Tigase Development Guide

Tigase Team

Tigase Development Guide
Tigase Team

Table of Contents

T 1= PSSP 1
LIS PSPPI 1
FUNCEIONG TOSES ...eeet ettt ettt ettt e et e e e e 1
PEfOIMENCE TESES ...ttt ettt e e e e 3

SEADHTEY TOSES ettt et 5

2. Tigase DB Schema EXPIaiNedoviiiiiiiiii et 6
3. BASIC INFOMMELION ...ttt ettt et et e et e e e aba s 9
Tigase SErVEr EIEIMENESuiiiii e et 9
10701001070 0 0| S PP TP PPN 9

PLUGFIN et 10

1070007 ot (o PP UPPTPPN 11

Data, Stanzas, Packets - Data Flow and ProCessingcoceeeveviieiiiineiiiiiiieeeeeeeenn, 11

4. Why the MOSt reCENT JDK? ...ttt e e e e e et e e b s 12
5. Hack Tigase Jabber/XMPP Server in ECIIPSEvuiiiiiiiieciei e 13
IDK-1U6.0 SEIUD ..eeittie ettt ettt et e e e e e e ean 13
SUBCHIPSE INSLATBLION ...t e e e e et e eeees 15
PrOJECE TMPOIT <.ttt e et e et e e e eba s 15

6. APl changes in the Tigase SEIVEN 5.X ..euuu i 17
7. ServVer COMPITALIONuiiiii ettt e e e e 19
8. Tigase XMPP Server 5.2.0 and later - Compilation and Generating Distribution Packages............. 20
DistribUtion PACKBOgEScooveiiiiiii e 20
Building Server and Generating PaCkagesScuuuuiiiiiiiiiiiiiiie e 20
RUNNING SNV oot e et e et e e e e e e aaa s 21

9. Tigase Packages Dependency Change - Server Compilation Version 4.x or Later 22
10. Server Compilation - VErSion 2.X @N0 3.X .oeeueueiiiii e e et 24
11, MEVEN 2.X SUPPOIT ..ttt ettt e e e e e et et e e e e e e e e e e e e eees 26
12. A Very SNOMt MaVven GUIEcoovuueiiiiiie ettt 28
Snapshot Compilation and Snapshot Package Generationoceveviiveeiiiinneeieiinneeeeiinnnn. 28
Release Compilation, GENEFatiONuiiiuiiii et e e ean s 28
Generating tar.gz, tar.nz2 File With SoUrceS ONlYuiviiiiiiiiiiiiiiiieeiii e 28

13. Generating Tigase INSEAlEr ... e 29
14, Plugin DeVEIOPIMENT ...c.uuii ittt ettt e et e et e e e e e e e e b 30
15. SASL Custom Mechanisms and Configurationocceeueieeiiiiiie e 31
BasiC SASL CONFIQUIBLIONceiitiieiiit ettt e e et e e e et e e e ena e eeees 31
MechanisSms CONfIQUIALIONcouuuuiiiiii et 31
CallbackHandler ConfiguIationvieeiiiiiieiiii e 32

Selecting Mechanisms Available in the Stream ..., 32
LOgOiNG/AULNENTICAIIONeeeteeiiie ettt e e et e e 32
BUIlt-IN MECNANISIMS ...t 33

Custom MechanisSms DeVEIOPIMENLiiiiiiieeiiii e 33
MEChANISIM <. e 33
CallbaCkHAaNAIEr 33

GeNEral REMAIKS ... i 33

KNOWN ProDIEIMS ...t 34

16. How Packets are Processed by the SM and PIUGINSoovieiiiiiiiiiiiicii e 35
Fg11oTo (8 oi [0 H O UP PP PP PR 35

17. WIting PlUGIN COOEcoviiiiiii ettt e et e e s 39
USING 8NNOLELION SUPPONT ... eeeeteeeitie ettt ettt et e et e e et e e et e e e et e e e e e e e ebaaas 40
Using older non-annotation based implementationcociiiiiiiinieiiiiec e 40
Implementation of Processing MELhOMcoeuuiiiiiiii e 41

18. PlUgin CONfIQUIALTIONceeeeeieeeiit ettt ettt ettt e et et e et eeeaae e e ennes 44

Tigase Development Guide

19. Component DEVEIOPIMENLcoueiiii e e e e e e e e e e et e s e et e e aaeeaens 46
20. Component Implementation - LESSON 1 - BASICS ...uuuivvuiiiiiieiiieeiiieeeiieeeie e e et e et e eaneeaens 47
21. Component Implementation - Lesson 2 - Configurationcoeeveuieiiiiieiiineiii e eiee e 50
22. Component Implementation - Lesson 3 - Multi-Threadingccoooviiiiiiiiin i 54
23. Component Implementation - Lesson 4 - Service DISCOVENYovvvieiiieiiiiiiiiieeieeeee e e 59
24, Component Implementation - LeSSON 5 - StatiStiCSuuuiviiiiiiiiiiiii e 66
25. Component Implementation - Lesson 6 - SCripting SUPPOIccevveeiiiieiiiieein e, 71
(0001110 [8117= 1 Lo o 1Y = PN 77
g1 o 8o [o OSSP 77

Component SLartUP SEOUENCEueiiie e eas 77
(0001110 8 17= 1 (o] 0 10 = 78

o1 1 L -) 78

LSS (0] o= (1=) I P 78

USEFUL PrESELS ... eiiiii ettt e ettt e et n e e et e e e etan s aeeeaees 79

Global Configuration SEHINGSuiiiviiiiie e e 79

26. Packet Filtering in COMPONENEccuuiii i e e e e e e e e e et e e et e e eaeeeanees 80
The Packet FIITEr APl ...t e e et e e e eaan s 80

(@0 01110 8= 1 (o o I 80

27. Component Implementation - Lesson 8 - Startup TiMEcvvviiiiiiii e eevi e eias 82
28. Component Implementation - Lesson 7 - Data REPOSITONYcoevvvieiiiieiiiiieiieeeiieeeee e 83
29. API Description for Virtual Domains Management in the Tigase Serverccoeevvvveviiieiinneenn, 84
GO o 1= 1.1 1 86
[N = T o 0 = £ 86
Problem DESCIIPLIONciei e e e e e 86

Syntax and SEMEAMLICSu.iiieieii e e e e e e e e e e e et e e e raaaes 86

REHEVING CONLACt Dalalu.evveieiiii e e e e e e e e e e eaen 87
Updating/Saving Extra Information About the Contactcccoevviiiiiiiiiiineeieeenn, 87

(©0 01170 8= 1 (o o PPN 88

1Y Y o o T L@ o 114 1< 0] 89
Problem DESCIIPLIONiii i e et e e e e e e e et e e e e e e e aae 89

S o] 111 o SO 89
Queuaing AlGOrITMS e 89

(@0 011 To 8= 1 (o o 1 90

32. BOSh SESSION CBCNE ...t 91
Problem DESCIIPLIONiii i e et e e e e e e e et e e e e e e e aae 91

Bosh Session Cache DESCIIPLIONu.iiiiiii e e e e e e aens 91

L0 o Sl = (0] (o oo PP 91
CACNE ACLIONS ... eetiiee et e et 92

L0 1= 2 | I S STTRSPPPIN 92

Reserver Cache ID NAIMESuuiiiiiiii i eaaen s 92

GG T e oS I IS S (S 94
34. Test Suite SCripting LaNQUABOEc.vuieiiieii e e e e e e e e e e e e e et e et e e aaneeaens 95
35. Writing TeStS fOr PIUGINSovvniiii e e e e e e e e e s 97
36. Test Case Parameters DESCIIPLION .. c.uuiiiiiiie e e e e e e e aeaas 100
Test RePOrt ConfigUIALIONuueiiieiii e e e e e e e e e e e e e e e et e e e e aaeeeens 100
BaSiC TESE ParameEterSuuieiiiiiiieiiii e e e e e et e e et e e e et e e e e et e eaaae 100

Test CaSe ParaMeterSc.uiiiiiiiei et 101

Chapter 1. Tests

Mateusz Fiolka v2.0, June 2014: Reformatted for AsciiDoc. :toc: :numbered: :website; http://tigase.net/

:Date: 2010-04-06 21:22

Tests

Tests are very important part of Tigase server development process.

Each release goes through fully automated testing process. All server functions are considered implement-
ed only when they pass testing cycle. Tigase test suite is used for all our automatic tests which alows to

define different test scenarios.

Thereisno tweaking on databasesfor tests. All databases areinstalled in standard way and run with default

settings. Database is cleared each time before test cycle starts.

There are no modifications to Tigase configuration file aswell. All tests are performed on default config-

uration generated by configuration wizards.

The server istested in al supported environments:

1. XMLDB - tests with built-in simple XML database. This is simple and efficient solution for small
installations. | recommend it for services with up to 100 user accounts although it was successfully
tested with 10,000 user accounts.

2. MySQL - testswith MySQL [http://www.mysgl.com/] database. Much slower than XMLDB but may
handle much more user accounts.

3. PostgreSQL - tests with PostgreSQL [http://www.postgresgl.org/] database. Again it is much slower
than XMLDB but may handle much more user accounts. Thisis basically exactly the same code as for
MySQL database (SQL Connector) but tests are executed to make sure the code is compatible with all
supported SQL databases and to compare performance.

4. Distributed - is test for distributed installation where c2s and s2s components run on separated ma-
chine which connects using external component protocol (XEP-0114 [http://www.xmpp.org/exten-
sions/xep-0114.html]) to another machine with SessionManager running.

Functional Tests

Basic checking if all the functionswork at correctly. These tests are performed every time the code is sent

to source repository.

Version XMLDB MySQL PGSQL Distributed

3.3.2-h889 00:00:12 00:00:17 00:00:17 none
[tests/3.3.2-b88Y/ | [tests/3.3.2-b889Y/ | [tests/3.3.2-b889Y/
func/xmldb/func- | func/mysgl/func- | func/pgsgl/func-
tional-tests.html] |tional-tests.html] |tional-tests.html]

3.3.2-b880 00:00:13 00:00:15 00:00:15 None
[tests/3.3.2-b880/ | [tests/3.3.2-b880/ | [tests/3.3.2-b880/
func/xmldb/func- | func/mysgl/func- | func/pgsgl/func-
tional-tests.html] |tional-tests.html] |tional-tests.html]

3.0.2-b700 00:00:22 00:00:24 00:00:25 00:00:25
[tests/3.0.2-b700/ | [tests/3.0.2-b700/ |[tests/3.0.2-b700/ |[tests/3.0.2-

b700/func/sm-

http://tigase.net/
http://www.mysql.com/
http://www.mysql.com/
http://www.postgresql.org/
http://www.postgresql.org/
http://www.xmpp.org/extensions/xep-0114.html
http://www.xmpp.org/extensions/xep-0114.html
http://www.xmpp.org/extensions/xep-0114.html
tests/3.3.2-b889/func/xmldb/functional-tests.html
tests/3.3.2-b889/func/xmldb/functional-tests.html
tests/3.3.2-b889/func/xmldb/functional-tests.html
tests/3.3.2-b889/func/xmldb/functional-tests.html
tests/3.3.2-b889/func/mysql/functional-tests.html
tests/3.3.2-b889/func/mysql/functional-tests.html
tests/3.3.2-b889/func/mysql/functional-tests.html
tests/3.3.2-b889/func/mysql/functional-tests.html
tests/3.3.2-b889/func/pgsql/functional-tests.html
tests/3.3.2-b889/func/pgsql/functional-tests.html
tests/3.3.2-b889/func/pgsql/functional-tests.html
tests/3.3.2-b889/func/pgsql/functional-tests.html
tests/3.3.2-b880/func/xmldb/functional-tests.html
tests/3.3.2-b880/func/xmldb/functional-tests.html
tests/3.3.2-b880/func/xmldb/functional-tests.html
tests/3.3.2-b880/func/xmldb/functional-tests.html
tests/3.3.2-b880/func/mysql/functional-tests.html
tests/3.3.2-b880/func/mysql/functional-tests.html
tests/3.3.2-b880/func/mysql/functional-tests.html
tests/3.3.2-b880/func/mysql/functional-tests.html
tests/3.3.2-b880/func/pgsql/functional-tests.html
tests/3.3.2-b880/func/pgsql/functional-tests.html
tests/3.3.2-b880/func/pgsql/functional-tests.html
tests/3.3.2-b880/func/pgsql/functional-tests.html
tests/3.0.2-b700/func/xmldb/functional-tests.html
tests/3.0.2-b700/func/xmldb/functional-tests.html
tests/3.0.2-b700/func/mysql/functional-tests.html
tests/3.0.2-b700/func/mysql/functional-tests.html
tests/3.0.2-b700/func/pgsql/functional-tests.html
tests/3.0.2-b700/func/pgsql/functional-tests.html
tests/3.0.2-b700/func/sm-mysql/functional-tests.html
tests/3.0.2-b700/func/sm-mysql/functional-tests.html
tests/3.0.2-b700/func/sm-mysql/functional-tests.html

Tests

func/xmldb/func-
tional-tests.htmi]

func/mysal/func-
tional-tests.html]

func/pgsal/func-
tional-tests.html]

mysql/function-
al-tests.html]

