/3.0.2-b700/perf/xmldb/performance-tests.html
tests/3.0.2-b700/perf/xmldb/performance-tests.html
tests/3.0.2-b700/perf/mysql/performance-tests.html
tests/3.0.2-b700/perf/mysql/performance-tests.html
tests/3.0.2-b700/perf/mysql/performance-tests.html
tests/3.0.2-b700/perf/mysql/performance-tests.html
tests/3.0.2-b700/perf/mysql/performance-tests.html
tests/3.0.2-b700/perf/pgsql/performance-tests.html
tests/3.0.2-b700/perf/pgsql/performance-tests.html
tests/3.0.2-b700/perf/pgsql/performance-tests.html
tests/3.0.2-b700/perf/pgsql/performance-tests.html
tests/3.0.2-b700/perf/pgsql/performance-tests.html
tests/3.0.2-b700/perf/sm-mysql/performance-tests.html
tests/3.0.2-b700/perf/sm-mysql/performance-tests.html
tests/3.0.2-b700/perf/sm-mysql/performance-tests.html
tests/3.0.2-b700/perf/sm-mysql/performance-tests.html
tests/3.0.2-b700/perf/sm-mysql/performance-tests.html
tests/2.9.5-b606/perf/xmldb/performance-tests.html
tests/2.9.5-b606/perf/xmldb/performance-tests.html
tests/2.9.5-b606/perf/xmldb/performance-tests.html
tests/2.9.5-b606/perf/xmldb/performance-tests.html
tests/2.9.5-b606/perf/xmldb/performance-tests.html
tests/2.9.5-b606/perf/mysql/performance-tests.html
tests/2.9.5-b606/perf/mysql/performance-tests.html
tests/2.9.5-b606/perf/mysql/performance-tests.html
tests/2.9.5-b606/perf/mysql/performance-tests.html
tests/2.9.5-b606/perf/mysql/performance-tests.html
tests/2.9.5-b606/perf/pgsql/performance-tests.html
tests/2.9.5-b606/perf/pgsql/performance-tests.html
tests/2.9.5-b606/perf/pgsql/performance-tests.html
tests/2.9.5-b606/perf/pgsql/performance-tests.html
tests/2.9.5-b606/perf/pgsql/performance-tests.html
tests/2.9.5-b606/perf/sm-mysql/performance-tests.html
tests/2.9.5-b606/perf/sm-mysql/performance-tests.html
tests/2.9.5-b606/perf/sm-mysql/performance-tests.html
tests/2.9.5-b606/perf/sm-mysql/performance-tests.html
tests/2.9.5-b606/perf/sm-mysql/performance-tests.html
tests/2.9.3-b548/perf/xmldb/performance-tests.html
tests/2.9.3-b548/perf/xmldb/performance-tests.html
tests/2.9.3-b548/perf/xmldb/performance-tests.html
tests/2.9.3-b548/perf/xmldb/performance-tests.html
tests/2.9.3-b548/perf/xmldb/performance-tests.html
tests/2.9.3-b548/perf/mysql/performance-tests.html
tests/2.9.3-b548/perf/mysql/performance-tests.html
tests/2.9.3-b548/perf/mysql/performance-tests.html
tests/2.9.3-b548/perf/mysql/performance-tests.html
tests/2.9.3-b548/perf/mysql/performance-tests.html
tests/2.9.3-b548/perf/pgsql/performance-tests.html
tests/2.9.3-b548/perf/pgsql/performance-tests.html
tests/2.9.3-b548/perf/pgsql/performance-tests.html
tests/2.9.3-b548/perf/pgsql/performance-tests.html
tests/2.9.3-b548/perf/pgsql/performance-tests.html
tests/2.9.3-b548/perf/sm-mysql/performance-tests.html
tests/2.9.3-b548/perf/sm-mysql/performance-tests.html
tests/2.9.3-b548/perf/sm-mysql/performance-tests.html
tests/2.9.3-b548/perf/sm-mysql/performance-tests.html
tests/2.9.3-b548/perf/sm-mysql/performance-tests.html
tests/2.9.1-b528/perf/xmldb/performance-tests.html
tests/2.9.1-b528/perf/xmldb/performance-tests.html
tests/2.9.1-b528/perf/xmldb/performance-tests.html
tests/2.9.1-b528/perf/xmldb/performance-tests.html
tests/2.9.1-b528/perf/xmldb/performance-tests.html
tests/2.9.1-b528/perf/mysql/performance-tests.html
tests/2.9.1-b528/perf/mysql/performance-tests.html
tests/2.9.1-b528/perf/mysql/performance-tests.html
tests/2.9.1-b528/perf/mysql/performance-tests.html
tests/2.9.1-b528/perf/mysql/performance-tests.html
tests/2.9.1-b528/perf/pgsql/performance-tests.html
tests/2.9.1-b528/perf/pgsql/performance-tests.html
tests/2.9.1-b528/perf/pgsql/performance-tests.html
tests/2.9.1-b528/perf/pgsql/performance-tests.html
tests/2.9.1-b528/perf/pgsql/performance-tests.html
tests/2.9.1-b528/perf/sm-mysql/performance-tests.html
tests/2.9.1-b528/perf/sm-mysql/performance-tests.html
tests/2.9.1-b528/perf/sm-mysql/performance-tests.html
tests/2.9.1-b528/perf/sm-mysql/performance-tests.html
tests/2.9.1-b528/perf/sm-mysql/performance-tests.html

Tests

2.8.6-b434 00:10:02 00:11:45 00:36:36 00:17:36
[tests/2.8.6- [tests/2.8.6- [tests/2.8.6- [tests/2.8.6-
b434/perf/ b434/perf/ b434/perf/ b434/perf/sm-
xmldb/perfor- mysql/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.htmi]

2.8.5-b422 00:12:37 00:14:40 00:38:59 00:21:40
[tests/2.8.5- [tests/2.8.5- [tests/2.8.5- [tests/2.8.5-
b422/perf/ b422/perf/ b422/perf/ b422/perf/sm-
xmldb/perfor- mysql/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.htmi]

2.8.3-b409 00:12:32 00:14:26 00:37:57 00:21:26
[tests/2.8.3- [tests/2.8.3- [tests/2.8.3- [tests/2.8.3-
b409/perf/ b409/perf/ b409/perf/ b409/perf/sm-
xmldb/perfor- mysql/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.htmi]

2.7.2-b378 00:12:28 00:14:57 00:37:09 00:22:20
[tests/2.7.2- [tests/2.7.2- [tests/2.7.2- [tests/2.7.2-
b378/perf/ b378/perf/ b378/perf/ b378/perf/sm-
xmldb/perfor- mysgl/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.html]

2.6.4-b300 00:12:46 00:14:59 00:36:56 00:35:00
[tests/2.6.4- [tests/2.6.4- [tests/2.6.4- [tests/2.6.4-
b300/perf/ b300/perf/ b300/perf/ b300/perf/sm-
xmldb/perfor- mysql/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.htmi]

2.6.4-b295 00:12:23 00:14:59 00:42:24 00:30:18
[tests/2.6.4- [tests/2.6.4- [tests/2.6.4- [tests/2.6.4-
b295/perf/ b295/perf/ b295/perf/ b295/perf/sm-
xmldb/perfor- mysql/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.htmi]

2.6.0-b287 00:13:50 00:16:53 00:48:17 00:49:06
[tests/2.6.0- [tests/2.6.0- [tests/2.6.0- [tests/2.6.0-
b287/perf/ b287/perf/ b287/perf/ b287/perf/sm-
xmldb/perfor- mysql/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.htmi]

2.5.0-b279 00:13:29 00:16:58 00:47:15 00:41:52
[tests/2.5.0- [tests/2.5.0- [tests/2.5.0- [tests/2.5.0-
b279/perf/ b279/perf/ b279/perf/ b279/perf/sm-
xmldb/perfor- mysgl/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.html]

2.4.0-b263 00:13:20 00:16:21 00:43:56 00:42:08
[tests/2.4.0- [tests/2.4.0- [tests/2.4.0- [tests/2.4.0-
b263/perf/ b263/perf/ b263/perf/ b263/perf/sm-
xmldb/perfor- mysql/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.htmi]

2.3.4-b226 None 01:23:30 None None

[tests/perfor-

mance-tests.html]