2.9.5-b606

00:00:22
[tests/2.9.5-b606/
func/xmldb/func-
tional-tests.htmi]

00:00:24
[tests/2.9.5-b606/
func/mysal/func-
tional-tests.html]

00:00:24
[tests/2.9.5-b606/
func/pgsal/func-
tional-tests.html]

00:00:24
[tests/2.9.5-
b606/func/sm-
mysql/function-
al-tests.html]

2.9.3-b548

00:00:22
[tests/2.9.3-b548/
func/xmldb/func-
tional-tests.html]

00:00:23
[tests/2.9.3-b548/
func/mysgl/func-
tional-tests.html]

00:00:25
[tests/2.9.3-b548/
func/pgsgl/func-
tional-tests.html]

00:00:25
[tests/2.9.3-
b548/func/sm-
mysqgl/function-
al-tests.html]

2.9.1-b528

00:00:21
[tests/2.9.1-b528/
func/xmldb/func-
tional-tests.html]

00:00:23
[tests/2.9.1-b528/
func/mysgl/func-
tional-tests.html]

00:00:24
[tests/2.9.1-b528/
func/pgsal/func-
tional-tests.html]

00:00:25
[tests/2.9.1-
b528/func/sm-
mysqgl/function-
al-tests.html]

2.8.6-b434

00:00:21
[tests/2.8.6-b434/
func/xmldb/func-
tional-tests.htmi]

00:00:24
[tests/2.8.6-b434/
func/mysal/func-
tional-tests.html]

00:00:24
[tests/2.8.6-b434/
func/pgsal/func-
tional-tests.html]

00:00:25
[tests/2.8.6-
b434/func/sm-
mysql/function-
al-tests.html]

2.8.5-b422

00:00:21
[tests/2.8.5-b422/
func/xmldb/func-
tional-tests.html]

00:00:24
[tests/2.8.5-b422/
func/mysal/func-
tional-tests.html]

00:00:24
[tests/2.8.5-b422/
func/pgsal/func-
tional-tests.html]

00:00:26
[tests/2.8.5-
b422/func/sm-
mysql/function-
al-tests.html]

2.8.3-b409

00:00:27
[tests/2.8.3-b409/
func/xmldb/func-
tional-tests.html]

00:00:29
[tests/2.8.3-b409/
func/mysgl/func-
tional-tests.html]

00:00:29
[tests/2.8.3-b409/
func/pgsgl/func-
tional-tests.html]

00:00:32
[tests/2.8.3-
b409/func/sm-
mysqgl/function-
al-tests.html]

2.7.2-b378

00:00:30
[tests/2.7.2-b378/
func/xmldb/func-
tional-tests.html]

00:00:34
[tests/2.7.2-b378/
func/mysgl/func-
tional-tests.html]

00:00:33
[tests/2.7.2-b378/
func/pgsal/func-
tional-tests.html]

00:00:35
[tests/2.7.2-
b378/func/sm-
mysqgl/function-
al-tests.html]

2.6.4-b300

00:00:30
[tests/2.6.4-b300/
func/xmldb/func-
tional-tests.htmi]

00:00:32
[tests/2.6.4-b300/
func/mysal/func-
tional-tests.html]

00:00:35
[tests/2.6.4-b300/
func/pgsal/func-
tional-tests.html]

00:00:39
[tests/2.6.4-
b300/func/sm-
mysql/function-
al-tests.html]

2.6.4-b295

00:00:29
[tests/2.6.4-b295/
func/xmldb/func-
tional-tests.htmi]

00:00:32
[tests/2.6.4-b295/
func/mysal/func-
tional-tests.html]

00:00:45
[tests/2.6.4-b295/
func/pgsal/func-
tional-tests.html]

00:00:36
[tests/2.6.4-
b295/func/sm-
mysqgl/function-
al-tests.html]

2.6.0-b287

00:00:31
[tests/2.6.0-b287/

00:00:34
[tests/2.6.0-b287/

00:00:47
[tests/2.6.0-b287/

00:00:43
[tests/2.6.0-
b287/func/sm-

tests/3.0.2-b700/func/xmldb/functional-tests.html
tests/3.0.2-b700/func/xmldb/functional-tests.html
tests/3.0.2-b700/func/mysql/functional-tests.html
tests/3.0.2-b700/func/mysql/functional-tests.html
tests/3.0.2-b700/func/pgsql/functional-tests.html
tests/3.0.2-b700/func/pgsql/functional-tests.html
tests/3.0.2-b700/func/sm-mysql/functional-tests.html
tests/3.0.2-b700/func/sm-mysql/functional-tests.html
tests/2.9.5-b606/func/xmldb/functional-tests.html
tests/2.9.5-b606/func/xmldb/functional-tests.html
tests/2.9.5-b606/func/xmldb/functional-tests.html
tests/2.9.5-b606/func/xmldb/functional-tests.html
tests/2.9.5-b606/func/mysql/functional-tests.html
tests/2.9.5-b606/func/mysql/functional-tests.html
tests/2.9.5-b606/func/mysql/functional-tests.html
tests/2.9.5-b606/func/mysql/functional-tests.html
tests/2.9.5-b606/func/pgsql/functional-tests.html
tests/2.9.5-b606/func/pgsql/functional-tests.html
tests/2.9.5-b606/func/pgsql/functional-tests.html
tests/2.9.5-b606/func/pgsql/functional-tests.html
tests/2.9.5-b606/func/sm-mysql/functional-tests.html
tests/2.9.5-b606/func/sm-mysql/functional-tests.html
tests/2.9.5-b606/func/sm-mysql/functional-tests.html
tests/2.9.5-b606/func/sm-mysql/functional-tests.html
tests/2.9.5-b606/func/sm-mysql/functional-tests.html
tests/2.9.3-b548/func/xmldb/functional-tests.html
tests/2.9.3-b548/func/xmldb/functional-tests.html
tests/2.9.3-b548/func/xmldb/functional-tests.html
tests/2.9.3-b548/func/xmldb/functional-tests.html
tests/2.9.3-b548/func/mysql/functional-tests.html
tests/2.9.3-b548/func/mysql/functional-tests.html
tests/2.9.3-b548/func/mysql/functional-tests.html
tests/2.9.3-b548/func/mysql/functional-tests.html
tests/2.9.3-b548/func/pgsql/functional-tests.html
tests/2.9.3-b548/func/pgsql/functional-tests.html
tests/2.9.3-b548/func/pgsql/functional-tests.html
tests/2.9.3-b548/func/pgsql/functional-tests.html
tests/2.9.3-b548/func/sm-mysql/functional-tests.html
tests/2.9.3-b548/func/sm-mysql/functional-tests.html
tests/2.9.3-b548/func/sm-mysql/functional-tests.html
tests/2.9.3-b548/func/sm-mysql/functional-tests.html
tests/2.9.3-b548/func/sm-mysql/functional-tests.html
tests/2.9.1-b528/func/xmldb/functional-tests.html
tests/2.9.1-b528/func/xmldb/functional-tests.html
tests/2.9.1-b528/func/xmldb/functional-tests.html
tests/2.9.1-b528/func/xmldb/functional-tests.html
tests/2.9.1-b528/func/mysql/functional-tests.html
tests/2.9.1-b528/func/mysql/functional-tests.html
tests/2.9.1-b528/func/mysql/functional-tests.html
tests/2.9.1-b528/func/mysql/functional-tests.html
tests/2.9.1-b528/func/pgsql/functional-tests.html
tests/2.9.1-b528/func/pgsql/functional-tests.html
tests/2.9.1-b528/func/pgsql/functional-tests.html
tests/2.9.1-b528/func/pgsql/functional-tests.html
tests/2.9.1-b528/func/sm-mysql/functional-tests.html
tests/2.9.1-b528/func/sm-mysql/functional-tests.html
tests/2.9.1-b528/func/sm-mysql/functional-tests.html
tests/2.9.1-b528/func/sm-mysql/functional-tests.html
tests/2.9.1-b528/func/sm-mysql/functional-tests.html
tests/2.8.6-b434/func/xmldb/functional-tests.html
tests/2.8.6-b434/func/xmldb/functional-tests.html
tests/2.8.6-b434/func/xmldb/functional-tests.html
tests/2.8.6-b434/func/xmldb/functional-tests.html
tests/2.8.6-b434/func/mysql/functional-tests.html
tests/2.8.6-b434/func/mysql/functional-tests.html
tests/2.8.6-b434/func/mysql/functional-tests.html
tests/2.8.6-b434/func/mysql/functional-tests.html
tests/2.8.6-b434/func/pgsql/functional-tests.html
tests/2.8.6-b434/func/pgsql/functional-tests.html
tests/2.8.6-b434/func/pgsql/functional-tests.html
tests/2.8.6-b434/func/pgsql/functional-tests.html
tests/2.8.6-b434/func/sm-mysql/functional-tests.html
tests/2.8.6-b434/func/sm-mysql/functional-tests.html
tests/2.8.6-b434/func/sm-mysql/functional-tests.html
tests/2.8.6-b434/func/sm-mysql/functional-tests.html
tests/2.8.6-b434/func/sm-mysql/functional-tests.html
tests/2.8.5-b422/func/xmldb/functional-tests.html
tests/2.8.5-b422/func/xmldb/functional-tests.html
tests/2.8.5-b422/func/xmldb/functional-tests.html
tests/2.8.5-b422/func/xmldb/functional-tests.html
tests/2.8.5-b422/func/mysql/functional-tests.html
tests/2.8.5-b422/func/mysql/functional-tests.html
tests/2.8.5-b422/func/mysql/functional-tests.html
tests/2.8.5-b422/func/mysql/functional-tests.html
tests/2.8.5-b422/func/pgsql/functional-tests.html
tests/2.8.5-b422/func/pgsql/functional-tests.html
tests/2.8.5-b422/func/pgsql/functional-tests.html
tests/2.8.5-b422/func/pgsql/functional-tests.html
tests/2.8.5-b422/func/sm-mysql/functional-tests.html
tests/2.8.5-b422/func/sm-mysql/functional-tests.html
tests/2.8.5-b422/func/sm-mysql/functional-tests.html
tests/2.8.5-b422/func/sm-mysql/functional-tests.html
tests/2.8.5-b422/func/sm-mysql/functional-tests.html
tests/2.8.3-b409/func/xmldb/functional-tests.html
tests/2.8.3-b409/func/xmldb/functional-tests.html
tests/2.8.3-b409/func/xmldb/functional-tests.html
tests/2.8.3-b409/func/xmldb/functional-tests.html
tests/2.8.3-b409/func/mysql/functional-tests.html
tests/2.8.3-b409/func/mysql/functional-tests.html
tests/2.8.3-b409/func/mysql/functional-tests.html
tests/2.8.3-b409/func/mysql/functional-tests.html
tests/2.8.3-b409/func/pgsql/functional-tests.html
tests/2.8.3-b409/func/pgsql/functional-tests.html
tests/2.8.3-b409/func/pgsql/functional-tests.html
tests/2.8.3-b409/func/pgsql/functional-tests.html
tests/2.8.3-b409/func/sm-mysql/functional-tests.html
tests/2.8.3-b409/func/sm-mysql/functional-tests.html
tests/2.8.3-b409/func/sm-mysql/functional-tests.html
tests/2.8.3-b409/func/sm-mysql/functional-tests.html
tests/2.8.3-b409/func/sm-mysql/functional-tests.html
tests/2.7.2-b378/func/xmldb/functional-tests.html
tests/2.7.2-b378/func/xmldb/functional-tests.html
tests/2.7.2-b378/func/xmldb/functional-tests.html
tests/2.7.2-b378/func/xmldb/functional-tests.html
tests/2.7.2-b378/func/mysql/functional-tests.html
tests/2.7.2-b378/func/mysql/functional-tests.html
tests/2.7.2-b378/func/mysql/functional-tests.html
tests/2.7.2-b378/func/mysql/functional-tests.html
tests/2.7.2-b378/func/pgsql/functional-tests.html
tests/2.7.2-b378/func/pgsql/functional-tests.html
tests/2.7.2-b378/func/pgsql/functional-tests.html
tests/2.7.2-b378/func/pgsql/functional-tests.html
tests/2.7.2-b378/func/sm-mysql/functional-tests.html
tests/2.7.2-b378/func/sm-mysql/functional-tests.html
tests/2.7.2-b378/func/sm-mysql/functional-tests.html
tests/2.7.2-b378/func/sm-mysql/functional-tests.html
tests/2.7.2-b378/func/sm-mysql/functional-tests.html
tests/2.6.4-b300/func/xmldb/functional-tests.html
tests/2.6.4-b300/func/xmldb/functional-tests.html
tests/2.6.4-b300/func/xmldb/functional-tests.html
tests/2.6.4-b300/func/xmldb/functional-tests.html
tests/2.6.4-b300/func/mysql/functional-tests.html
tests/2.6.4-b300/func/mysql/functional-tests.html
tests/2.6.4-b300/func/mysql/functional-tests.html
tests/2.6.4-b300/func/mysql/functional-tests.html
tests/2.6.4-b300/func/pgsql/functional-tests.html
tests/2.6.4-b300/func/pgsql/functional-tests.html
tests/2.6.4-b300/func/pgsql/functional-tests.html
tests/2.6.4-b300/func/pgsql/functional-tests.html
tests/2.6.4-b300/func/sm-mysql/functional-tests.html
tests/2.6.4-b300/func/sm-mysql/functional-tests.html
tests/2.6.4-b300/func/sm-mysql/functional-tests.html
tests/2.6.4-b300/func/sm-mysql/functional-tests.html
tests/2.6.4-b300/func/sm-mysql/functional-tests.html
tests/2.6.4-b295/func/xmldb/functional-tests.html
tests/2.6.4-b295/func/xmldb/functional-tests.html
tests/2.6.4-b295/func/xmldb/functional-tests.html
tests/2.6.4-b295/func/xmldb/functional-tests.html
tests/2.6.4-b295/func/mysql/functional-tests.html
tests/2.6.4-b295/func/mysql/functional-tests.html
tests/2.6.4-b295/func/mysql/functional-tests.html
tests/2.6.4-b295/func/mysql/functional-tests.html
tests/2.6.4-b295/func/pgsql/functional-tests.html
tests/2.6.4-b295/func/pgsql/functional-tests.html
tests/2.6.4-b295/func/pgsql/functional-tests.html
tests/2.6.4-b295/func/pgsql/functional-tests.html
tests/2.6.4-b295/func/sm-mysql/functional-tests.html
tests/2.6.4-b295/func/sm-mysql/functional-tests.html
tests/2.6.4-b295/func/sm-mysql/functional-tests.html
tests/2.6.4-b295/func/sm-mysql/functional-tests.html
tests/2.6.4-b295/func/sm-mysql/functional-tests.html
tests/2.6.0-b287/func/xmldb/functional-tests.html
tests/2.6.0-b287/func/xmldb/functional-tests.html
tests/2.6.0-b287/func/mysql/functional-tests.html
tests/2.6.0-b287/func/mysql/functional-tests.html
tests/2.6.0-b287/func/pgsql/functional-tests.html
tests/2.6.0-b287/func/pgsql/functional-tests.html
tests/2.6.0-b287/func/sm-mysql/functional-tests.html
tests/2.6.0-b287/func/sm-mysql/functional-tests.html
tests/2.6.0-b287/func/sm-mysql/functional-tests.html

Tests

func/xmldb/func- | func/mysgl/func- |func/pgsql/func- | mysgl/function-
tional-tests.html] |tional-tests.html] |tional-tests.html] |al-tests.html]
2.5.0-b279 00:00:30 00:00:34 00:00:45 00:00:43
[tests/2.5.0-b279/ | [tests/2.5.0-b279/ |[tests/2.5.0-b279/ | [tests/2.5.0-
func/xmldb/func- | func/mysgl/func- |func/pgsgl/func- |b279/func/sm-
tional-tests.html] |tional-tests.html] |tional-tests.html] | mysgl/function-
al-tests.html]
2.4.0-b263 00:00:29 00:00:33 00:00:45 00:00:44
[tests/2.4.0-b263/ | [tests/2.4.0-b263/ |[tests/2.4.0-b263/ |[tests/2.4.0-
func/xmldb/func- | func/mysgl/func- |func/pgsgl/func- |b263/func/sm-
tional-tests.html] |tional-tests.html] |tional-tests.html] | mysgl/function-
al-tests.html]
2.3.4-b226 None 00:00:48 [tests/ |None None
function-
al-tests.htmi]
Performance Tests
Checking whether the function performs well enough.
Version XMLDB MySQL PGSQL Distributed
3.3.2-b889 00:12:17 00:13:42 00:17:10 none
[tests/3.3.2- [tests/3.3.2- [tests/3.3.2-
b889/perf/ b889/perf/ b889/perf/
xmldb/perfor- mysql/perfor- pgsql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html]
3.3.2-h880 00:13:39 00:14:09 00:17:39 None
[tests/3.3.2- [tests/3.3.2- [tests/3.3.2-
b880/perf/ b880/perf/ b880/perf/
xmidb/perfor- mysql/perfor- pgsql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html]
3.0.2-b700 00:10:26 00:11:00 00:12:08 00:24:05
[tests/3.0.2- [tests/3.0.2- [tests/3.0.2- [tests/3.0.2-
b700/perf/ b700/perf/ b700/perf/ b700/perf/sm-
xmidb/perfor- mysql/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.htmi]
2.9.5-b606 00:09:54 00:11:18 00:37:08 00:16:20
[tests/2.9.5- [tests/2.9.5- [tests/2.9.5- [tests/2.9.5-
b606/perf/ b606/perf/ b606/perf/ b606/perf/sm-
xmldb/perfor- mysgl/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.html]
2.9.3-b548 00:10:00 00:11:29 00:36:43 00:16:47
[tests/2.9.3- [tests/2.9.3- [tests/2.9.3- [tests/2.9.3
b548/perf/ b548/perf/ b548/perf/ b548/perf/sm-
xmldb/perfor- mysql/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.htmi]
2.9.1-b528 00:09:46 00:11:15 00:36:12 00:16:36
[tests/2.9.1- [tests/2.9.1- [tests/2.9.1- [tests/2.9.1-
b528/perf/ b528/perf/ b528/perf/ b528/perf/sm-

tests/2.6.0-b287/func/xmldb/functional-tests.html
tests/2.6.0-b287/func/xmldb/functional-tests.html
tests/2.6.0-b287/func/mysql/functional-tests.html
tests/2.6.0-b287/func/mysql/functional-tests.html
tests/2.6.0-b287/func/pgsql/functional-tests.html
tests/2.6.0-b287/func/pgsql/functional-tests.html
tests/2.6.0-b287/func/sm-mysql/functional-tests.html
tests/2.6.0-b287/func/sm-mysql/functional-tests.html
tests/2.5.0-b279/func/xmldb/functional-tests.html
tests/2.5.0-b279/func/xmldb/functional-tests.html
tests/2.5.0-b279/func/xmldb/functional-tests.html
tests/2.5.0-b279/func/xmldb/functional-tests.html
tests/2.5.0-b279/func/mysql/functional-tests.html
tests/2.5.0-b279/func/mysql/functional-tests.html
tests/2.5.0-b279/func/mysql/functional-tests.html
tests/2.5.0-b279/func/mysql/functional-tests.html
tests/2.5.0-b279/func/pgsql/functional-tests.html
tests/2.5.0-b279/func/pgsql/functional-tests.html
tests/2.5.0-b279/func/pgsql/functional-tests.html
tests/2.5.0-b279/func/pgsql/functional-tests.html
tests/2.5.0-b279/func/sm-mysql/functional-tests.html
tests/2.5.0-b279/func/sm-mysql/functional-tests.html
tests/2.5.0-b279/func/sm-mysql/functional-tests.html
tests/2.5.0-b279/func/sm-mysql/functional-tests.html
tests/2.5.0-b279/func/sm-mysql/functional-tests.html
tests/2.4.0-b263/func/xmldb/functional-tests.html
tests/2.4.0-b263/func/xmldb/functional-tests.html
tests/2.4.0-b263/func/xmldb/functional-tests.html
tests/2.4.0-b263/func/xmldb/functional-tests.html
tests/2.4.0-b263/func/mysql/functional-tests.html
tests/2.4.0-b263/func/mysql/functional-tests.html
tests/2.4.0-b263/func/mysql/functional-tests.html
tests/2.4.0-b263/func/mysql/functional-tests.html
tests/2.4.0-b263/func/pgsql/functional-tests.html
tests/2.4.0-b263/func/pgsql/functional-tests.html
tests/2.4.0-b263/func/pgsql/functional-tests.html
tests/2.4.0-b263/func/pgsql/functional-tests.html
tests/2.4.0-b263/func/sm-mysql/functional-tests.html
tests/2.4.0-b263/func/sm-mysql/functional-tests.html
tests/2.4.0-b263/func/sm-mysql/functional-tests.html
tests/2.4.0-b263/func/sm-mysql/functional-tests.html
tests/2.4.0-b263/func/sm-mysql/functional-tests.html
tests/functional-tests.html
tests/functional-tests.html
tests/functional-tests.html
tests/functional-tests.html
tests/3.3.2-b889/perf/xmldb/performance-tests.html
tests/3.3.2-b889/perf/xmldb/performance-tests.html
tests/3.3.2-b889/perf/xmldb/performance-tests.html
tests/3.3.2-b889/perf/xmldb/performance-tests.html
tests/3.3.2-b889/perf/xmldb/performance-tests.html
tests/3.3.2-b889/perf/mysql/performance-tests.html
tests/3.3.2-b889/perf/mysql/performance-tests.html
tests/3.3.2-b889/perf/mysql/performance-tests.html
tests/3.3.2-b889/perf/mysql/performance-tests.html
tests/3.3.2-b889/perf/mysql/performance-tests.html
tests/3.3.2-b889/perf/pgsql/performance-tests.html
tests/3.3.2-b889/perf/pgsql/performance-tests.html
tests/3.3.2-b889/perf/pgsql/performance-tests.html
tests/3.3.2-b889/perf/pgsql/performance-tests.html
tests/3.3.2-b889/perf/pgsql/performance-tests.html
tests/3.3.2-b880/perf/xmldb/performance-tests.html
tests/3.3.2-b880/perf/xmldb/performance-tests.html
tests/3.3.2-b880/perf/xmldb/performance-tests.html
tests/3.3.2-b880/perf/xmldb/performance-tests.html
tests/3.3.2-b880/perf/xmldb/performance-tests.html
tests/3.3.2-b880/perf/mysql/performance-tests.html
tests/3.3.2-b880/perf/mysql/performance-tests.html
tests/3.3.2-b880/perf/mysql/performance-tests.html
tests/3.3.2-b880/perf/mysql/performance-tests.html
tests/3.3.2-b880/perf/mysql/performance-tests.html
tests/3.3.2-b880/perf/pgsql/performance-tests.html
tests/3.3.2-b880/perf/pgsql/performance-tests.html
tests/3.3.2-b880/perf/pgsql/performance-tests.html
tests/3.3.2-b880/perf/pgsql/performance-tests.html
tests/3.3.2-b880/perf/pgsql/performance-tests.html
tests/3.0.2-b700/perf/xmldb/performance-tests.html
tests/3.0.2-b700/perf/xmldb/performance-tests.html
tests/3.0.2-b700/perf/xmldb/performance-tests.html
tests/3.0.2-b700/perf/xmldb/performance-tests.html
tests/3.0.2-b700/perf/xmldb/performance-tests.html
tests/3.0.2-b700/perf/mysql/performance-tests.html
tests/3.0.2-b700/perf/mysql/performance-tests.html
tests/3.0.2-b700/perf/mysql/performance-tests.html
tests/3.0.2-b700/perf/mysql/performance-tests.html
tests/3.0.2-b700/perf/mysql/performance-tests.html
tests/3.0.2-b700/perf/pgsql/performance-tests.html
tests/3.0.2-b700/perf/pgsql/performance-tests.html
tests/3.0.2-b700/perf/pgsql/performance-tests.html
tests/3.0.2-b700/perf/pgsql/performance-tests.html
tests/3.0.2-b700/perf/pgsql/performance-tests.html
tests/3.0.2-b700/perf/sm-mysql/performance-tests.html
tests/3.0.2-b700/perf/sm-mysql/performance-tests.html
tests/3.0.2-b700/perf/sm-mysql/performance-tests.html
tests/3.0.2-b700/perf/sm-mysql/performance-tests.html
tests/3.0.2-b700/perf/sm-mysql/performance-tests.html
tests/2.9.5-b606/perf/xmldb/performance-tests.html
tests/2.9.5-b606/perf/xmldb/performance-tests.html
tests/2.9.5-b606/perf/xmldb/performance-tests.html
tests/2.9.5-b606/perf/xmldb/performance-tests.html
tests/2.9.5-b606/perf/xmldb/performance-tests.html
tests/2.9.5-b606/perf/mysql/performance-tests.html
tests/2.9.5-b606/perf/mysql/performance-tests.html
tests/2.9.5-b606/perf/mysql/performance-tests.html
tests/2.9.5-b606/perf/mysql/performance-tests.html
tests/2.9.5-b606/perf/mysql/performance-tests.html
tests/2.9.5-b606/perf/pgsql/performance-tests.html
tests/2.9.5-b606/perf/pgsql/performance-tests.html
tests/2.9.5-b606/perf/pgsql/performance-tests.html
tests/2.9.5-b606/perf/pgsql/performance-tests.html
tests/2.9.5-b606/perf/pgsql/performance-tests.html
tests/2.9.5-b606/perf/sm-mysql/performance-tests.html
tests/2.9.5-b606/perf/sm-mysql/performance-tests.html
tests/2.9.5-b606/perf/sm-mysql/performance-tests.html
tests/2.9.5-b606/perf/sm-mysql/performance-tests.html
tests/2.9.5-b606/perf/sm-mysql/performance-tests.html
tests/2.9.3-b548/perf/xmldb/performance-tests.html
tests/2.9.3-b548/perf/xmldb/performance-tests.html
tests/2.9.3-b548/perf/xmldb/performance-tests.html
tests/2.9.3-b548/perf/xmldb/performance-tests.html
tests/2.9.3-b548/perf/xmldb/performance-tests.html
tests/2.9.3-b548/perf/mysql/performance-tests.html
tests/2.9.3-b548/perf/mysql/performance-tests.html
tests/2.9.3-b548/perf/mysql/performance-tests.html
tests/2.9.3-b548/perf/mysql/performance-tests.html
tests/2.9.3-b548/perf/mysql/performance-tests.html
tests/2.9.3-b548/perf/pgsql/performance-tests.html
tests/2.9.3-b548/perf/pgsql/performance-tests.html
tests/2.9.3-b548/perf/pgsql/performance-tests.html
tests/2.9.3-b548/perf/pgsql/performance-tests.html
tests/2.9.3-b548/perf/pgsql/performance-tests.html
tests/2.9.3-b548/perf/sm-mysql/performance-tests.html
tests/2.9.3-b548/perf/sm-mysql/performance-tests.html
tests/2.9.3-b548/perf/sm-mysql/performance-tests.html
tests/2.9.3-b548/perf/sm-mysql/performance-tests.html
tests/2.9.3-b548/perf/sm-mysql/performance-tests.html
tests/2.9.1-b528/perf/xmldb/performance-tests.html
tests/2.9.1-b528/perf/xmldb/performance-tests.html
tests/2.9.1-b528/perf/xmldb/performance-tests.html
tests/2.9.1-b528/perf/mysql/performance-tests.html
tests/2.9.1-b528/perf/mysql/performance-tests.html
tests/2.9.1-b528/perf/mysql/performance-tests.html
tests/2.9.1-b528/perf/pgsql/performance-tests.html
tests/2.9.1-b528/perf/pgsql/performance-tests.html
tests/2.9.1-b528/perf/pgsql/performance-tests.html
tests/2.9.1-b528/perf/sm-mysql/performance-tests.html
tests/2.9.1-b528/perf/sm-mysql/performance-tests.html
tests/2.9.1-b528/perf/sm-mysql/performance-tests.html