79

tests/2.8.6-b434/perf/xmldb/performance-tests.html
tests/2.8.6-b434/perf/xmldb/performance-tests.html
tests/2.8.6-b434/perf/xmldb/performance-tests.html
tests/2.8.6-b434/perf/xmldb/performance-tests.html
tests/2.8.6-b434/perf/xmldb/performance-tests.html
tests/2.8.6-b434/perf/mysql/performance-tests.html
tests/2.8.6-b434/perf/mysql/performance-tests.html
tests/2.8.6-b434/perf/mysql/performance-tests.html
tests/2.8.6-b434/perf/mysql/performance-tests.html
tests/2.8.6-b434/perf/mysql/performance-tests.html
tests/2.8.6-b434/perf/pgsql/performance-tests.html
tests/2.8.6-b434/perf/pgsql/performance-tests.html
tests/2.8.6-b434/perf/pgsql/performance-tests.html
tests/2.8.6-b434/perf/pgsql/performance-tests.html
tests/2.8.6-b434/perf/pgsql/performance-tests.html
tests/2.8.6-b434/perf/sm-mysql/performance-tests.html
tests/2.8.6-b434/perf/sm-mysql/performance-tests.html
tests/2.8.6-b434/perf/sm-mysql/performance-tests.html
tests/2.8.6-b434/perf/sm-mysql/performance-tests.html
tests/2.8.6-b434/perf/sm-mysql/performance-tests.html
tests/2.8.5-b422/perf/xmldb/performance-tests.html
tests/2.8.5-b422/perf/xmldb/performance-tests.html
tests/2.8.5-b422/perf/xmldb/performance-tests.html
tests/2.8.5-b422/perf/xmldb/performance-tests.html
tests/2.8.5-b422/perf/xmldb/performance-tests.html
tests/2.8.5-b422/perf/mysql/performance-tests.html
tests/2.8.5-b422/perf/mysql/performance-tests.html
tests/2.8.5-b422/perf/mysql/performance-tests.html
tests/2.8.5-b422/perf/mysql/performance-tests.html
tests/2.8.5-b422/perf/mysql/performance-tests.html
tests/2.8.5-b422/perf/pgsql/performance-tests.html
tests/2.8.5-b422/perf/pgsql/performance-tests.html
tests/2.8.5-b422/perf/pgsql/performance-tests.html
tests/2.8.5-b422/perf/pgsql/performance-tests.html
tests/2.8.5-b422/perf/pgsql/performance-tests.html
tests/2.8.5-b422/perf/sm-mysql/performance-tests.html
tests/2.8.5-b422/perf/sm-mysql/performance-tests.html
tests/2.8.5-b422/perf/sm-mysql/performance-tests.html
tests/2.8.5-b422/perf/sm-mysql/performance-tests.html
tests/2.8.5-b422/perf/sm-mysql/performance-tests.html
tests/2.8.3-b409/perf/xmldb/performance-tests.html
tests/2.8.3-b409/perf/xmldb/performance-tests.html
tests/2.8.3-b409/perf/xmldb/performance-tests.html
tests/2.8.3-b409/perf/xmldb/performance-tests.html
tests/2.8.3-b409/perf/xmldb/performance-tests.html
tests/2.8.3-b409/perf/mysql/performance-tests.html
tests/2.8.3-b409/perf/mysql/performance-tests.html
tests/2.8.3-b409/perf/mysql/performance-tests.html
tests/2.8.3-b409/perf/mysql/performance-tests.html
tests/2.8.3-b409/perf/mysql/performance-tests.html
tests/2.8.3-b409/perf/pgsql/performance-tests.html
tests/2.8.3-b409/perf/pgsql/performance-tests.html
tests/2.8.3-b409/perf/pgsql/performance-tests.html
tests/2.8.3-b409/perf/pgsql/performance-tests.html
tests/2.8.3-b409/perf/pgsql/performance-tests.html
tests/2.8.3-b409/perf/sm-mysql/performance-tests.html
tests/2.8.3-b409/perf/sm-mysql/performance-tests.html
tests/2.8.3-b409/perf/sm-mysql/performance-tests.html
tests/2.8.3-b409/perf/sm-mysql/performance-tests.html
tests/2.8.3-b409/perf/sm-mysql/performance-tests.html
tests/2.7.2-b378/perf/xmldb/performance-tests.html
tests/2.7.2-b378/perf/xmldb/performance-tests.html
tests/2.7.2-b378/perf/xmldb/performance-tests.html
tests/2.7.2-b378/perf/xmldb/performance-tests.html
tests/2.7.2-b378/perf/xmldb/performance-tests.html
tests/2.7.2-b378/perf/mysql/performance-tests.html
tests/2.7.2-b378/perf/mysql/performance-tests.html
tests/2.7.2-b378/perf/mysql/performance-tests.html
tests/2.7.2-b378/perf/mysql/performance-tests.html
tests/2.7.2-b378/perf/mysql/performance-tests.html
tests/2.7.2-b378/perf/pgsql/performance-tests.html
tests/2.7.2-b378/perf/pgsql/performance-tests.html
tests/2.7.2-b378/perf/pgsql/performance-tests.html
tests/2.7.2-b378/perf/pgsql/performance-tests.html
tests/2.7.2-b378/perf/pgsql/performance-tests.html
tests/2.7.2-b378/perf/sm-mysql/performance-tests.html
tests/2.7.2-b378/perf/sm-mysql/performance-tests.html
tests/2.7.2-b378/perf/sm-mysql/performance-tests.html
tests/2.7.2-b378/perf/sm-mysql/performance-tests.html
tests/2.7.2-b378/perf/sm-mysql/performance-tests.html
tests/2.6.4-b300/perf/xmldb/performance-tests.html
tests/2.6.4-b300/perf/xmldb/performance-tests.html
tests/2.6.4-b300/perf/xmldb/performance-tests.html
tests/2.6.4-b300/perf/xmldb/performance-tests.html
tests/2.6.4-b300/perf/xmldb/performance-tests.html
tests/2.6.4-b300/perf/mysql/performance-tests.html
tests/2.6.4-b300/perf/mysql/performance-tests.html
tests/2.6.4-b300/perf/mysql/performance-tests.html
tests/2.6.4-b300/perf/mysql/performance-tests.html
tests/2.6.4-b300/perf/mysql/performance-tests.html
tests/2.6.4-b300/perf/pgsql/performance-tests.html
tests/2.6.4-b300/perf/pgsql/performance-tests.html
tests/2.6.4-b300/perf/pgsql/performance-tests.html
tests/2.6.4-b300/perf/pgsql/performance-tests.html
tests/2.6.4-b300/perf/pgsql/performance-tests.html
tests/2.6.4-b300/perf/sm-mysql/performance-tests.html
tests/2.6.4-b300/perf/sm-mysql/performance-tests.html
tests/2.6.4-b300/perf/sm-mysql/performance-tests.html
tests/2.6.4-b300/perf/sm-mysql/performance-tests.html
tests/2.6.4-b300/perf/sm-mysql/performance-tests.html
tests/2.6.4-b295/perf/xmldb/performance-tests.html
tests/2.6.4-b295/perf/xmldb/performance-tests.html
tests/2.6.4-b295/perf/xmldb/performance-tests.html
tests/2.6.4-b295/perf/xmldb/performance-tests.html
tests/2.6.4-b295/perf/xmldb/performance-tests.html
tests/2.6.4-b295/perf/mysql/performance-tests.html
tests/2.6.4-b295/perf/mysql/performance-tests.html
tests/2.6.4-b295/perf/mysql/performance-tests.html
tests/2.6.4-b295/perf/mysql/performance-tests.html
tests/2.6.4-b295/perf/mysql/performance-tests.html
tests/2.6.4-b295/perf/pgsql/performance-tests.html
tests/2.6.4-b295/perf/pgsql/performance-tests.html
tests/2.6.4-b295/perf/pgsql/performance-tests.html
tests/2.6.4-b295/perf/pgsql/performance-tests.html
tests/2.6.4-b295/perf/pgsql/performance-tests.html
tests/2.6.4-b295/perf/sm-mysql/performance-tests.html
tests/2.6.4-b295/perf/sm-mysql/performance-tests.html
tests/2.6.4-b295/perf/sm-mysql/performance-tests.html
tests/2.6.4-b295/perf/sm-mysql/performance-tests.html
tests/2.6.4-b295/perf/sm-mysql/performance-tests.html
tests/2.6.0-b287/perf/xmldb/performance-tests.html
tests/2.6.0-b287/perf/xmldb/performance-tests.html
tests/2.6.0-b287/perf/xmldb/performance-tests.html
tests/2.6.0-b287/perf/xmldb/performance-tests.html
tests/2.6.0-b287/perf/xmldb/performance-tests.html
tests/2.6.0-b287/perf/mysql/performance-tests.html
tests/2.6.0-b287/perf/mysql/performance-tests.html
tests/2.6.0-b287/perf/mysql/performance-tests.html
tests/2.6.0-b287/perf/mysql/performance-tests.html
tests/2.6.0-b287/perf/mysql/performance-tests.html
tests/2.6.0-b287/perf/pgsql/performance-tests.html
tests/2.6.0-b287/perf/pgsql/performance-tests.html
tests/2.6.0-b287/perf/pgsql/performance-tests.html
tests/2.6.0-b287/perf/pgsql/performance-tests.html
tests/2.6.0-b287/perf/pgsql/performance-tests.html
tests/2.6.0-b287/perf/sm-mysql/performance-tests.html
tests/2.6.0-b287/perf/sm-mysql/performance-tests.html
tests/2.6.0-b287/perf/sm-mysql/performance-tests.html
tests/2.6.0-b287/perf/sm-mysql/performance-tests.html
tests/2.6.0-b287/perf/sm-mysql/performance-tests.html
tests/2.5.0-b279/perf/xmldb/performance-tests.html
tests/2.5.0-b279/perf/xmldb/performance-tests.html
tests/2.5.0-b279/perf/xmldb/performance-tests.html
tests/2.5.0-b279/perf/xmldb/performance-tests.html
tests/2.5.0-b279/perf/xmldb/performance-tests.html
tests/2.5.0-b279/perf/mysql/performance-tests.html
tests/2.5.0-b279/perf/mysql/performance-tests.html
tests/2.5.0-b279/perf/mysql/performance-tests.html
tests/2.5.0-b279/perf/mysql/performance-tests.html
tests/2.5.0-b279/perf/mysql/performance-tests.html
tests/2.5.0-b279/perf/pgsql/performance-tests.html
tests/2.5.0-b279/perf/pgsql/performance-tests.html
tests/2.5.0-b279/perf/pgsql/performance-tests.html
tests/2.5.0-b279/perf/pgsql/performance-tests.html
tests/2.5.0-b279/perf/pgsql/performance-tests.html
tests/2.5.0-b279/perf/sm-mysql/performance-tests.html
tests/2.5.0-b279/perf/sm-mysql/performance-tests.html
tests/2.5.0-b279/perf/sm-mysql/performance-tests.html
tests/2.5.0-b279/perf/sm-mysql/performance-tests.html
tests/2.5.0-b279/perf/sm-mysql/performance-tests.html
tests/2.4.0-b263/perf/xmldb/performance-tests.html
tests/2.4.0-b263/perf/xmldb/performance-tests.html
tests/2.4.0-b263/perf/xmldb/performance-tests.html
tests/2.4.0-b263/perf/xmldb/performance-tests.html
tests/2.4.0-b263/perf/xmldb/performance-tests.html
tests/2.4.0-b263/perf/mysql/performance-tests.html
tests/2.4.0-b263/perf/mysql/performance-tests.html
tests/2.4.0-b263/perf/mysql/performance-tests.html
tests/2.4.0-b263/perf/mysql/performance-tests.html
tests/2.4.0-b263/perf/mysql/performance-tests.html
tests/2.4.0-b263/perf/pgsql/performance-tests.html
tests/2.4.0-b263/perf/pgsql/performance-tests.html
tests/2.4.0-b263/perf/pgsql/performance-tests.html
tests/2.4.0-b263/perf/pgsql/performance-tests.html
tests/2.4.0-b263/perf/pgsql/performance-tests.html
tests/2.4.0-b263/perf/sm-mysql/performance-tests.html
tests/2.4.0-b263/perf/sm-mysql/performance-tests.html
tests/2.4.0-b263/perf/sm-mysql/performance-tests.html
tests/2.4.0-b263/perf/sm-mysql/performance-tests.html
tests/2.4.0-b263/perf/sm-mysql/performance-tests.html
tests/performance-tests.html
tests/performance-tests.html
tests/performance-tests.html