Tests

xmldb/perfor- mysql/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.htmi]
2.8.6-b434 00:10:02 00:11:45 00:36:36 00:17:36
[tests/2.8.6- [tests/2.8.6- [tests/2.8.6- [tests/2.8.6-
b434/perf/ b434/perf/ b434/perf/ b434/perf/sm-
xmldb/perfor- mysql/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.htmi]
2.8.5-b422 00:12:37 00:14:40 00:38:59 00:21:40
[tests/2.8.5- [tests/2.8.5- [tests/2.8.5- [tests/2.8.5-
b422/perf/ b422/perf/ b422/perf/ b422/perf/sm-
xmldb/perfor- mysqgl/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.html]
2.8.3-b409 00:12:32 00:14:26 00:37:57 00:21:26
[tests/2.8.3- [tests/2.8.3- [tests/2.8.3- [tests/2.8.3-
b409/perf/ b409/perf/ b409/perf/ b409/perf/sm-
xmldb/perfor- mysql/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.htmi]
2.7.2-b378 00:12:28 00:14:57 00:37:09 00:22:20
[tests/2.7.2- [tests/2.7.2- [tests/2.7.2- [tests/2.7.2-
b378/perf/ b378/perf/ b378/perf/ b378/perf/sm-
xmldb/perfor- mysql/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.htmi]
2.6.4-b300 00:12:46 00:14:59 00:36:56 00:35:00
[tests/2.6.4- [tests/2.6.4- [tests/2.6.4- [testy/2.6.4-
b300/perf/ b300/perf/ b300/perf/ b300/perf/sm-
xmildb/perfor- mysql/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.htmi]
2.6.4-b295 00:12:23 00:14:59 00:42:24 00:30:18
[tests/2.6.4- [tests/2.6.4- [tests/2.6.4- [tests/2.6.4-
b295/perf/ b295/perf/ b295/perf/ b295/perf/sm-
xmldb/perfor- mysgl/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.html]
2.6.0-b287 00:13:50 00:16:53 00:48:17 00:49:06
[tests/2.6.0- [tests/2.6.0- [tests/2.6.0- [tests/2.6.0-
b287/perf/ b287/perf/ b287/perf/ b287/perf/sm-
xmldb/perfor- mysql/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.htmi]
2.5.0-b279 00:13:29 00:16:58 00:47:15 00:41:52
[tests/2.5.0- [tests/2.5.0- [tests/2.5.0- [tests/2.5.0-
b279/perf/ b279/perf/ b279/perf/ b279/perf/sm-
xmidb/perfor- mysql/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.htmi]
2.4.0-b263 00:13:20 00:16:21 00:43:56 00:42:08
[tests/2.4.0- [tests/2.4.0- [tests/2.4.0- [tests/2.4.0-
b263/perf/ b263/perf/ b263/perf/ b263/perf/sm-
xmildb/perfor- mysql/perfor- pgsql/perfor- mysql/perfor-
mance-tests.html] | mance-tests.html] | mance-tests.html] | mance-tests.htmi]
2.3.4-b226 None 01:23:30 None None
[tests/perfor-

mance-tests.html]

tests/2.9.1-b528/perf/xmldb/performance-tests.html
tests/2.9.1-b528/perf/xmldb/performance-tests.html
tests/2.9.1-b528/perf/mysql/performance-tests.html
tests/2.9.1-b528/perf/mysql/performance-tests.html
tests/2.9.1-b528/perf/pgsql/performance-tests.html
tests/2.9.1-b528/perf/pgsql/performance-tests.html
tests/2.9.1-b528/perf/sm-mysql/performance-tests.html
tests/2.9.1-b528/perf/sm-mysql/performance-tests.html
tests/2.8.6-b434/perf/xmldb/performance-tests.html
tests/2.8.6-b434/perf/xmldb/performance-tests.html
tests/2.8.6-b434/perf/xmldb/performance-tests.html
tests/2.8.6-b434/perf/xmldb/performance-tests.html
tests/2.8.6-b434/perf/xmldb/performance-tests.html
tests/2.8.6-b434/perf/mysql/performance-tests.html
tests/2.8.6-b434/perf/mysql/performance-tests.html
tests/2.8.6-b434/perf/mysql/performance-tests.html
tests/2.8.6-b434/perf/mysql/performance-tests.html
tests/2.8.6-b434/perf/mysql/performance-tests.html
tests/2.8.6-b434/perf/pgsql/performance-tests.html
tests/2.8.6-b434/perf/pgsql/performance-tests.html
tests/2.8.6-b434/perf/pgsql/performance-tests.html
tests/2.8.6-b434/perf/pgsql/performance-tests.html
tests/2.8.6-b434/perf/pgsql/performance-tests.html
tests/2.8.6-b434/perf/sm-mysql/performance-tests.html
tests/2.8.6-b434/perf/sm-mysql/performance-tests.html
tests/2.8.6-b434/perf/sm-mysql/performance-tests.html
tests/2.8.6-b434/perf/sm-mysql/performance-tests.html
tests/2.8.6-b434/perf/sm-mysql/performance-tests.html
tests/2.8.5-b422/perf/xmldb/performance-tests.html
tests/2.8.5-b422/perf/xmldb/performance-tests.html
tests/2.8.5-b422/perf/xmldb/performance-tests.html
tests/2.8.5-b422/perf/xmldb/performance-tests.html
tests/2.8.5-b422/perf/xmldb/performance-tests.html
tests/2.8.5-b422/perf/mysql/performance-tests.html
tests/2.8.5-b422/perf/mysql/performance-tests.html
tests/2.8.5-b422/perf/mysql/performance-tests.html
tests/2.8.5-b422/perf/mysql/performance-tests.html
tests/2.8.5-b422/perf/mysql/performance-tests.html
tests/2.8.5-b422/perf/pgsql/performance-tests.html
tests/2.8.5-b422/perf/pgsql/performance-tests.html
tests/2.8.5-b422/perf/pgsql/performance-tests.html
tests/2.8.5-b422/perf/pgsql/performance-tests.html
tests/2.8.5-b422/perf/pgsql/performance-tests.html
tests/2.8.5-b422/perf/sm-mysql/performance-tests.html
tests/2.8.5-b422/perf/sm-mysql/performance-tests.html
tests/2.8.5-b422/perf/sm-mysql/performance-tests.html
tests/2.8.5-b422/perf/sm-mysql/performance-tests.html
tests/2.8.5-b422/perf/sm-mysql/performance-tests.html
tests/2.8.3-b409/perf/xmldb/performance-tests.html
tests/2.8.3-b409/perf/xmldb/performance-tests.html
tests/2.8.3-b409/perf/xmldb/performance-tests.html
tests/2.8.3-b409/perf/xmldb/performance-tests.html
tests/2.8.3-b409/perf/xmldb/performance-tests.html
tests/2.8.3-b409/perf/mysql/performance-tests.html
tests/2.8.3-b409/perf/mysql/performance-tests.html
tests/2.8.3-b409/perf/mysql/performance-tests.html
tests/2.8.3-b409/perf/mysql/performance-tests.html
tests/2.8.3-b409/perf/mysql/performance-tests.html
tests/2.8.3-b409/perf/pgsql/performance-tests.html
tests/2.8.3-b409/perf/pgsql/performance-tests.html
tests/2.8.3-b409/perf/pgsql/performance-tests.html
tests/2.8.3-b409/perf/pgsql/performance-tests.html
tests/2.8.3-b409/perf/pgsql/performance-tests.html
tests/2.8.3-b409/perf/sm-mysql/performance-tests.html
tests/2.8.3-b409/perf/sm-mysql/performance-tests.html
tests/2.8.3-b409/perf/sm-mysql/performance-tests.html
tests/2.8.3-b409/perf/sm-mysql/performance-tests.html
tests/2.8.3-b409/perf/sm-mysql/performance-tests.html
tests/2.7.2-b378/perf/xmldb/performance-tests.html
tests/2.7.2-b378/perf/xmldb/performance-tests.html
tests/2.7.2-b378/perf/xmldb/performance-tests.html
tests/2.7.2-b378/perf/xmldb/performance-tests.html
tests/2.7.2-b378/perf/xmldb/performance-tests.html
tests/2.7.2-b378/perf/mysql/performance-tests.html
tests/2.7.2-b378/perf/mysql/performance-tests.html
tests/2.7.2-b378/perf/mysql/performance-tests.html
tests/2.7.2-b378/perf/mysql/performance-tests.html
tests/2.7.2-b378/perf/mysql/performance-tests.html
tests/2.7.2-b378/perf/pgsql/performance-tests.html
tests/2.7.2-b378/perf/pgsql/performance-tests.html
tests/2.7.2-b378/perf/pgsql/performance-tests.html
tests/2.7.2-b378/perf/pgsql/performance-tests.html
tests/2.7.2-b378/perf/pgsql/performance-tests.html
tests/2.7.2-b378/perf/sm-mysql/performance-tests.html
tests/2.7.2-b378/perf/sm-mysql/performance-tests.html
tests/2.7.2-b378/perf/sm-mysql/performance-tests.html
tests/2.7.2-b378/perf/sm-mysql/performance-tests.html
tests/2.7.2-b378/perf/sm-mysql/performance-tests.html
tests/2.6.4-b300/perf/xmldb/performance-tests.html
tests/2.6.4-b300/perf/xmldb/performance-tests.html
tests/2.6.4-b300/perf/xmldb/performance-tests.html
tests/2.6.4-b300/perf/xmldb/performance-tests.html
tests/2.6.4-b300/perf/xmldb/performance-tests.html
tests/2.6.4-b300/perf/mysql/performance-tests.html
tests/2.6.4-b300/perf/mysql/performance-tests.html
tests/2.6.4-b300/perf/mysql/performance-tests.html
tests/2.6.4-b300/perf/mysql/performance-tests.html
tests/2.6.4-b300/perf/mysql/performance-tests.html
tests/2.6.4-b300/perf/pgsql/performance-tests.html
tests/2.6.4-b300/perf/pgsql/performance-tests.html
tests/2.6.4-b300/perf/pgsql/performance-tests.html
tests/2.6.4-b300/perf/pgsql/performance-tests.html
tests/2.6.4-b300/perf/pgsql/performance-tests.html
tests/2.6.4-b300/perf/sm-mysql/performance-tests.html
tests/2.6.4-b300/perf/sm-mysql/performance-tests.html
tests/2.6.4-b300/perf/sm-mysql/performance-tests.html
tests/2.6.4-b300/perf/sm-mysql/performance-tests.html
tests/2.6.4-b300/perf/sm-mysql/performance-tests.html
tests/2.6.4-b295/perf/xmldb/performance-tests.html
tests/2.6.4-b295/perf/xmldb/performance-tests.html
tests/2.6.4-b295/perf/xmldb/performance-tests.html
tests/2.6.4-b295/perf/xmldb/performance-tests.html
tests/2.6.4-b295/perf/xmldb/performance-tests.html
tests/2.6.4-b295/perf/mysql/performance-tests.html
tests/2.6.4-b295/perf/mysql/performance-tests.html
tests/2.6.4-b295/perf/mysql/performance-tests.html
tests/2.6.4-b295/perf/mysql/performance-tests.html
tests/2.6.4-b295/perf/mysql/performance-tests.html
tests/2.6.4-b295/perf/pgsql/performance-tests.html
tests/2.6.4-b295/perf/pgsql/performance-tests.html
tests/2.6.4-b295/perf/pgsql/performance-tests.html
tests/2.6.4-b295/perf/pgsql/performance-tests.html
tests/2.6.4-b295/perf/pgsql/performance-tests.html
tests/2.6.4-b295/perf/sm-mysql/performance-tests.html
tests/2.6.4-b295/perf/sm-mysql/performance-tests.html
tests/2.6.4-b295/perf/sm-mysql/performance-tests.html
tests/2.6.4-b295/perf/sm-mysql/performance-tests.html
tests/2.6.4-b295/perf/sm-mysql/performance-tests.html
tests/2.6.0-b287/perf/xmldb/performance-tests.html
tests/2.6.0-b287/perf/xmldb/performance-tests.html
tests/2.6.0-b287/perf/xmldb/performance-tests.html
tests/2.6.0-b287/perf/xmldb/performance-tests.html
tests/2.6.0-b287/perf/xmldb/performance-tests.html
tests/2.6.0-b287/perf/mysql/performance-tests.html
tests/2.6.0-b287/perf/mysql/performance-tests.html
tests/2.6.0-b287/perf/mysql/performance-tests.html
tests/2.6.0-b287/perf/mysql/performance-tests.html
tests/2.6.0-b287/perf/mysql/performance-tests.html
tests/2.6.0-b287/perf/pgsql/performance-tests.html
tests/2.6.0-b287/perf/pgsql/performance-tests.html
tests/2.6.0-b287/perf/pgsql/performance-tests.html
tests/2.6.0-b287/perf/pgsql/performance-tests.html
tests/2.6.0-b287/perf/pgsql/performance-tests.html
tests/2.6.0-b287/perf/sm-mysql/performance-tests.html
tests/2.6.0-b287/perf/sm-mysql/performance-tests.html
tests/2.6.0-b287/perf/sm-mysql/performance-tests.html
tests/2.6.0-b287/perf/sm-mysql/performance-tests.html
tests/2.6.0-b287/perf/sm-mysql/performance-tests.html
tests/2.5.0-b279/perf/xmldb/performance-tests.html
tests/2.5.0-b279/perf/xmldb/performance-tests.html
tests/2.5.0-b279/perf/xmldb/performance-tests.html
tests/2.5.0-b279/perf/xmldb/performance-tests.html
tests/2.5.0-b279/perf/xmldb/performance-tests.html
tests/2.5.0-b279/perf/mysql/performance-tests.html
tests/2.5.0-b279/perf/mysql/performance-tests.html
tests/2.5.0-b279/perf/mysql/performance-tests.html
tests/2.5.0-b279/perf/mysql/performance-tests.html
tests/2.5.0-b279/perf/mysql/performance-tests.html
tests/2.5.0-b279/perf/pgsql/performance-tests.html
tests/2.5.0-b279/perf/pgsql/performance-tests.html
tests/2.5.0-b279/perf/pgsql/performance-tests.html
tests/2.5.0-b279/perf/pgsql/performance-tests.html
tests/2.5.0-b279/perf/pgsql/performance-tests.html
tests/2.5.0-b279/perf/sm-mysql/performance-tests.html
tests/2.5.0-b279/perf/sm-mysql/performance-tests.html
tests/2.5.0-b279/perf/sm-mysql/performance-tests.html
tests/2.5.0-b279/perf/sm-mysql/performance-tests.html
tests/2.5.0-b279/perf/sm-mysql/performance-tests.html
tests/2.4.0-b263/perf/xmldb/performance-tests.html
tests/2.4.0-b263/perf/xmldb/performance-tests.html
tests/2.4.0-b263/perf/xmldb/performance-tests.html
tests/2.4.0-b263/perf/xmldb/performance-tests.html
tests/2.4.0-b263/perf/xmldb/performance-tests.html
tests/2.4.0-b263/perf/mysql/performance-tests.html
tests/2.4.0-b263/perf/mysql/performance-tests.html
tests/2.4.0-b263/perf/mysql/performance-tests.html
tests/2.4.0-b263/perf/mysql/performance-tests.html
tests/2.4.0-b263/perf/mysql/performance-tests.html
tests/2.4.0-b263/perf/pgsql/performance-tests.html
tests/2.4.0-b263/perf/pgsql/performance-tests.html
tests/2.4.0-b263/perf/pgsql/performance-tests.html
tests/2.4.0-b263/perf/pgsql/performance-tests.html
tests/2.4.0-b263/perf/pgsql/performance-tests.html
tests/2.4.0-b263/perf/sm-mysql/performance-tests.html
tests/2.4.0-b263/perf/sm-mysql/performance-tests.html
tests/2.4.0-b263/perf/sm-mysql/performance-tests.html
tests/2.4.0-b263/perf/sm-mysql/performance-tests.html
tests/2.4.0-b263/perf/sm-mysql/performance-tests.html
tests/performance-tests.html
tests/performance-tests.html
tests/performance-tests.html

Tests

Stability Tests

Checking whether the function behaveswell inlong term run. It must handle hundreds of requests a second
in several hours server run.

Version XMLDB MySQL PGSQL Distributed
2.3.4-b226 None 16:06:31 None None
[tests/stabili-
ty-tests.html]

tests/stability-tests.html
tests/stability-tests.html
tests/stability-tests.html

Chapter 2. Tigase DB Schema
Explained

Artur Hefczyc <artur.hefczyc@tigase.net [mailto:artur.hefczyc@tigase.net]> v2.0, June 2014: Reformat-
ted for AsciiDoc. :toc: :numbered: :website: http://tigase.net/ :Date: 2011-07-12 00:56

The schemabasics, how it looks like and brief explanation to all rows can be found in the schema creation
script [https://projects.tigase.org/proj ects/tigase-server/repository/revisions/master/entry/database/mysql -
schema-4-schema.sgl]. However, this is hardly enough to understand how it works and how access all
the data. There are only 3 basic tables which actually keep all the Tigase server users data: tig_users,
tig_nodesand tig_pairs. Therefore it isnot clear at first how the Tigase data is organised.

Before you can understand the Tigase XM PP Server database schema, how it works and how to useit, is
it essential to know what were the goals and why it works that way. Let’s start with the APl asthis gives
you the best introduction.

Simplified access can be got through methods:

voi d setData(BaredI D user, String key, String val ue);
String getData(BareJdl D user, String key);

And more complex version:

voi d setData(BaredI D user, String subnode, String key, String value);
String getData(BareJl D user, String subnode, String key, String def);

Even though, the APl contanins more methods, the rest is more or less variation of present-
ed above. Complete API description for all access methods is available in JavaDoc documenta-
tion to UserRepository [https://projects.tigase.org/proj ects/tigase-server/repository/entry/trunk/src/main/
javaltigase/db/UserRepository.java) interface. So we are not going into much details here except the main
idea.

We are more or less operate on <*key*, value> pairs for the particular user. The idea befind this was to
make the APl very simple and aso at the same time very flexible, so adding a new plugin or component
would not require database schema change, adding new tables, conversion of the DB schema to a new
version, etc....

As aresult User Repository interface is exposed to all the Tigase code, mainly components and plugins
(let’s call al of them modules), and these modules simply call set/get methods to store or access module
specific data.

As plugins or components are developed independently it may easily happen that developer choses the
same key name to store some information. To avoid key name conclicts in the database a node concept
has been introduced. Therefore, most modules when set/get key value they also provide a subnode part,
which in most casesisjust XMLNS or some other unique string.

Thenodethingisalittlebit like directory in afilesystem, it may contain subnodes which makesthe Tigase
database kind of hierarchical structure. And the notation is also similar to filesystem. You use just '/' to
separate node levels. In practice you can have database organised like this:

user-nane@onain ---> (key, value) pairs
-
roster --->

mailto:artur.hefczyc@tigase.net
mailto:artur.hefczyc@tigase.net
http://tigase.net/
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/database/mysql-schema-4-schema.sql
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/database/mysql-schema-4-schema.sql
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/database/mysql-schema-4-schema.sql
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/database/mysql-schema-4-schema.sql
https://projects.tigase.org/projects/tigase-server/repository/entry/trunk/src/main/java/tigase/db/UserRepository.java
https://projects.tigase.org/projects/tigase-server/repository/entry/trunk/src/main/java/tigase/db/UserRepository.java
https://projects.tigase.org/projects/tigase-server/repository/entry/trunk/src/main/java/tigase/db/UserRepository.java

Tigase DB Schema Explained

itemL ---> (keyl, valuel) pairs.
-
item ---> (keyl, valuel) pairs.

So to access item’s 1 data from the roster you could call method like this:
get Dat a(" user - name@lomai n", -"roster/iteml", keyl, defl);

Thisishuge convenience for the devel oper, as he can focus ont he module logic instead of worrying about
data storage implementation and organisation. Especially at prototypic phase it speeds development up
and allows for a quick experiments with differnent solutions. In practice, accessing user’ sroster in such a
way would be highly inefficient so the roster is stored a bit differently but you get the idea. Also thereis
amore complex APl used in some places alowing for more direct access to the database and store data
in any format optimised for the particular use case.

Right now such a hierarchical structure is implemented on top of SQL databases but initially Tigase's
database was implemented as XML structure, so it was natural and simple.

In the SQL database we simulate hierarchical structure with three tables:

1. tig_users- with main users data, user id (JID), optional password, active flag, creation time and some
other basic properties of the account. All of them could be actually stored in tig_pairs but for perfor-
mance reasons they are in one place to quickly access them with single, ssimple query.

2. tig_nodes - is a table where the hierarchy is implemented. When Tigase was storing data in XML
database the hierarchy was quite complex. However, in SQL database it resulted in avery slow access
to the data and now more flat structureis used by most components. Please note, every user’ sentry has
something called root node, which is represented by root string;

3. tig_pairs- thisisthetable where al the user’ sinformation is stored in form of the <key, value> pairs.

Ok, so we now know how the datais organised. Now we are going to learn how to access the data directly
in the database using SQL queries.

Let's assume we have a user admin@test-d for whom we want to retrieve the roster. We could simply
execute query:

sel ect pval
fromtig users, tig_pairs

where user _id = -'adm n@est-d and
tig_users.uid = tig_pairs.uid and
pkey = -'roster’;

However, if multiple modules store data under the key roster for asingle user, we would receive mutliple
results. To access the correct roster we have to know also node hierarchy for this particular key. Themain
user’sroster is stored under the root node, so the query would look like:

sel ect pval
fromtig users, tig_nodes, tig pairs
where user_id = -"adm n@est-d and
tig users.uid = tig_nodes.uid and
node = -'root' and
tig users.uid = tig_pairs.uid and
pkey = -'roster’';

How exactly the information is stored in the tig_pairs table depends on the particular module. For the
roster it looks abit like XML content:

Tigase DB Schema Explained

<contact jid="all-xmpp-test@est-d" subs="none" preped="sinple" name="all -xnpp-tes

Chapter 3. Basic Information

Artur Hefczyc <artur.hefczyc@tigase.net [mailto:artur.hefczyc@tigase.net]> v2.0, June 2014: Reformat-
ted for AsciiDoc. :toc: :numbered: :website: http://tigase.net/ :Date: 2010-04-06 21:22

Tigase Server Elements

To make it easier to get into the code below are defined basic terms in Tigase server world and there is
a brief explanation how the server is designed and implemented. This document also points you to basic
interfaces and implementations which can be used as example code reference.

Logicaly all server code can be divided into 3 kinds of modules: components, plug-ins and connectors.

1.

Component is the main element of Tigase server is. Component is a bigger piece of code which can
have separate address, can receive and send stanzas, can be configured and respond to numerous events.
Sample components implemented for Tigase server are: ¢2s connection manager, s2s connection man-
ager, session manager, XEP-0114 - external component connection manager, MUC - multi user char
rooms.

. Plug-in is usually small piece of code responsible for processing particular XMPP stanza. It doesn’t

have own address. As a result of stanza processing it can produce new XMPP stanzas. Plug-ins are
loaded by session manager component or ¢2s connection manager component. Sample plug-ins are:
vCard stanza processing, jabber:ig:register to register new user accounts, presence stanza processing,
jabber:ig:auth for non-sasl authentication and so on....

. Connector is amodule responsible to for access to data repository like database, LDAP to store and

retrieve user data. There are 2 kinds of connectors: authentication connectors and user data connectors.
Both of them are independent and can connect to different data sources. Sample connectors are: JDBC
database connector, XMLDB - embedded database connector, Drupal database connector, LibreSource
database connector.

Thereis API defined for each kind of above modules and all you have to do isimplementation of specific
interface. Then the module can be loaded to the server based on configuration settings. There are also
available abstract classes implementing these interfaces to make development easier.

Hereisabrief list of all interfacesto look at and for more detailsyou have to refer to the guide for specific
kind of module.

Component

Thisislist of interfacesto look at when you work on a new component:

1

tigase.ser ver .Server Component - thisisthe very basic interface for component. All components must
implement it.

. tigase.server .M essageReceiver - this interface extends Ser ver Conponent and is required to im-

plement by components which want to receive data packets like session manager, c2s connection man-
ager and so on...