Tests

Stability Tests

Checking to see whether the function behaves well in long term run. It must handle hundreds of requests
asecond in asevera hour server run.

Version XMLDB MySQL PGSQL Distributed
2.3.4-b226 None 16:06:31 None None
[tests/stabili-
ty-tests.html]

Tigase Test Suite

Tigase Test Suite is an engine which allows you to run tests. Essentialy it just executes TestCase imple-
mentations. The tests may depend on other tests which means they are executed in specific order. For
exampl e authentication test is executed after the stream open test which in turn is executed after network
socket connection test.

Each TestCase implementation may have it's own set of specific parameters. There is a set of common
parameters which may be applied to any TestCase. As an example of the common parameter you can take
-loop = 10 which specified that the T est Case must be executed 10 times. Thetest specific parameter might
be -user-name = tester which may set the user name for authentication test.

The engineis very generic and allows you to write any kind of tests but for the Tigase projects the current
TestCase implementations mimic an XM PP client and are designed to test XM PP servers.

The suite containsakind of scripting language which allowsyou to combinetest casesinto atest scenarios.
The test scenario may contain full set of functional tests for example, another test scenario may contain
performance tests and so on.

Running Tigase Test Suite (TTS)

To obtain TTS, you will first need to clone the repository

git clone https://repository.tigase.org/git/tigase-testsuite.git
Once cloning is finished, navigate to the TTS root directory and compile with maven:

m/n cl ean install

Maven will compile TTS and placejarsin the necessary locations. From the same directory, you can begin
running TTS using the following command:

.Iscripts/all-tests-runner.sh
Y ou should see the following, which outlines the possible options to customize your test run

Run selected or all tests for Tigase server
Aut hor: Artur Hefczyc <artur_hefczyc@nu. co. uk>
Version: 2.0.0
---help|-h This hel p nessage
---func [nysql | pgsql | der by| mssql | nobngodb]
Run all functional tests for a single database configuration

80

tests/stability-tests.html
tests/stability-tests.html
tests/stability-tests.html

Tests

---lmem [nysql | pgsql | der by| mssql | nobngodb]

Run |l ow nmenory tests for a single database configuration
---perf [nysql | pgsql | der by| mssql | nobngodb]

Run all performance tests for a single database configuration
---stab [nysql | pgsql | der by| mssql | nbngodb]

Run all stability tests for a single database

configuration

---func-all Run all functional tests for all database
configurations

---Ilmemall Run low nmenory tests for all database
configurations

---perf-all Run all performance tests for all database
configurations

---stab-all Run all stability tests for all database

configurations

---all-tests Run all functionality and performance tests for
dat abase confi gurations

---single test_file.cot

---other script_file.xnpt

Speci al paraneters only at the beginning of the parameters |i st

---debug|-d Turns on debug node

---ski p-db-rel ad| - no-db Turns off rel oadi ng dat abase
---ski p-server|-no-serv Turns off Tigase server start
---smal | -nmenf -sm Run in small nenory node

O her possible paraneters are in foll ow ng order
[server-dir] [server-ip]

Customizing Tigase Test Suite

Y ou may run the tests from acommand line like above, however you may create and edit the /scripts/tests-
runner-settings.sh file to fit your Tigase installation and avoid having to have long complex commands
as this template shows:

#!/ bi n/ bash

func_rep="func-rep. htm"
perf_rep="perf-rep. htnm"
db_name="ti gasetest"
db_user="ti gase"
db_pass="ti gase"

root _user="root"

root _pass="root"

TESTS=("derby" -"nysqgl" -"pgsql" -"mssqgl")
| PS=("127.0.0.1" -"127.0.0.1" -"127.0.0.1" -"127.0.0.1")

server _ti meout =10

server_dir="/home/tigase/tigase-server"
dat abase="der by"

#dat abase="nysql "

server_i p="127.0.0.1"

81

Tests

Test

MS_MEM=100
MX_MEM=1000

SMVALL_MS_MEME10
SMALL_MX_MEME50

Thiswill allow you to maintain identical settings through multiple runs of TTS. See the next section for
learning how the scripting language works and how you can create and run your own custom tests.

Suite Scripting Language

The test suite contains scripting language which allows you to combine test cases into a test scenarios.
On the lowest level, however the language is designed to alow you to describe the test by setting test
parameters, test comments, identification and so on.

Let'slook at the example test description.

Short nane@est-id-1;test-id-2: Short description for the test case

{

}

--loop = 10
--user-name = Frank
This is a comment which is ignored

>> Long, detailed description of the test case <<

Meaning of all elements:

1

Short nameis any descriptive name you want. It doesn’t need to be unique, just something which tells
you what thistest is about. @ is a separator between the short name and the test ids.

. test-id-1;test-id-2 is a semicolon separated of the test cases IDs. The tests cases are executed in the

listed order. And listing them there means that the test-id-2 depends on test-id-1. Normally you don’t
haveto list all the dependenciesbecause all mandatory dependenciesareincluded automatically. Which
means if you have an authentication test case the suite adds the network socket connection and stream
opening tests automatically. Sometimes however, there are dependencieswhich are optional or multiple
mandatory dependencies and you need to select which one hasto be executed. Asagood exampleisthe
authentications test case. There are many authentication tests: PLAIN-AUTH, SASL-DIGESTMD?5,
SASL-PLAIN, DIGEST-AUTH and they are all mandatory for most of other tests like roster, presence
and so on. One of the authentication tests is a default dependency but if you put on the list different
authentication it will be used instead of default one.

. . isaseparator between test casesids list and the short test description.

. Short test description is placed between : - colon and opening { - curly bracket. Thisis usually quite

brief, single line test description.

. { } curly brackets contain all the test parameters, like how many times the test has to be executed or run

the test in a separate thread, user name, host | P address for the network connection and many others.

. >> << inside the double greater than and double less than you put a very long, multiple line test de-

scription.

Asfor the testing script between open curly brackets { and close one} you can put all the test case param-
etersyou wish. The format for itis:

82

Tests

-parameter -name = value

Parameter names always start with -. Note, some parameters don’t require any value. They can exist on
their own without any value assigned:

-debug-on-error
Thisimitates if you were to put yes or true as the value.

The scripting language includes also support for variables which can be assigned any value and used
multiple times later on. Y ou assign avalue to the variable the same way as you assign it to the parameter:

$(variable-name) = value
The variable name must be always enclosed with brackets () and start with $.