. tigase.conf.Configurable - implementing this interface is required to make it configurable. For each

object of this type configuration is pushed to it at any time at runtime. This is necessary to make it
possible to change configuration at runtime. Implementation should be careful enough to handle this

properly.

mailto:artur.hefczyc@tigase.net
mailto:artur.hefczyc@tigase.net
http://tigase.net/

Basic Information

. tigase.disco.XM PPSer vice - Objects of which inherit thisinterface can respond to " ServiceDiscovery"

requests.

. tigase.stats.StatisticsContainer - Objects which inherits this type can return runtime statistics. Any

object can collect job statistics and implementing this interface guarantees that statistics will be pre-
sented in consisted way to user who wants to see them.

Instead of implementing above interfaces directly | would recommend to extend one of existing abstract
classeswhich take care of the most of "dirty and boring" stuff. Hereisalist the most useful abstract classes:

Plug-in

tigase.server AbstractM essageReceiver - implements 4 basic interfaces:

Ser ver Conponent, MessageRecei ver, Configurabl e and Stati sticsContai ner.
It also manages internal data queues using own threads which prevents from dead-locks. It
offers even-driven data processing which means whenever packet arrives abstract void
processPacket (Packet packet); methodis called to processit. Y ou have to implement this
abstract method in your component. If your component wants to send a packet (in response to data it
received for example) it needs to call

bool ean addCut Packet (Packet packet)

method. Thisisit, | mean basic implementation.

tigase.ser ver .ConnectionM anager - thisisan extension of Abst r act MessageRecei ver abstract
class. Asits name says this class takes care of all network connection management stuff. If your com-
ponent needs to send and receive data directly from the network (like c2s connection, s2s connection
or external component) you should use this implementation as a basic class. It takes care of al things
related to networking, 1/O, reconnecting, listening on socket, connecting and so on. If you extend this
class you have to expect data coming from to sources: from the MessageRout er and thisiswhen
abstract void processPacket (Packet packet);

method is called and from network connection and then

abstract Queue processSocket Dat a(XMPPI CSer vi ce serv);

method is called.

All Tigase plugins currently implemented are located in package: tigase.xmpp.impl. You can use this
code as a sample code base. There are 3 types of plug-ins and they are defined in interfaces located in

ti gase. xnpp package:

1

XM PPProcessor [fc - the most important and basic plug-in. This is the most common plug-in type
which just processes stanzas in normal mode. It receives packets, processes them on behalf of the user
and returns resulting stanzas.

. XM PPPr eprocessor I fc -

. XM PPPostprocessor I fc -

10

Basic Information

Connector

Data, Stanzas, Packets - Data Flow and Processing

Data received from the network are read from the network sockets as bytes by code inti gase. i o
package. Bytes then are changed into charactersin classes of t i gase. net package and as characters
they are put to XML parser (t i gase. xm) which turns them to XML DOM structures.

All data inside the server are exchanged in XML DOM form as this is the format used by XMPP pro-
tocol. For basic XML data processing (parsing characters stream, building DOM, manipulate XML el-
ements and attributes) we use Tigase XML parser and DOM builder [https://svn.tigase.org/reps/tigase-
xmitools/trunk/].

Each stanza is stored in t i gase. xm . El enent object. Every Element can contain any number of
chil d El enent s and any number of attributes. Y ou can access all these data through the class API.

To simplify some, most common operations Element is wrapped int i gase. server . Packet class
which offer another level of API for the most common operations|like preparation of response stanza based
on the element it contains (swap to/from values, put type=result attribute and so on...).

11

https://svn.tigase.org/reps/tigase-xmltools/trunk/
https://svn.tigase.org/reps/tigase-xmltools/trunk/
https://svn.tigase.org/reps/tigase-xmltools/trunk/

Chapter 4. Why the most recent JDK?

Artur Hefczyc <artur.hefczyc@tigase.net [mailto:artur.hefczyc@tigase.net]> v2.0, June 2014: Reformat-
ted for AsciiDoc. :toc: :numbered: :website: http://tigase.net/ :Date: 2010-04-06 21:22

WEell there are many reasons but the main is that | am the only one devel oper working on source code at
the moment. So the whole approach isto make life easier for me, make the project easier to maintain and
development more efficient.

Hereisthelist:

Easy to maintain - No third-party libraries are used for the project which makes this project much
easier to maintain. | don’t have to worry about compatibility beetwen particular version of library used
| don’t have to worry about upgrading my environment if library version change and old version is not
supported anymore. If 1 change machine on which | do development the only thing | need is just to
download JDK.

Easy to deploy - Another reason to not use third-party tools. Make it easier for end-user to install and
use the server.

Efficient development - Asno third-party libraries are used | need either to implement many things on
my own or use as much as possible of JDK functionality. And thisis exactly what | do. | try to use as
much as possible of existing library provided with JDK and the rest isimplemented on my own.

What features of JDK-1.5 are critical for Tigase development? Why | can’t smply reimplement some code
to make it compatible with earlier JDK versions?

Non-blocking I/O for SSL/TLS - This is functionality which can’t be smply reimplemented for
JDK-1.4. And as whole server uses NIO it doesn’t make sense to use blocking 1/0 for SSL and TLS.

SASL - This could be reimplemented for JDK-1.4 with not that big effort.

Concurrent package - This could be reimplemented for JDK-1.4 but the effort could be high. And this
iscritical part of the server asit uses multi-threading and concurrent processing.

Security package - There number of extensions to security package which make my live easier and
development more efficient.

| think above list is enough to decide to use JDK-1.5. But why JDK-1.6? Well, theis actually only 1 main
reason so far:

LinkedHashMap - in JDK-1.6 is a basement for the Tigase cache implementation.

Light HTTP server - JDK-1.6 offers built-in light HTTP server which is needed to implement HTTP
binding (JEP-0124) and HTTP user interface to monitor server activity and work with the server con-
figuration.

12

mailto:artur.hefczyc@tigase.net
mailto:artur.hefczyc@tigase.net
http://tigase.net/

Chapter 5. Hack Tigase Jabber/ XMPP
Server in Eclipse

Bartosz Makowski <bmalkowski @tigase.pl [mailto: bmal kowski @tigase.pl]> v2.0, June 2014: Reformat-
ted for AsciiDoc. :toc: :numbered: :website: http://tigase.net/ :Date: 2010-04-06 21:22

tigase-server.psf 424 bytes [files/tigase-server.psf]
eclipse-config.tar_.gz 1.01 KB [files/eclipse-config.tar_.gz]

If you want to write a code for Tigase server you might want to use Eclipse [http://www.eclipse.org/].
Here is a guide how to start working on source code using this IDE.

All you need to start is:
1. Installed and working copy of Eclipse [http://www.eclipse.org/]
2. Installed and working copy of JDK-1.6.0Beta2 [http://java.sun.com/javase/downl cads/ea.jsp] at least.

3. Installed and working Subclipse [http://subclipse.tigris.org/] pluggin for Eclipse.

JDK-1.6.0 Setup

After installation JDK-1.6.0 in your operating system, run Eclipse and select Window/Preferences.

13

mailto:bmalkowski@tigase.pl
mailto:bmalkowski@tigase.pl
http://tigase.net/
files/tigase-server.psf
files/tigase-server.psf
files/eclipse-config.tar_.gz
files/eclipse-config.tar_.gz
http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://java.sun.com/javase/downloads/ea.jsp
http://java.sun.com/javase/downloads/ea.jsp
http://subclipse.tigris.org/
http://subclipse.tigris.org/

Hack Tigase Jab-
ber/XMPP Server in Eclipse

|"r

|t'_-,.:'pe filker text |

P
B

g = = =

R

General

Ant

Copyright Tool
General

Help
Hyperbola
Install/Update
Java
Appearance
Build Path
Code Style
Caompiler
Debug
Editor

A A

JUnit
Properties Fles

kKews

Plug-in Developme

Run/Debug

Team

Preferences

Installed JREs

Add, remove or edit |RE definitions.
By default, the checked JRE is added to the build path of newly created |

Installed JREs:

Mame Location Type

|« mjava-1.5.0-sun-1.5.0.06 fusr/libfjvm/java-1.5.0 Standard ¥M

o

@

o

In section Javal/lnstalled JRES press Add button. In the new opened window enter path to installed JDK-6.
Inmy caseitis/opt/jdk1.6.0. It also good to set name to sun-jdk-1.6.0.

14

Hack Tigase Jab-
ber/XMPP Server in Eclipse

Add|JRE

JRE tvpe:

JRE name:

|RE home directory:

|Standard WM

| sun-jdk-1.6.0

Joptijdkl.6.0

|

Browse. ..

Default ¥M Arguments: |

|RE system libraries:

A

L foptfjdkl. 6.
L foptfjdkl. 6.
Lo foptfidkl. 6.
Lo foptfidkl. 6.
L foptfjdkl. 6.
& foptfjdkl.&.
& foptfidkl. 6.
& foptfidkl. 6.
& foptfjdkl.&.

A A~ A S

Ofjreflibfresources. jar
Qfjreflibirt.jar

ofjreflibfisse. jar

afjreflibfjce. jar
Ofjreflibjcharsets. jar
Ofjreflibfextidnsns. jar
afjreflibfext/sunpkecsll.jar
Ofireflibfextisunjce_provider.jar
Ofjreflibjext/localedata.jar

Add External JARs ..

Javadoc Location...

Source Attachment. ..

Remaowve

Up

Down

Restore Default

|

814

Subclipse Installation

As Eclipse doesn’t contain built-in support for Subversion repositories you have to add new plugin. De-
tailed instruction for Subclipse installation is on page:

subclipse.tigris.org/install.html [http://subclipse.tigris.org/install.htmi].

Project Import

From menu File in Eclipse execute Import. Next, highlight section Team/Team Project Set and press

Next.

15

http://subclipse.tigris.org/install.html
http://subclipse.tigris.org/install.html

Hack Tigase Jab-
ber/XMPP Server in Eclipse

e Import

Select
A wizard that impaorts a Team Project Set | gh 5 |

Select an import source:

I = General
P CVS
P = Plug-in Development
= [=Team
& Team Project Set
P [= Other
@ = Back Mext = Bnish Cancel

e

Enter file name tigase-server.psf in field File and press Finish.
Thefileis attached to this article.

Because kobit [http://www.tigase.net/user/1] has objections to add Eclipse configuration files to subver-
sion repository you have to do it on your own.

That'sit. Start hacking now!

16

http://www.tigase.net/user/1
http://www.tigase.net/user/1

Chapter 6. APl changes in the Tigase
Server 5.X

Artur Hefczyc <artur.hefczyc@tigase.net [mailto:artur.hefczyc@tigase.net]> v2.0, June 2014: Reformat-
ted for AsciiDoc. :toc: :numbered: :website: http://tigase.net/ :Date: 2010-01-06 20:22

The API changes can affect you only if you develop own codeto run inside the Tigase server. The changes
are not extensive but in some circumstances may reguire many simple changesin afew files.

All the changes are related to introducing tigase.xmpp.JiD and tigase.xmpp.BareJID classes. It is recom-
mended to use them for al operations performed on the user JID instead of the String class which was
used before changes.

There are a few advantages of using the new classes. First of all they do all the user JD checking and
parsing, they also perform stringprep processing. Therefore if you use data kept by instance of the JID or
BareJID you can be sure they are valid and correct.

These are not all advantages however. Working with a profiler and optimising the Tigase code | noticed
that alot of CPU power is used by JID parsing code. JIDs and parts of the JIDs are used in many places of
the stanza processing and the parsing is performed over and over again in all these places, wasting CPU
cycles, memory and time. Therefore, great benefits from these new classarein performanceif once parsed
JDsarereused in all further stanza processing.

This is where the tigase.server.Packet class comes in handy. Instance of the Packet class encloses XML
stanzaand pre-parses some, the most commonly used elements of the stanza. Stanza source and destination
addresses are among them. As an effect there are all new methods available in the class:

JI D get StanzaFrom();
JI D get StanzaTo();
JI D getFrom();

JI D getTo();

JI D get Packet From();
JI D get Packet To() ;

Whereas following methods are still available but have been deprecated:

String getEl enfFrom();
String getEl emTo();

Please refer to the JavaDoc documentation for the Packet class and methods to learn all the details of
these methods and difference between them.

Another differenceisthat you can no longer createthe Packet instance using aconstructor. Instead there
are afew factory methods available:

static Packet packetlnstance(El enent el enj;
static Packet packetlnstance(El enent el em
JI D stanzaFrom JID stanzaTo);

Again, pleaserefer to the JavaDoc documentation for all the details. The main point of using these methods
is that they actually return an instance of one of the following classes instead of the Packet class: | g,
Presence or Message.

17

mailto:artur.hefczyc@tigase.net
mailto:artur.hefczyc@tigase.net
http://tigase.net/

API changesin the Tigase Server 5.x

There is also a number of utility methods helping with creating a copy of the Packet instance preserving
as much pre-parsed data as possible:

Packet copyEl emrentOnl y();
Packet errorResult(...);
Packet okResult(...);
Packet swapFromro();
Packet swapStanzaFronTo();

Again, | tried to keep the JavaDoc comments as compl ete as possible, have alook. In case of doubts please
contact me and will add missing information to the documentation.

Themain pointistoreuseJI Dor Bar eJI Dinstancesin your code as much as possible. Y ou never know,
your code may run in highly loaded systems with throughput of 100k XM PP packets per second.