The value may be enclosed within double quotes " " or double quotes may be omitted. If thisisasimple
string like a number or character string consisting only of digits, letters, underscore _ and hyphen - then
you can omit double quotes otherwise you must enclose the value.

The test case descriptions can be nested inside other test case descriptions. Nested test case descriptions
inherit parameters and variables from outer test case description.

Writing Tests for Plugins

Y ou can write testsin asimple text file which is loaded during test suite runtime.

You simply specify what should be send to the server and what response should be expected from the
server. No need to write Java code and recompile the whol e test suite for new tests. It means new test cases
can be now written easily and quickly which hopefully means more detailed tests for the server.

How it works:

Let’'s take XEP-0049 [http://www.xmpp.org/extensions/xep-0049.html] Private XML Storage. Looking
into the spec we can see the first example:

Example 1. Client Stores Private Data
CLIENT:
<iq type="set" id="1001">
<query xm ns="j abber:iq:private">
<exodus xm ns="exodus: prefs">
<def aul t ni ck>Ham et </ def aul t ni ck>
</ exodus>
</ query>
</ig>
SERVER:
<iq type="result" id="1001"/>

This is enough for the first simple test. | have to create text file Jabber | gPri vat e. t est looking
likethis:

send: {

83

http://www.xmpp.org/extensions/xep-0049.html
http://www.xmpp.org/extensions/xep-0049.html

Tests

<iqg type="set" id="1001">
<query xm ns="j abber:iq:private">
<exodus xm ns="exodus: prefs">
<def aul t ni ck>Hanl et </ def aul t ni ck>
</ exodus>
</ query>
<lig>
}

expect: {
<iqg type="result" id="1001"/>

And now | can execute the test:

testsuite $ -./scripts/all-tests-runner.sh ---single JabberlqgPrivate.test
Ti gase server hone directory: -../server

Version: 2.8.5-b422

Dat abase: xm db

Server |P: 127.0.0.1

Extra paraneters: JabberlgPrivate.test
Starting Tigase:
Ti gase running pi d=6751

Runni ng: 2.8.5-b422-xm db test, IP 127.0.0.1..
Script nane: scripts/single-xnmpp-test.xnmpt
Common test: Common test -... failure!
FAI LURE, (Received result doesnt match expected result.,
Expected one of: [<iq id="1001" type="result"/>],
received:
[<iqg id="1001" type="error">
<query xm ns="j abber:iq:private">
<exodus xm ns="exodus: prefs">
<def aul t ni ck>Hanl et </ def aul t ni ck>
</ exodus>
</ query>
<error type="cancel ">
<feature-not-inplemented xm ns="urn:ietf:paranms: xm : ns: xnpp-stanzas"/>
<text xm:lang="en" xm ns="urn:ietf:paranms: xm : ns: xnpp- st anzas" >
Feat ure not supported yet.</text>
</error>

</ig>]),

Total : 100ms
Test time: 00:00:02
Shutting down Tigase: 6751

If | just started working on this XEP and there is no code on the server side, the result is perfectly expected
although maybe this is not what we want. After a while of working on the server code | can execute the
test once again:

testsuite $ -./scripts/all-tests-runner.sh ---single JabberlqgPrivate.test

Tests

Test

Ti gase server hone directory: -../server
Version: 2.8.5-b422

Dat abase: xm db

Server |P: 127.0.0.1

Extra paraneters: JabberlgPrivate.test
Starting Tigase:

Ti gase runni ng pi d=6984

Runni ng: 2.8.5-b422-xm db test, IP 127.0.0.1..
Script nane: scripts/single-xnmpp-test.xnmpt
Common test: Common test -... success, Total: 40ns
Test tinme: 00:00:01

Shutting down Tigase: 6984

Thisisit. Theresult wewant in asimple and efficient way. We can repeat it as many timeswe want which
is especialy important in longer term trials. Every time we change the server code we can re-run tests to
make sure we get correct responses from the server.

You can have a look in the current build, with more complete test cases, file
for JabberlgPrivate [https.//projects.tigase.org/projects/tigase-testsuite/repository/revisions/master/en-
try/tests/datal/Jabber|gPrivate.cot].

Now my server tests are no longer outdated. Of course not all cases are so simple. Some XEPs require
calculationsto be done before stanzais sent or to compare received results. A good examplefor thiscaseis
user authentication like SASL and even NON-SASL. But till, there are many cases which can be covered
by simple tests: roster management, privacy lists management, vCard, private data storage and so on.

Case Parameters Description

Thereislong list of parameters which can be applied to any test case. Hereisthe description of all possible
parameters which can be used to build test scenarios.

Test Report Configuration

There are test report parameters which must be set in the main script filein order to generate HTML report
from the test. These parameters have no effect isthey are set inside the test case description.

1. -version = 2.0.0 sets the test script version. Thisis used to easily detect incompatibility issues when
the test suite loads a script created for more recent version of the suite and may not work properly for
thisversion.

2. -output-format = (html | html-content) sets the output format for the test report. There is actually
only one format possible right now - HTML. The only difference between these 2 options is that the
html format creates full HTML page with HTML header and body. The html-content format on the

85

https://projects.tigase.org/projects/tigase-testsuite/repository/revisions/master/entry/tests/data/JabberIqPrivate.cot
https://projects.tigase.org/projects/tigase-testsuite/repository/revisions/master/entry/tests/data/JabberIqPrivate.cot
https://projects.tigase.org/projects/tigase-testsuite/repository/revisions/master/entry/tests/data/JabberIqPrivate.cot

Tests

other hand creates only what isinside <body/ > element. And is used to embed test result inside other
HTML content.

3. -output-file="report-filehtm!" setsthe file name for the test report.

4. -output-history = (yes| no) setslogging of the all protocol data sent between test suite and the XM PP
server. Normally for functional testsit is recommended to set it to yes but for al other tests like per-
formance or load tests it should be set to no.

5. -history-format = separate-file sets protocol data logging to a separate file. Currently thisisthe only
possible option.

6. -output-cols=(5]7) Only valid values are:

5: -"Test name", -"Result", -"Test time", -"Description" [, -"Hi story" -]
7: -"Test name", -"Result", -"Total tine", -"CK', -"Average", -"Description" [,

7. -title = "The title of the report page" This parameter sets the test report title which is placed in the
HTML pageinthe<ti t| e/ > element aswell asin thefirst page header.

Basic Test Parameters

These parameters can be set on per-test case basis but usually they are set in the main script file to apply
them to all test cases.

1. -base-ns="jabber:client" setsthe XML name space used for the XML stream in the XM PP connec-
tion. Some test cases can be used to test client to server protocol as well as server to server protocol
and possibly different protocols added in the future.

2. -debug switches debugging mode on. All the communication between the test suite and the server
is printed out to the text console and all other debugging information including java exceptions are
displayed aswell. It is especially useful when some test fails and you want to find out why.

3. -debug-on-error switches on debugging mode on error detection. Normally debug output generates
lots of message which makes the output very hard to read. Especially in the performance tests not only
you can read fast scrolling lines of the protocol databut also it slowsthetest down. This option however
turns debugging off if everything is working well and then generates debug output if any test error us
detected.

4. -def-auth = (auth-plain | auth-digest | auth-sadl) sets the default authentication method for the user
connection.

5. -def-stream = (stream-client | stream-server | stream-component | str eam-bosh) setsthe connection
stream to be tested and the name space for the connection.

6. -host = " host.name" the vhost name the tested server runs for. It may be the real DNS name or just
configured for testing purposes hostname. It must match however the server configuration.

7. -keysfile=" certskeystore" setsthelocation of the keys store file. No need to touch it.

8. -keysfile-password = keystor e sets the password for the keystore file. Normally you don’t have to
touch it.

9. -serverip =" 127.0.0.1" definesthe XMPP server |P address. Y ou may omit this parameter and then
the IP address will be determined automatically based on the server DNS address. However if the DNS

86

Tests

address can not be correctly resolved or if you run tests on the localhost you can use this parameter
to enforce the | P address.

10.-socket-wait = 10000 sets the network socket timeout in milliseconds that is maximum time the test
suite will wait for the response from the server. Y ou may want to increase the timeout for some specific
tests which require lots of computation or database activity on the server. Normally 10 seconds is
enough for most cases.

11.-stop-on-fail = true causes the script to terminate all actions on the first failed test case. It helps diag-
nosing the server state at the failure point.

12-trust-file=" certs/client_truststore" setsthefilenamefor theclient trust storefile. No need to change
it.

13.-trust-file-password = truststor e sets the password for the trust store file. Normally you don’'t have
to touch it.

14.-user-name = tester setsthe user name used for the XM PP connections between the test suite and the
XMPP server. It isusualy set globally the same for all tests and for some tests like receiving the server
configuration you may want to use a different account (with admin permissions). Then you can set a
different user for this specific test case.

15.-user -pass = tester-passwor d sets the password for the user used for the XM PP connection between
the test suite and the XM PP server.

16.-user-resr = resour ce sets the user JID resource part for the XMPP connection between the test suite
and the XM PP server.

Test Case Parameters

Test parameters which are normally set on per-test case basis and apply only to the test they are set for
and all inherited tests. Some of the parameters though are applied only to inherited test cases. Please |ook
in the description below to find more details.

1. -active-connection is a similar parameter to -on-one-socket option. If set the suite doesn’t close the
network socket and if the test is run in loop each loop run re-uses the network connection. Unlike in
the -on-one-socket mode the whole test is executed on each run including XM PP stream initialization
and user authentication. This option is currently not recommended in anormal use. It is useful only to
debug the server behavior in very specia use cases.

2. -background executes the test in a separate thread in background and immediately returns control to
the test suite program without waiting for the test to complete. Default behavior is to execute all tests
sequentially and run next test when previous one has been completed. This parameter however alows
to run tests concurrently. This a bit similar option to the -daemon parameter. The daemon test/task
however is ignored completely and results from the daemon are not collected where the background
test isanormal test which isrun concurrently with another one or possibly many other tests.

3. -daemon creates a task running in background in a separate thread. Such a test runs infinitely as a
daemon, itisnot recorded inthetest report and it’ sresult is not calculated. The purpose of such test/task
istowork as a helper for other test cases. A good example of such daemon test is message responder -
the test which runs under a different user name and waits for messages and responding to the sender.

4. -delay = 1000 sets the waiting time in milliseconds after the test case is completed. You may use it
if you want to introduce short delay between each test cases run in the loop or if you start the helper
daemon thread and you have to add the delay to make sure it isready to work before next real test starts
sending requests to the daemon.

87

Tests

5. -expect-type = error sets the type for a packet expected as a response. Some test cases like message
sender expects sometimes response with the same type it has sent the packet (chat) but in some other
cases when it sends a message to a user who has privacy lists set to block messages the response should
be with an error. Thisway we can use the same test cases for testing different responses scenarios.

6. -loop = 10 setsthe number of timesthetest (and al inherited tests) are repeated. Y ou can use a $(loop)
pseudo-variable to obtain and use the current loop run number. Thisis useful if you want to run every
loop run for a different user name like registering 10 different user accounts. To do this you stick the
$(loop) variable to the user name string: -user-name = " nick_name_$(loop)" .

7. -loop-delay = 10 sets a delay in milliseconds between each individual loop run for the tests which is
run multiple times. Thisissimilar parameter to the -delay one but the -delay option introduces a delay
after the whole test (or all loop runs) has been completed. The loop delay options adds waiting time
between each run of the looped test.

8. -loop-start = 5 setsthe loop starting value. It doesn’t affect number of loop runsin aany way. It only
affects the value of the $(loop) variable. Let’s say you want to run aload test for the server with 100k
concurrent users and you want to run the test from 3 different machines. To make sure each machine
uses distinct user accounts you have to set a different -loop-start parameter on each to prevent from

overlapping.

9. -messages = 10 sets the number of messages to send to the server. Thisis another way of looping the
test. Instead of repeating the whol e test with opening network connection, XM PP stream, authentication
and so on it causes only to send the message this many times. This parameters is accepted by some test
cases only which send messages. For the messages listeners - test cases which is supposed to respond
to the messages the number set here specifies how many times the the response must be sent before
the test successfully terminatesit’s work.

10.-multi-thread option causes to run the test case and all inherited in all levels test cases in separate
threads. Normally the test case where you put the parameter doesn’t have a test ID (what you put
between @ and : characters so it doesn’t run a test on it's own. Instead it contains a series of test
cases inside which are then run in a separate thread each. This is a key parameter to run tests for
many concurrent users. (Not aload tests though.) For example you can see whether the server behaves
correctly when 5 simultaneous modifies their roster. The execution time al inherited tests run in a
separate threads is added together and also results from each individual test is calculated and added to
the total main test results.

11.-no-record isused for kind of configuration tests (tasks) which are used to prepare the XM PP server or
databasefor later tests. As an example can be creation of the test user account which islater on used for
the roster tests. Usually you don’'t want to include such tests in the test report and using this parameter
you essentially exclude the test from the report. The test and the result however showsin the command
line output so you can still track what is really going on.

12.-on-one-socket isamodifier for alooped test case. Normally when we switch looping on using -loop
parameter the suite resets the state, closes the network socket and runs the test from the very beginning
including opening network socket, XM PP stream, authentication and so on. This parameter however
changes this behavior. The network socket is not closed when the test run is completed (successfully)
and next run executes only the last part of the test omitting the XM PP stream initialization, authentica-
tion and all othersbut last. Thisis useful when you want to send many messagesto the server (although
this effect may be accomplished using -messages parameter aswell) or registering many user accounts
on the server, unregistering user accounts and any other which might make sense repeating many times.

13.-port = 5223 this parameter is similar to the | P address setting and can be also set globally for all tests.
Normally however you set it for asel ected testsonly to check SSL connection. For all other tests default
port number is used. Therefore this parameters has been included in this section instead of "Basic test
parameters’.

88

Tests

14.-presence this parameter enables sending initial presence with positive priority after connection and
binding the session.

15.-repeat-script = 100 and -repeat-wait = 10 are 2 parameters are specific to the common test cases.
(Thetest cases which reads the test input/output data from the pseudo-xml text file. The first parameter
is another variation of test looping. It sets how many times the test has to be repeated. It works very
much like the -on-one-socket parameter. The only difference is that the common test can preserve
someinternal states between runsand therefore it has more control over the data. The second parameter
sets the timeout in milliseconds to wait/delay between each individual test run and it is avery similar
parameter to the -delay one but it sets atimeout inside the common test instead.

16.-sour ce-file = " dir/path/toffile.cot” is a parameter to set the "common test" script file. The common
test isatest cases which depends on the authentication test case and can read data to send and responses
to expect fromthetext file. The"cot" fileisapseudo-xml file with stanzasto send and stanzasto expect.
The the test cases compares the received packets with those in the text file and reports the test result.
Thisis usually amore convenient way to write a new test cases than coding them in Java.

17.-time-out-ok is set for atest case when we expect socket timeout as a correct result from the test case.
Normally the timeout means that the test failed and there was no response from the server at al or the
response was incorrect. For some tests however (like sending a message to the user who is blocking
messages through privacy lists) the timeout is the desired correct test result.

18.-to-jid =" user_name@host.name[mailto:user _name@host.name]" setsthe destination addressfor
packets sending packets somewhere. As an example is the test case sending <message /> packet. You
can set the destination address for the packet. Mind, normally every test expects some response for the
data sent so make sure the destination end-point will send back the data expected by the test case.

89

mailto:user_name@host.name
mailto:user_name@host.name

Chapter 8. Experimental

The guide contains description of non-standard or experimental functionality of the server. Some of them
are based on never published extensions, some of them are just test implementation for new ideas or
performance improvements.

* Dynamic Rosters
* Mobile Optimizations
* Bosh Session Cache

Dynamic Rosters

Problem Description

Normal roster contacts stored and created as dynamic roster parts are delivered to the end user trans-
parently. The XMPP client doesn’t really know what contacts come from its own static roster created
manually by the user and what contacts come from adynamic roster part; contacts and groups generated
dynamically by the server logic.

Some specialized clients need to store extra bits of information about roster contacts. For the normal user
static roster information can be stored as private dataand isavailable only to thissingle user. In some cases
however, clients need to storeinformation about contacts from the dynamic roster part and thisinformation
must be available to all users accessing dynamic roster part.

The protocol defined here allows the exchange of information, saving and retrieving extra data about the
contacts.

Syntax and Semantics

Extra contact data is accessed using 1Q stanzas, specifically by means of a child element qualified by
the jabber:ig:roster-dynamic namespace. The child element MAY contain one or more children, each
describing aunique contact item. Content of the element is not specified and isimplementation dependent.
From Tigase's point of view it can contain any valid XML data. Whole element is passed to the Dynami-
cRoster implementation class asis and without any verification. Upon retrieving the contact extradatathe
DynamicRoster implementation is supposed to provide a valid XML element with all the required data
for requested jid.

Thejid attribute specifies the Jabber Identifier (JID) that uniquely identifies the roster item. Inclusion of
thejid attributeis REQUIRED.

Following actions on the extra contact data are allowed:
* set - stores extrainformation about the contact

et - retrieves extrainformation about the contact

Retrieving Contact Data

Upon connecting to the server and becoming an active resource, a client can request the extra contact data.
Thisrequest can be made either before or after requesting the user roster. The client’ srequest for the extra
contact datais OPTIONAL.

90

Experimental

Example: Client requests contact extra data from the server using get request:

<iqg type='get' id="rce 1'>

<query xm ns='jabber:iq:roster-dynamc' >
<itemjid="archi medes@ureka. con />

</ query>

</ig>

Example: Client receives contact extra data from the server, but there was either no extrainformation for
the user, or the user was not found in the dynamic roster:

<iqg type='result' id="rce_1'>

<query xm ns='jabber:iq:roster-dynamc' >
<itemjid="archi mredes@ureka. com />

</ query>

</ig>

Example: Client receives contact extra data from the server, and there was some extra information found
about the contact:

<iqg type='result' id="rce_1'>

<query xm ns='jabber:iq:roster-dynamc' >
<itemjid="archi medes@ureka. con >

<phone>+12 3234 322342</ phone>

<note>This is short note about the contact</note>
<f ax>+98 2343 3453453</fax>

</itenp

</ query>

</ig>

Updating/Saving Extra Information About the Contact

At any time, aclient MAY update extra contact information on the server.
Example: Client sends contact extrainformation using set request.