Another change. Thisoneabit risky asitisvery difficult to find all placeswhere this could be used. There
areseveral utility classes and methods which accept source and destination address of astanzaand produce
something. There was agreat confusion with them, asin some of them the first was the source address and
in others the destination address. | have re-factored all the code to keep the parameter order the samein all
places. Right now the policy is: sour ce addressfirst. Thereforein all places where there was a method:

Packet nethod(String to, String from;
it has been changed to:
Packet nethod(JID from JID to);

As far as | know most of these method were used only by myself so | do not expect much trouble for
other developers.

18

Chapter 7. Server Compilation

Artur Hefczyc <artur.hefczyc@tigase.net [mailto:artur.hefczyc@tigase.net]> v2.0, June 2014: Reformat-
ted for AsciiDoc. :toc: :numbered: :website: http://tigase.net/ :Date: 2010-04-06 21:22

List of documents describing how to work with sources and how to compile them.

» Tigase XMPP Server 5.2.0 and Later - Compilation and Generating Distribution Packages
« Tigase Packages Dependency Change - Server Compilation Version 4.x or Later

» Server Compilation - Version 2.x and 3.x

» Using Maven

19

mailto:artur.hefczyc@tigase.net
mailto:artur.hefczyc@tigase.net
http://tigase.net/

Chapter 8. Tigase XMPP Server 5.2.0
and later - Compilation and Generating
Distribution Packages

Wojciech Kapcia <wojciech.kapcia@tigase.org [mailto:wojciech.kapcia@tigase.org]> v2.0, June 2014:
Reformatted for AsciiDaoc. :toc: :numbered: :website: http://tigase.net/ :Date: 2013-08-08 12:42

Starting with version 5.2.0 Tigase Server we switch for generating distribution packages from Ant to
Maven. Thiswill allow better depencency management as well as build repeatability.

Guides:

A Very Short Maven Guide Maven 2.x Support

Distribution Packages

Starting from version 5.2.0 there will be two separate archives:
* minimal version (-dist) containing only tigase-server, tigase-xmltools and tigase-utils

» max version (-dist-max) containing all additional tigase components (MUC, PubSub, HTTP API, OSGi
support, etc.) as well as dependencies required by those components.

They will be available as both zip and tarball.

Building Server and Generating Packages

After cloning tigase-server repository:

git clone https://repository.tigase.org/git/tigase-server.git
cd tigase-server

Y ou compile server with maven using project distribution profile (dist):

nvn --Pdist --f nodul es/ master/pom xm clean install

Thiswill:

e compile server

 generate javadoc

» grabdl latest versions of all declared depencencies and put them in jars/ directory

* create both types of distribution packages (-dist and -dist-max) and place them in pack/ directory
In order to create instalator packages you have to execute two shell scripts:

.Iscripts/installer-prepare.sh
.Iscripts/installer-generate.sh

20

mailto:wojciech.kapcia@tigase.org
mailto:wojciech.kapcia@tigase.org
http://tigase.net/

Tigase XMPP Server 5.2.0 and
later - Compilation and Gen-
erating Distribution Packages

However, in order for them to succeed you have to build server first using maven as described earli-
er. You should also have git, python2, docutils and LaTeX distribution installed (please see src/main/iz-
pack/README.txt for details).

Running Server

Afterwards you can run the server with the regular shell script:
./scripts/tigase.sh start etc/tigase. conf

Please bear in mind, that you should provide correct setup in etc/init.properties configuration files for the
server to work correctly.

21

Chapter 9. Tigase Packages
Dependency Change - Server
Compilation Version 4.x or Later

Artur Hefczyc <artur.hefczyc@tigase.net [mailto:artur.hefczyc@tigase.net]> v2.0, June 2014: Reformat-
ted for AsciiDoc. :toc: :numbered: :website: http://tigase.net/ :Date: 2010-04-06 21:22

Thedependency for Tigase Utils Package [http://www.tigase.org/project/utils| has changed. Thisisimpor-
tant for everybody who builds the Tigase server manually from sources using Ant [http://ant.apache.org/]

tool. The Maven [http://maven.apache.org/] handles al the dependencies automatically and scripts have
been updated.

Please keep reading for more details how to compile the server from sourcesin current SV N repositories.

If you havean old Tigase MUC or Tigase Extras packagelyingin the server/libs/ directory please remove
it now. You have to update it too and copy it over to the server/jars directory after you completed steps
below.

For all those who build the server from sources manually using Ant [http://ant.apache.org/] hereis a short
guide:

1. Checkout all the sources first:
« https://projects.tigase.org/proj ects/tigase-xmltool s/repository
* https://projects.tigase.org/proj ects/tigase-util s/repository
* https://projects.tigase.org/proj ects/tigase-server/repository
2. Build the Tigase XMLTools and copy the jar file over to the utils and server libg/ directory
* cd xnltools
* ant clean jar-dist
e cp jars/tigase-xmtools.jar ../utils/libs
e cp jars/tigase-xnmtools.jar ../server/libs
3. Build the Tigase Utils and copy thejar fileto the server libs/ directory
ecd ../utils
e ant clean jar-dist
e cp jars/tigase-utils.jar ../server/libs
4. Build the Tigase Server binary
 cd ../server
« ant clean jar-dist

Thisisavery short guide but | hopeit helps. If you have any problems, please let me know.

22

mailto:artur.hefczyc@tigase.net
mailto:artur.hefczyc@tigase.net
http://tigase.net/
http://www.tigase.org/project/utils
http://www.tigase.org/project/utils
http://ant.apache.org/
http://ant.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://ant.apache.org/
http://ant.apache.org/
https://projects.tigase.org/projects/tigase-xmltools/repository
https://projects.tigase.org/projects/tigase-utils/repository
https://projects.tigase.org/projects/tigase-server/repository

Tigase Packages Dependen-
cy Change - Server Compi-
lation Version 4.x or Later

Addendum: starting withversion5.2.0 al librariesand jar filesfor the server areinjars/ directory; however
with that version we strongly encourage to switch to maven build system aswe are phasing out Ant - please
follow guide Tigase XMPP Server 5.2.0 and Later - Compilation and Generating Distribution Packages

23

Chapter 10. Server Compilation -
version 2.x and 3.x

Artur Hefczyc <artur.hefczyc@tigase.net [mailto:artur.hefczyc@tigase.net]> v2.0, June 2014: Reformat-
ted for AsciiDoc. :toc: :numbered: :website: http://tigase.net/ :Date: 2010-04-06 21:22

Tigase XMPP Server version 4.x or later need slightly different procedure to compile.

Although the server doesn’t need any third-party libraries apart from Java 6.0 (1.6beta2) compliant VM to
run, Apache Ant [http://ant.apache.org/] tool and Ant-Contrib [http://ant-contrib.sourceforge.net/] are used
to build binaries of Tigase applicationsand libraries. Another toolswhichisneeded isa Subversion [http://
subversion.tigris.org/] which is required to download the most recent sources from Tigase repository.

Tomakeit alist, again:

1. JDK-1.6 [http://java.sun.com/javase/6/webnotes/install/index.html] - Java SDK to compile and run
Tigase applications.

2. Apache Ant [http://ant.apache.org/] - the build tool

3. Ant-Contrib [http://ant-contrib.sourceforge.net/] - Apache Ant extensions used by build script (ant-
contrib on gentoo, and ant-optiona on Ubuntu)

4. Subversion [http://subversion.tigris.org/] - version control system used by Tigase.

Install al above in standard way, appropriate for your operating system. It is enough if they are available
in system PATH variable so you can execute them from command line.

Tigase Server has been divided into a few smaller subprojects some time ago. In order to have it all
working together we need to do compile them one by one. Here is step by step instruction how to do it.
Assuming you already run command line shell and changed to directory where you want to keep all Tigase
filesdo asfollows:

1. Get tigase-utils sources and compile them:

svn co https://svn.tigase.org/reps/tigase-utils/trunk/ utils

cd utils
ant clean jar
cd -..

2. Get tigase-xmltools sources and compile them:

svn co https://svn.tigase.org/reps/tigase-xmtools/trunk/ xmtools
cd xmtools

ant clean jar

cd -..

3. Get tigase-server sources and compile them:

svn co https://svn.tigase.org/reps/tigase-server/trunk/ server
cp xmtools/jars/tigase-xmtools.jar server/libs/

cp utils/jars/tigase-utils.jar server/libs/

cd server

ant clean jar

24

mailto:artur.hefczyc@tigase.net
mailto:artur.hefczyc@tigase.net
http://tigase.net/
http://ant.apache.org/
http://ant.apache.org/
http://ant-contrib.sourceforge.net/
http://ant-contrib.sourceforge.net/
http://subversion.tigris.org/
http://subversion.tigris.org/
http://subversion.tigris.org/
http://java.sun.com/javase/6/webnotes/install/index.html
http://java.sun.com/javase/6/webnotes/install/index.html
http://ant.apache.org/
http://ant.apache.org/
http://ant-contrib.sourceforge.net/
http://ant-contrib.sourceforge.net/
http://subversion.tigris.org/
http://subversion.tigris.org/

Server Compilation
- version 2.x and 3.x

Now you have Tigase Server compiled and ready to run. To check and make sure it is indeed compiled
and can be executed you can try to start the server. Assuming you are in the directory where you executed
the last compilation command for server sources run following command:

java --cp libs/tigase-utils.jar:libs/tigase-xmtools.jar:jars/tigase-server.jar ti

If it all worked correctly you should see output similar to presented below:

2006-10-04
2006-10-04
2006-10-04
2006-10-04
2006-10-04
2006-10-04
2006-10-04

17:
17:
17:
17:
17:
17:
17:

00:
00:
00:
00:
00:
00:
00:

38
38
38
38
38
38
39

Confi gRepository.init()

XMLDB. set upNewDB() | NFO
MessageRout er . addRegi strat or () I NFO
MessageRout er . addConponent () I NFO
Confi gur at or. set upLogManager () WARNI NG
Confi gur at or. set upLogManager () WARNI NG
XM_Repository. ()

WARNI NG Can not open existin

Create enpty DB
Addi ng registra
Addi ng componen
DONE
DONE

WARNI NG Can not open existing

Now you can proceed to configuration document to learn how to tweak server settings or you can just start
hacking server code and do experiments.

include::text/Development_Guide 11 - Using_Maven.asciidoc

25

Chapter 11. Maven 2.x Support

Artur Hefczyc <artur.hefczyc@tigase.net [mailto:artur.hefczyc@tigase.net]> v2.0, June 2014: Reformat-
ted for AsciiDoc. :toc: :numbered: :website: http://tigase.net/ :Date: 2010-04-06 21:22

Addendum: for amore recent guide please follow Tigase XM PP Server 5.2.0 and L ater - Compilation and
Generating Distribution Packages.

Thanks to bmalkow [http://www.tigase.org/user/2] you can now build Tigase server from sources using
Maven 2.x [http://maven.apache.org/] tool. This should greatly simplify first steps with Tigase code and
it was requested by many of those trying to get the server running from sources. Maven repository with
Tigase packages is located at address. maven.tigase.org [http://maven.tigase.org/]. Now all you need to
compile sources and generate packages needed to run the server isjust afew simple steps below:

1. Download and install Maven 2.x
2. Checkout Tigase server sources from Subversion [http://www.tigase.org/content/=] repository:
svn co https://svn.tigase.org/reps/tigase-server/trunk/ tigase-server
3. Now go to directory with server code:
cd tigase-server
4. And run maven command to generate server package:
nmvn assenbl y: assenbl y

5. After maven finished his work there should be new subdirectory created: target. Go to this directory
now:

cd target/
6. and list content of this directory. On Linux, Unix system:
ls --1
On MS Windows system:
dir
7. You should see at least 2 files like these:

ti gase-server-2. 4. 0- SNAPSHOT- pr odenv. tar. gz
ti gase-server-2. 4. 0- SNAPSHOT- pr odenv. zi p

8. Unpack one of these files whichever you like:
tar --xzvf tigase-server-2.4.0-SNAPSHOT- prodenv.tar. gz
or
unzi p tigase-server-2.4.0- SNAPSHOT- pr odenv. zi p

9. New directory will be created in our caseit will be: t i gase- server-2. 4. 0- SNAPSHOT/ . Now
go to this directory:

26

mailto:artur.hefczyc@tigase.net
mailto:artur.hefczyc@tigase.net
http://tigase.net/
http://www.tigase.org/user/2
http://www.tigase.org/user/2
http://maven.apache.org/
http://maven.apache.org/
http://maven.tigase.org/
http://maven.tigase.org/
http://www.tigase.org/content/=
http://www.tigase.org/content/=

Maven 2.x Support

cd tigase-server-2.4.0- SNAPSHOT/

10.Now almost everything is ready to run the server. Almost because sometimes on Unix like (including
Linux) operating systems you have to change script execution bit before you can runiit:

chnod u+x bin/*
11.Now you can run Tigase server:
./bin/tigase.sh run etc/tigase. conf

Y ou can get afew warnings about missing configuration file (which will be automatically created) and
user repository file (which will be automatically created when you register first user).

For your conveniencethere are afew other startup filesinet ¢/ directory. Y ou can look and modify them
according to your needs.