<iqg type='set' id='a78b4g6ha463' >

<query xm ns='jabber:iq:roster-dynamc' >

<itemjid="archi nedes@ureka. conl >

<phone>+22 3344 556677</ phone>

<note>he is a smart guy, he knows whether the crown is nmade from pure gold or not.
</itenp

</ query>

</ig>

Client responds to the server:

<iq type='result' id="a78b4q6ha463'/>

A client MAY update contact extrainformation for more than a single item in one request:
Example: Client sends contact extrainformation using set request with many <i t enf > elements.

<iqg type='set' id="a78b4g6ha464' >
<query xm ns='jabber:iqg:roster-dynamc' >

91

Experimental

<itemjid="archi medes@ureka. con >

<phone>+22 3344 556677</ phone>

<note>he is a smart guy, he knows whether the crown is nmade from pure gold or not.
</itenp

<itemjid='"newt on@ureka. com >

<phone>+22 3344 556688</ phone>

<not e>He knows how heavy | am </ note>

</itenp

<itemjid='pascal @ureka.com >

<phone>+22 3344 556699</ phone>

<not e>Thi s guy hel ped ne cure ny sickness!</note>
</itenp

</ query>

<lig>

Client responds to the server:

<ig type='result' id='a78b4g6had64' />

Configuration

DynamicRoster implementation class should be configured in theinit.propertiesfile. Asit’ san extension
to the PresenceState, PresenceSubscription and Roster plugins classes should be configured either for
each plugin

sess-man/ pl ugi ns-conf/jabber\:iqg\:roster/dynam c-roster-classes=<class |ist>
sess- man/ pl ugi ns- conf/ presence- st at e/ dynam c-roster-cl asses=<cl asses |ist>
sess- man/ pl ugi ns- conf/ presence-subscri ption/ dynani c-roster-cl asses=<cl asses |ist>

or glabally:
sess- man/ pl ugi ns- conf/ dynam c-roster-cl asses=<cl asses |ist>

<classeslist> is a comma separated list of classes.

Mobile Optimizations

Problem Description

In default configuration stanzas are sent to the client when processing is finished, but in mobile environ-
ment sending or receiving data drains battery due to use of the radio.

To save energy data should be sent to client only if it isimportant or client iswaiting for it.

Solution

When mobile client is entering inactive state it notifies server about it by sending following stanza:

<ig type="set" id="xx">

<nobi | e
xm ns="http://tigase. org/ protocol /mobil e#v3"
enabl e="true"/>

<lig>

92

Experimental

After receiving stanza server starts queuing stanza which should be send to mobile client. What kind of
gueued stanzas depends on the plugins used and in case of M obile v3 presence stanzas are queued as well
as message stanzas which are Message Carbons. Any other stanza (such asiq or plain messenge) is sent
immediately to the client and every stanzafrom queueis also sent at thistime.
When mobile client is entering active state it notifies server by sending following stanza:
<ig type="set" id="xx">
<nobi | e

xm ns="http://tigase. org/ protocol /mobil e#v3"

enabl e="f al se"/>
<lig>
After receiving stanza server sends all queued stanzas to the client.

Also all stanzas from queue will be sent if number of stanzas in queue will reach queue size limit. By
default thislimit is set to 50.

Queuing Algorithms
There are three mobile optimization plugins for Tigase:
» Mobilevl - al presence stanzas are kept in queue
» Mobilev2 - only last presence from each sourceis kept in queue
* Mobilev3 - only last presence from each source is kept in queue, also Message Carbons are queued

If you wish to activate you Mobile v1 plugin you need to send presented above with xmins attribute value
replaced with http://tigase.org/protocol/mobileftvl

If you wish to activate you Mobile v2 plugin you need to send presented above with xmins attribute value
replaced with http://tigase.org/protocol/mobilettv2

Configuration

Mentioned plugins are not activated by default thus additional entriesin the init.properties are required:
+--sm-plugins=+mobile_v1,+mobile_v2,+mobile v3

Only one of these plugins should be enabled

Bosh Session Cache

Problem Description

Web clients have no way to store any data locally, on the client side. Therefore after a web page reload
the web clients loses all the context it was running in before the page reload.

Some elements of the context can be retrieved from the server like the roster and all contacts presence
information. Some other data however, can not be restored easily like opened chat windows and the chat
windows contents. Even if the roster restoring is possible, this operation isvery expensivein terms of time
and resources on the server side.

93

http://tigase.org/protocol/mobile#v1
http://tigase.org/protocol/mobile#v2

Experimental

On of possible solutions is to allow web client to store some data in the Bosh component cache on the
server side for the time while the Bosh session is active. After the page reloads, if the client can somehow
retrieve SID (stored in cookie or provided by the web application running the web client) it is possible to
reload al the data stored in the Bosh cache to the client.

Bosh session context data are: roster, contacts presence information, opened chat windows, chat windows
content and some other minor data. Ideally the web client should be able to store any data in the Bosh
component cache it wants.

Bosh Session Cache Description

The Bosh Session Cacheis divided into 2 parts - automatic cache and dynamic cache.

Thereason for splitting the cacheinto 2 partsisthat some data can be collected automatically by the Bosh
component and it would be very inefficient to require the client to store the data in the Bosh cache. The
best example for such datais the Roster and contacts presence information.

» automatic cache - isthe cache part which is created automatically by the Bosh component without any
interaction with the client. The client, however, can access the cache at any time. | would say thisis
a read-only cache but | don’t want to stop client from manipulating the cache if it needs. The client
usually, only retrieves datafrom this part of the cache asall changes should be automatically updated by
the Bosh component. The general ideafor the automatic cacheisthat the data stored there are accessible
in the standard XM PP form. So no extra code is heeded for processing them.

 dynamic cache - isthe cache part which is or can be modified at any time by the client. Client can store,
retrieve, delete and modify datain this part of the cache.

Cache Protocol

All the Bosh Session Cache actions are executed using additional <body/ > element attributes: cache
and cache-i d. Attribute cache stores the action performed on the Bosh cache and the cache-i d
attribute refers to the cache element if the action attribute needs it. cache- i d is optional. Thereisa
default cache ID (empty one) associated with the elements for which thecache- i d isnot provided.

If the<body/ > element contains the cache attribute it meansthat all dataincluded in the <body/ > refer
to the cache action. It is not alowed, for example to send a message in the body and have the cache action
set to get. The <body/ > element with cache action get, get_all, on, off, remove must be empty. The
<body/ > element with actions set or add must contain data to store in the cache.

Cache Actions

 on or off - the client can switch the cache on or off at any time during the session. It is recommended,
however that the client switches the cache on in thefirst body packet, otherwise some information from
the automatic cache may be missing. The automatic cache is created from the stream of data passing the
Bosh component. Therefore if the cache is switched on after the roster retrieval is completed then the
roster information will be missing in the cache. If the cacheis set to off (the default value) all requeststo
the cache areignored. Thisisto ensure backward compatibility with the original Bosh specification and
to make sure that in a default environment the Bosh component doesn’t consume any extra resources
for cache processing and storing as the cache wouldn’t be used by the client anyway.

* get - retrieves the cache element pointing by the cache-id from the Bosh cache. Note there is no result
cache action. The <body/ > sent as a response from the server to the client may contain cache results
for agiven cache-id and it may also contain other datareceived by the Bosh component for the client. It
may also happen that large cached data are split into afew parts and each part can be sent in a separate
<body/ > element. It may usually happen for the Roster data.

94

Experimental

Cache

get_all - retrieves all the elements kept in the Bosh cache. That action can can be performed after the
page reload. The client doesn’t have to request every single cached item one by one. It can retrieve all
cacheitemsin onego. It doesn’t mean however the whole cacheis sent to theclientinasingle<body/

> element. The cache content will be divided into asmaller parts of areasonable size and will be sent to
the client in a separate <body/ > elements. It may also happen that the <body/ > element contain the
cache elements as well as the new requests sent to the user like new messages or presence information.

set - sends data to the Bosh Session cache for later retrieval. The client can store any datait wantsin the
cache. The Bosh components stores in the cache under the selected ID all the datainside the <body/ >
element. The only restriction isthat the cached datamust beavalid XML content. The dataare returned
to the client in exactly the same form asthey were received from the server. The set action replaces any
previously stored data under thisID.

add - adds new element to the cache under the given ID. This action might be useful for storing data
for the opened chat window. The client can add new elements for the chat window, like new messages,
iconsand so on...

remove - removes the cached element for the given cache ID.

ID

Cache ID can be an any character string. There might be some IDs reserved for a specia cases, like for
the Roster content. To avoid any future ID conflicts reserved 1D values starts with: bosh - string.

Thereisadefault cache ID - en empty string. Thus cache-id attribute can be omitted and then the requests
refers to data stored under the default (empty) ID.

Reserved Cache ID Names

Hereisalist of reserved Cache IDs:

e bosh-roster - The user roster is cached in the Bosh component in exactly the same form as it was

received from the core server. The Bosh Cache might or might not do optimizations on the roster like
removing elements from the cached roster if the roster remove has been received or may just store all
the roster requests and then send them all to the client. There is a one mandatory optimization the Bosh
Cache must perform. It must remember the last (and only the last) presence status for each roster item.
Upon roster retrieving from the cache the Bosh component must send the roster item first and then the
presence for the item. If the presence is missing it means an offline presence. If the roster is small it
can be sent to the client in a single packet but for alarge roster it is recommended to split contact lists
to batches of max 100 elements. The Bosh component may send all roster contacts first and then all
presences or it can send a part of the roster, presences for sent items, next part of the roster, presences
for next items and so on.

bosh-resour ce-bind - The user resource bind is also cached to alow the client quickly retrieve infor-
mation about the full JID for the established Bosh session.

95

Chapter 9. Old Stuff

This contains sections on old features, or information pertaining to old builds of Tigase. It is kept here
for archival purposes.

96

Chapter 10. Tigase DB Schema
Explained

The schemabasics, how it looks like and brief explanation to all rows can be found in the schema creation
script [https://projects.tigase.org/proj ects/tigase-server/repository/revisions/master/entry/database/mysql -
schema-4-schema.sgl]. However, this is hardly enough to understand how it works and how al the data
isaccessed. There are only 3 basic tables which actually keep al the Tigase server users data: tig_users,
tig_nodesand tig_pairs. Thereforeit isnot clear at first how Tigase' s datais organized.

Before you can understand the Tigase XM PP Server database schema, how it works and how to useit, is
it essential to know what were the goals of it's development and why it works that way. Let’s start with
the API as this gives you the best introduction.

Simplified access can be made through methods:

voi d setData(BaredI D user, String key, String val ue);
String getData(BareJdl D user, String key);

And more a complex version:

voi d setData(BareJI D user, String subnode, String key, String value);
String getData(Baredl D user, String subnode, String key, String def);

Even though the API contains more methods, the rest is more or less a variation of presented
above. A complete API description for all access methods is available in JavaDoc documentation
in the UserRepository [https://projects.tigase.org/projects/tigase-server/repository/entry/trunk/src/main/
javaltigase/db/UserRepository.java] interface. So we are not going into too much detail here except for
themain idea

Tigase operates on <*key*, value> pairsfor the individual user data. Theidea behind thiswasto make the
API very simple and also at the same time very flexible, so adding a new plugin or component would not
require a database schema change, adding new tables, or conversion of the DB schemato a new version.

As aresult the User Repository interface is exposed to all of Tigase's code, mainly the components and
plugins (let's cal al of them modules). These modules simply call set/get methods to store or access
module specific data.

As plugins or components are developed independently it may easily happen that developer choses the
same key name to store some information. To avoid key name conflicts in the database a node concept
has been introduced. Therefore, most modules when set/get key value they also provide a subnode part,
which in most casesisjust XMLNS or some other unique string.

Thenodethingisalittlebit like directory in afile system, it may contain subnodeswhich makesthe Tigase
database behave like a hierarchical structure. And the notation is also similar to file systems, you use just
/ to separate node levels. In practice you can have the database organized like this:

user - nane@omain ---> (key, value) pairs
rost;a!r --->
it;elml ---> (keyl, valuel) pairs.
it;elmz ---> (keyl, valuel) pairs.

97

https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/database/mysql-schema-4-schema.sql
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/database/mysql-schema-4-schema.sql
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/database/mysql-schema-4-schema.sql
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/database/mysql-schema-4-schema.sql
https://projects.tigase.org/projects/tigase-server/repository/entry/trunk/src/main/java/tigase/db/UserRepository.java
https://projects.tigase.org/projects/tigase-server/repository/entry/trunk/src/main/java/tigase/db/UserRepository.java
https://projects.tigase.org/projects/tigase-server/repository/entry/trunk/src/main/java/tigase/db/UserRepository.java

Tigase DB Schema Explained

So to access item’s 1 data from the roster you could call method like this:
get Dat a("user - nane@lonai n", -"roster/iteml", keyl, defl);

Thisishuge convenience for the devel oper, as he can focus on the module logic instead of worrying about
data storage implementation and organization. Especialy at the prototype phase it speeds development up
and alows for a quick experiments with different solutions. In practice, accessing user’ s roster in such a
way would be highly inefficient so the roster is stored a bit differently but you get the idea. Also thereis
amore complex APl used in some places alowing for more direct access to the database and store data
in any format optimized for the scenario.

Right now such a hierarchical structure is implemented on top of SQL databases but initially Tigase's
database was implemented as an XML structure, so it was natural and simple.

In the SQL database we simulate hierarchical structure with three tables:

1. tig_users- with main users data, user id (JID), optional password, active flag, creation time and some
other basic properties of the account. All of them could be actually stored in tig_pairs but for perfor-
mance reasons they are in one place to quickly access them with asingle, ssimple query.

2. tig_nodes - is a table where the hierarchy is implemented. When Tigase was storing data in XML
database the hierarchy was quite complex. However, in a SQL databaseit resulted in avery slow access
to the data and a now more flat structure is used by most components. Please note, every user’s entry
has something called root node, which is represented by root string;

3. tig_pairs- thisisthe table where al the user’ sinformation is stored in form of the <key, value> pairs.

So we now know how the data is organized. Now we are going to learn how to access the data directly
in the database using SQL queries.

Let's assume we have a user admin@test-d for whom we want to retrieve the roster. We could simply
execute query:

sel ect pval
fromtig users, tig pairs

where user_id = -"adm n@est-d and
tig users.uid = tig_pairs.uid and
pkey = -'roster’';

However, if multiple modules store data under the key roster for asingle user, we would receive multiple
results. To access the correct roster we also have to know the node hierarchy for this particular key. The
main users roster is stored under the root node, so the query would look like:

sel ect pval
fromtig_ users, tig_nodes, tig_pairs
where user _id = -'adm n@est-d and
tig_users.uid = tig_nodes.uid and
node = -'root' and
tig_users.uid = tig_pairs.uid and
pkey = -'roster’;

How exactly the information is stored in the tig_pairs table depends on the particular module. For the
roster it looks a bit like XML content:

<contact jid="all-xmpp-test@est-d" subs="none" preped="sinple" name="all-xnpp-tes

98

Chapter 11. Why the most recent JDK?

There are many reasons but the main is that we are a small team working on source code. So the whole
approachisto makelife easier for us, make the project easier to maintain, and devel opment more efficient.

Hereisthelist:

Easy to maintain - No third-party libraries are used for the project which makes this project much
easier to maintain. This simplifiesissues of compatibility between particular versions of libraries. This
aso unifies coding with a single library package without having to rely on specific versions that may
not be supported.

Easy to deploy - Another reason to not use third-party toolsisto make it easier for end-usersto instal
and use the server.

Efficient development - As no third-party libraries are used, Tigase needs either to implement many
things on its own or use as much as possible of JDK functionality. We try to use as much as possible of
existing library provided with JDK and the rest is custom coded.

What features of JDK-1.5 are critical for Tigase development? Why | can’t ssmply re-implement some
code to make it compatible with earlier JDK versions?

Non-blocking 1/0 for SSL/TLS - This is functionality which can’t be simply re-implemented in
JDK-1.4. Asthe whole server uses NIO it doesn’t make sense to use blocking 1/0 for SSL and TLS.

SASL - This could be re-implemented for JDK-1.4 without much effort.

Concurrent package - This could be re-implemented for JDK-1.4 but takes a lot of work. Thisisa
critical part of the server asit uses multi-threading and concurrent processing.

Security package - There number of extensions to the security package which otherwise would not
work as easily with earlier versions of JDK.

| think above list is enough to decide to use JDK-1.5. But why JDK-1.6?

LinkedHashM ap - in JDK-1.6 is a basement for the Tigase cache implementation.

Light HTTP server - JDK-1.6 offers built-in light HTTP server which is needed to implement HTTP
binding (JEP-0124) and HTTP user interface to monitor server activity and work with the server con-
figuration.

99

Chapter 12. Generating Tigase Installer

To generateinstaller:
1. Install chosen version of |zPack [http://izpack.org/] including source code.

2. In order to compile custom Tigase panels you need to first compile 1zPack [http://izpack.org/] classes.
Youcanusetheincluded bui | d. xml whichisinthesrcdirectory of IzPack [http://izpack.org/] install.
Just enter this dir and type:

ant all

1. Depending on the IzPack version classes will be compiled directly into the src/ i b directory or
_bui | d directory of 1zPack [http://izpack.org/]. Y ou may need to tweak the bui | d. xm filewhich
isinthe samedir asther eadmne and point to the directory where |zPack [http://izpack.org/] compiled
classesreside.

<l-- fragment --->
<cl asspat h>
<pat hel enent | ocati on="java"/>

<!-- tweak bel ow fragment --->
<pat hel ement | ocation="${installer.path}/ build"/>

<pat hel ement | ocation="${install er. path}/bin/panel s/ Target Panel .jar"/>
</ cl asspat h>

1. Make sure that the bin/panels directory of IzPack [http://izpack.org/] is writable by gener -
ate-installer. sh script. Compiled custom panels will be placed here before running installer
compiler.

2. Modify thescri pt/ generat e-i nstal | er. sh. Changethel ZPACK DI R variableto point to
the 1zPack [http://izpack.org/] instalation directory e.g.

| ZPACK DI R="/usr /Il ocal /| zPack421"

3. Todtart theinstallation processrunthescri pt s/ generat e-i nstal | er. shfileyouwill findin
the main server source code directory. Y ou should start it from the server root dir.

4. Generated files (jar and exe) will be placed in the packages dir of Tigase codebase.

100

http://izpack.org/
http://izpack.org/
http://izpack.org/
http://izpack.org/
http://izpack.org/
http://izpack.org/
http://izpack.org/
http://izpack.org/
http://izpack.org/
http://izpack.org/
http://izpack.org/
http://izpack.org/
http://izpack.org/
http://izpack.org/

Chapter 13. API Description for Virtual
Domains Management in the Tigase
Server

The purpose of this guide is to introduce vhost management in Tigase server. Please refer to the JavaDoc
documentation for all specific detailsnot covered inthisguide. All interfaces are well documented and you
can use existing implementation as an exampl e code base and reference point. The VHost management files
arelocated in the repository and you can browse them using the project tracker [https://projects.tigase.org/
projects/tigase-server/repository/revisions/master/show/src/main/javaltigase/vhosts] .

Virtual hosts management in Tigase can be adjusted in many ways through the flex-
ible API. The core elements of the virtual domains management is interface VHost-
Manager [https://projects.tigase.org/proj ects/tigase-server/repository/revisions/master/entry/src/main/ja
valtigase/vhosts/VHostManager.java] class. They are responsible for providing the virtual hosts
infformation to the rest of the Tigase server components. In particular to the Mes
sageRouter [https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/
javaltigase/server/MessageRouter.javal class which controls how XM PP packets flow inside the server.

The class you most likely want to re-implement is VHostJD-
BCRepository [https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/
main/javaltigase/vhostsVHostJDBCRepository.java] used as a default virtual hosts storage and imple-
menting the VHostRepository [https.//projects.tigase.org/projects/tigase-server/repository/revisions/mas-
ter/entry/src/main/javaltigase/vhosts/V HostRepository.java) interface. Y ou might need to have your own
implementation in order to store and access virtual hosts in other than Tigase's own data storage. Thisis
especialy important if you are going to modify the virtual domainslist through systems other than Tigase.

The very basic virtual hosts storage is provided by VHostltem [https.//projects.tigase.org/projects/
tigase-server/repository/revisions/master/entry/src/main/javaltigase/vhosts/VHostltem.java] class. This
is read only storage and provides the server a bootstrap vhosts data at the first startup time
when the database with virtual hosts is empty or is not accessible. Therefore it is advised
that all VHostltem [https://proj ects.tigase.org/proj ects/tigase-server/repository/revisions/master/entry/src/
main/javaltigase/vhosts/V Hostltem.java] implementations extend this class. The example codeisprovided
in the VHostJDBCRepository [https.//projects.tigase.org/projects/tigase-server/repository/revisions/mas-
ter/entry/src/main/javaltigase/vhosts/VHostJDBCRepository.java) file.

All components which may need virtual hosts information or want to interact with virtual hosts man-
agement subsystem should implement the VHostListener [https://projects.tigase.org/projects/tigase-serv-
er/repository/revisions/master/entry/src/main/javaltigase/vhosts/VHostListener.java] interface. In some
cases implementing this interface is necessary to receive packets for processing.

Virtual host information is carried out in 2 forms inside the Tigase server:
1. AsaString value with the domain name

2. As a VHostltem [https://projects.tigase.or g/projects/tigase-server/repository/revisiongmas-
ter/entry/sr c/main/java/tigase/vhosts’VHostItem.java] which contains all the domain information
including the domain name, maximum number of usersfor this domain, whether the domain is enabled
or disabled and so on. The JavaDoc documentation contains all the details about all available fields
and usage.

Hereisacompletelist of all interfaces and classes with a brief description for each of them:

101

https://projects.tigase.org/projects/tigase-server/repository/revisions/master/show/src/main/java/tigase/vhosts
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/show/src/main/java/tigase/vhosts
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/show/src/main/java/tigase/vhosts
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostManager.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostManager.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostManager.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostManager.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/server/MessageRouter.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/server/MessageRouter.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/server/MessageRouter.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/server/MessageRouter.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostItem.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostItem.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostItem.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostItem.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostItem.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostItem.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostListener.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostListener.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostListener.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostItem.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostItem.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostItem.java

API Description for Virtual Domains
Management in the Tigase Server

1. VHostManagerlfc [https://projects.tigase.org/proj ects/tigase-server/repository/revisions/master/en-
try/src/main/javaltigase/vhosts/\VV HostM anagerlfc.javal - is an interface used to access virtual hostsin-
formation in all other server components. There is one default implementation of the interface: VHost-
Manager.

2. VHostListener [https.//projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/
main/javaltigase/vhosts/VHostL istener.java) - is an interface which allows componentsto interact with
the VHostManager. The interaction is in both ways. The VHostManager provides virtua hosts infor-
mation to components and components provide some control data required to correctly route packets
to components.

3. VHostRepository [https://projects.tigase.org/projects/tigase-server/repository/revisions/master/en-
try/src/main/javaltigase/vhosts/VHostRepository.java] - is an interface used to store and load
virtual domains list from the database or any other storage media. There are 2 imple-
mentations for this interface: VHostConfigRepository [http://projects.tigase.org/server/trac/brows-
er/trunk/src/main/javaltigase/vhosts/'V hostConfigRepository.java] which loads vhosts information
for the configuration file and provides read-only storage and - VHostJDBCRepository class
which extends VHostConfigRepository [http://projects.tigase.org/server/trac/browser/trunk/src/main/
javaltigasel/vhosts/V hostConfigRepository.java] and allows for both - reading and saving virtua do-
mainslist. VHost JDBCReposi t ory isloaded as a default repository by Tigase server.

4. VHostltem [https://projects.tigase.org/proj ects/tigase-server/repository/revisions/master/entry/src/
main/javaltigase/vhosts/VHostItem.java] - is a class which allows for keeping all the virtual domain
properties. Sometimes the domain name is not sufficient for data processing. The domain may be tem-
porarily disabled, may have a limited number of users and so on. Instances of this class keep all the
information about the domain which might be needed by the server components.

5. VHostManager [https://projects.tigase.org/projects/tigase-server/repository/revisions/master/en-
try/src/main/javaltigase/vhosts/\VV HostManager.java] - the default implementation of the VHostMan-
agerlfc interface. It provides components with the virtual hosts information and manages the virtual
hosts list. Processes ad-hoc commands for rel oading, updating and removing domains.

6. VHostConfirRepository [https://projects.tigase.org/projects/tigase-server/repository/revisions/mas-
ter/entry/src/main/javaltigase/vhosts/V hostConfigRepository.javal - a very basic implementation of
the VHostRepository [http://projects.tigase.org/server/trac/browser/trunk/src/main/javaltigase/vhosts/
VHostRepository.java] for loading domains list from the configuration file.

7. VHostIDBCRepository [https://projects.tigase.org/projects/tigase-server/repository/revisions/mas-
ter/entry/src/main/javaltigase/vhosts/'V HostJDBCRepository.java] - the default implementation of
the VHostRepository [http://projects.tigase.org/server/trac/browser/trunk/src/main/javaltigase/vhosts/
VHostRepository.javal loaded by Tigase server. It allows to read and store virtual domains list in the
database accessible through UserRepository.

102

https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostManagerIfc.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostManagerIfc.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostManagerIfc.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostListener.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostListener.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostListener.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VhostConfigRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VhostConfigRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VhostConfigRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VhostConfigRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VhostConfigRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VhostConfigRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostItem.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostItem.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostItem.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostManager.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostManager.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostManager.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VhostConfigRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VhostConfigRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VhostConfigRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostJDBCRepository.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/vhosts/VHostJDBCRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostRepository.java

Chapter 14. Stanza Limitations

Although XMPP is robust and can process stanzas of any size in bytes, there are some limitations to keep
in mind for Tigase server.

Please keep these in mind when using default Tigase settings and creating custom stanzas.

Limit to number of attributes of single element = 50 attributes
Limit to number of elements = 1024 elements

Limit to length of element name = 1024 characters

Limit to length of attribute name = 1024 characters

Limit to length of attribute value = 10240 characters

Limit to length of content of single element CDATA = 1048576b or 1Mb

These values may be changed.

Note that these limitations are to elements and attributes that may be within a stanza, but do not
limit the overall stanza length.

Escape Characters

There are special characters that need to be escaped if they are included in the stanza to avoid conflicts.
Therulesare similar to normal XML escaping. Thefollowing isalist of charactersthat need to be escaped
and what to use to escape them:

&anp;
<
> ;
" ;
'

103