27

Chapter 12. A Very Short Maven Guide

Artur Hefczyc <artur.hefczyc@tigase.net [mailto:artur.hefczyc@tigase.net]> v2.0, June 2014: Reformat-
ted for AsciiDoc. :toc: :numbered: :website: http://tigase.net/ :Date: 2010-04-06 21:22

If you don’t use Maven [http://maven.apache.org/] at all or use it once ayear you may find the document
a useful maven commands reminder:

Snapshot Compilation and Snapshot Package
Generation

« mvn conpi | e - compilation of the snapshot package

« nvn package - create snapshot jar file

« nvn install -instalinlocal repository shanpshot jar file

* nvn depl oy - deploy to the remote repository snapshot jar file

Release Compilation, Generation

* nvn rel ease: prepar e prepare the project for a new version release

* nvn rel ease: perf or mexecute new version rel ease generation

Generating tar.gz, tar.bz2 File With Sources
Only

e nvn -Ddescriptorld=src assenbly: assenbly

28

mailto:artur.hefczyc@tigase.net
mailto:artur.hefczyc@tigase.net
http://tigase.net/
http://maven.apache.org/
http://maven.apache.org/

Chapter 13. Generating Tigase Installer

Artur Hefczyc <artur.hefczyc@tigase.net [mailto:artur.hefczyc@tigase.net]> v2.0, June 2014: Reformat-
ted for AsciiDoc. :toc: :numbered: :website: http://tigase.net/ :Date: 2010-04-06 21:22

To generate installer:
1. Install chosen version of |zPack [http://izpack.org/] including source code.

2. In order to compile custom Tigase panels you need to first compile 1zPack [http://izpack.org/] classes.
Youcanusetheincludedbui | d. xml whichisinthesrcdirectory of IzPack [http://izpack.org/] install.
Just enter this dir and type:

ant all

3. Depending on the IzPack version classes will be compiled directly into the src/ | i b directory or
_bui I d directory of 1zPack [http://izpack.org/]. Y ou may need to tweak the bui | d. xml filewhich
isinthe same dir asther eade and point to the directory where |zPack [http://izpack.org/] compiled
classessreside.

<l-- fragnent --->
<cl asspat h>
<pat hel ement | ocati on="java"/>

<l-- tweak bel ow fragnment --->
<pat hel ement | ocation="${installer.path}/_build"/>

<pat hel ement | ocati on="${i nstall er. path}/bin/panel s/ Target Panel .jar"/>
</ cl asspat h>

4. Make sure that the bin/panels directory of |zPack [http://izpack.org/] is writable by gener -
ate-install er. sh script. Compiled custom panels will be placed here before running installer
compiler.

5. Modify thescri pt/ generate-instal | er. sh. Changethel ZPACK_DI R variable to point to
the IzPack [http://izpack.org/] instalation directory e.g.

| ZPACK_DI R="/usr /Il ocal /| zPack421"

6. Tostart theinstallation processrunthescri pt s/ generat e-i nstal | er. shfileyouwill findin
the main server source code directory. Y ou should start it from the server root dir.

7. Generated files (jar and exe) will be placed in the packages dir of Tigase codebase.

29

mailto:artur.hefczyc@tigase.net
mailto:artur.hefczyc@tigase.net
http://tigase.net/
http://izpack.org/
http://izpack.org/
http://izpack.org/
http://izpack.org/
http://izpack.org/
http://izpack.org/
http://izpack.org/
http://izpack.org/
http://izpack.org/
http://izpack.org/
http://izpack.org/
http://izpack.org/
http://izpack.org/
http://izpack.org/

Chapter 14. Plugin Development

Artur Hefczyc <artur.hefczyc@tigase.net [mailto:artur.hefczyc@tigase.net]> v2.0, June 2014: Reformat-
ted for AsciiDoc. :toc: :numbered: :website: http://tigase.net/ :Date: 2010-04-06 21:22

Thisisaset of documents explaining details what is plugin, how it is designed and how it worksinside the
Tigase server. Thelast part of the documentation explains step by step creating the code for anew plugin.

* SASL Custom Mechanisms and Configuration
» How Packets are Processed by the SM and Plugins
» Writing Plugin Code

* Plugin Configuration

30

mailto:artur.hefczyc@tigase.net
mailto:artur.hefczyc@tigase.net
http://tigase.net/

Chapter 15. SASL Custom Mechanisms
and Configuration

Bartosz Malkowski <bmalkowski @tigase.pl [mailto: bmal kowski @tigase.pl]> v2.0, June 2014: Reformat-
ted for AsciiDoc. :toc: :numbered: :website: http://tigase.net/ :Date: 2013-01-23 03:54

ThisAPI isavailable from Tigase XM PP Server version 5.2.0 or our current master branch.

Note that API is under active development. This description may be updated at any time.

Basic SASL Configuration

SASL implementation in the Tigase XM PP Server is compatible with Java API.The same exact interfaces
are used.

The SASL implementation consists of following parts:
1. mechanism
2. CallbackHandler

Propertieslist for SASL plugin (sess-man/plugins-conf/ur n\:ietf\: params\:xml\: ns\: xmpp-sasl):

Property Description

factory A factory class for SASL mechanisms. De-
tailed description at Mechanisms configura-
tion

callbackhandler A default callback handler class. Detailed de-
scription at CallbackHandler configuration

callbackhandler-${ MECHANISM} A callback handler class for a particular

mechanism. Detailed description at Callback-
Handler configuration

mechani sm-sel ector A classfor filtering SASL mechanisms avail-
ablein astream. Detailed description at Se-
lecting mechanisms

Mechanisms Configuration

To add anew mechanism, anew factory for the mechanism hasto be registered. It can be done with anew
lineinthei nit. properti es filelikethisone:

sess-man/ pl ugi ns-conf/urn\:ietf\:parans\:xm\:ns\:xnmpp-sasl/
fact ory=com exanpl e. OamnFact ory

The class must implement ' Sasl Ser ver Fact ory' interface. All mechanisms returned by ' get -
Mechani smNanmes() ' method will be registered automatically.

The factory which is available and registered by default is
'tigase. aut h. Ti gaseSasl| Server Fact ory' which provides PLAI N and ANONYMOUS mech-
anisms.

31

mailto:bmalkowski@tigase.pl
mailto:bmalkowski@tigase.pl
http://tigase.net/

SASL Custom Mecha
nisms and Configuration

CallbackHandler Configuration

TheCal | backHandl er isahelper classused for |oading/retrieving authentication datafrom datarepos-
itory and providing them to a mechanism.

Toregister anew callback handler anew lineinthei ni t . properti es filelikethisonehasto be added:

sess-man/ pl ugi ns-conf/urn\:ietf\:parans\:xm\:ns\: xnpp-sasl/
cal | backhandl er =com exanpl e. Def aul t Cal | backHandl er

It isalso possibleto register different callback handlers for different mechanisms:

sess-man/ pl ugi ns-conf/urn\:ietf\:parans\:xm\:ns\:xmpp-sasl/
cal | backhandl er - PLAI N=com exanpl e. Pl ai nCal | backHandl er

sess-man/ pl ugi ns-conf/urn\:ietf\:parans\:xm\:ns\:xnmpp-sasl/
cal | backhandl er - QAUTH=com exanpl e. QAut hCal | backHandl er

During authentication process, the Tigase server always checks for a handler specific to selected mecha
nisms, and if there is no specific handler a default oneis used.

Selecting Mechanisms Available in the Stream

Interface ' ti gase. aut h. Mechani snBel ect or' is used for selecting mechanisms available in a
stream. Method' fi | t er Mechani sis ()" should return acollection with mechanisms available based
on:

1. al registered SASL factories
2. XMPP session data (from ' XMPPResour ceConnecti on' class)

The default selector returns mechanisms from the default Tigase's factory (' Ti gaseSas| Ser ver -
Fact ory') only.

Itis possible to use a custom selector by specifyingit’sclassint thei ni t . pr operti es file

sess-man/ pl ugi ns-conf/urn\:ietf\:parans\:xm\:ns\:xnmpp-sasl/
mechani sm sel ect or=com exanpl e. OmSel ect or

Logging/Authentication

After the XMPP stream is opened by a client, the server checks which SASL mechanisms are available
for the XM PP session. Depending on whether the stream is encrypted or not, depending on the domain,
the server can present different available authentication mechanisms. MechanismSelector is responsible
for choosing mechanisms. List of allowed mechanismsis stored in the XM PP session object.

When the client/user begins authentication procedure it uses one particular mechanism. It must use one
of the mechanisms provided by the server as available for this session. The server checks whether mecha
nisms used by the client is on the list of allowed mechanisms. It the check is successful, the server creates
' Sasl Server' classinstanceand proceedswith exchanging authentication information. Authentication
datais different depending on the mechanism used.

When the SASL authentication is completed without any error, the Tigase server should have authorized
user name or authorized BarelID. In thefirst case, the server automatically builds user’s JID based on the
domain used in the stream opening element in 't o' attribute.

32

SASL Custom Mecha
nisms and Configuration

If, after a successful authentication, method cal:
' get Negoti atedProperty("1S_ANONYMOUS")\' returns ' Bool ean. TRUE' then the user
session is marked as anonymous. For valid and registered users this can be used for cases when we do not
want to load any user data such asroster, vcard, privacy listsand so on. Thisisaperformance and resource
usage implication and can be useful for use cases such as support chat. The authorization is performed
based on the client database but we do not need to load any X M PP specific data for the user’s session.

More details about implementation can be found at custom mechanisms devel opment.

Built-in Mechanisms

PLAIN
TODO!
ANONYMOUS

TODO!

Custom Mechanisms Development

Mechanism

''get Aut hori zationl D()\' methodfrom' Sasl Server' classshould returnbareJID authorized
user. In case that the method returns only user name such asromeo for example, the server automatically
appends domain name to generate a valid BareJID: romeo@example.com. In case the method returns a
full, valid BareJID, the server does not change anything.

" handl eLogi n()\" method from' Sessi onManager Handl er' will be called with user’s Bare
JID provided by get Aut hori zat i onl D() (or created later using stream domain name).

CallbackHandler

For each session authorization, the server createsanew and separate, empty handler. Factory which creates
handler instance allows to inject different objectsto the handler, depending on interfaces implemented by
the handler class:

* Aut hReposi t or yAwar e - injects Aut hReposi t ory;

» Domai nAwar e - injects domain name within which the user attempts to authenticate

* NonAut hUser Reposi t or yAwar e - injects NonAut hUser Reposi t ory, athough | have no
ideawhat for...

General Remarks

Jabber | gAut h used for non-SASL authentication mechanisms uses the same callback as the SASL
mechanisms.

Methods' aut h' in' Reposi tory' interfaceswill be deprecated. These interfaces will be treated as
user details providers only. There will be new methods available which will allow for additional login
operations on the database such as last successful login recording and so on...

33

SASL Custom Mecha
nisms and Configuration

Known Problems

Because Jabber | gAut h isinitialized separatelly, we strongly recommend to use more general prefix
ininit.properties:

sess- man/ pl ugi ns- conf/ ${ KEY} =${ VALUE}
instead of
sess-man/ pl ugi ns-conf/urn\:ietf\:parans\:xnm\:ns\: xnmpp-sasl / ${ KEY} =${ VALUE}

If Jabber | gAut h isdisabled, then you don’t care about it.

Chapter 16. How Packets are
Processed by the SM and Plugins

Artur Hefczyc <artur.hefczyc@tigase.net [mailto:artur.hefczyc@tigase.net]> v2.0, June 2014: Reformat-
ted for AsciiDoc. :website: http://tigase.net/ :Date: 2010-04-06 21:22

For the Tigase server plugin development it isimportant to understand how it all works. There are different
kind of plugins responsible for processing packets at different stages of the data flow. Please read the
introduction below before proceeding to the actual coding part.

Introduction

In the Tigase server plugins are pieces of code responsible for processing particular XMPP stanza. A
separate plugin might be responsible for processing messages, a different one for processing presences,
and there might a separate plugins responsible for iq roster, different for iq version and so on.

A plugin provides information about what exact XML element(s) name(s) with xminsit is interested in.
So you can create a plugin which isinterested in all packets containing caps child.

There might be no plugin for a particul ar stanza element and then a default actionsis used whichissimple
forwarding stanzato a destination address. There might be also more than one plugin for a specific XML
element and then they all process the same stanza simultaneously in separate threads so there is no guar-
antee on the order in which the stanzais processed by a different plugins.

Each stanza goes through the Session Manager component which processes packets in afew steps. Have
alook at the picture below:

USerA]| Process

i

Postprocess

Filter

The picture shows that each stanzais processed by the session manager in 4 steps:

1. Pre-processing - all loaded pre-processors receive the packet for processing. They work within session
manager thread and they have no internal queue for processing. As they work within Session Manager
thread it isimportant that they limit processing timeto absol ute minimum asthey may affect the Session

35

mailto:artur.hefczyc@tigase.net
mailto:artur.hefczyc@tigase.net
http://tigase.net/

How Packets are Processed
by the SM and Plugins

Manager performance The intention for the pre-processorsisto alow them for packet blocking. If the
pre-processing result is true then the packet is blocked and no further processing is performed.

2. Processing - thisisthe next step the packet getsthroughiif it wasn’ t blocked by any of the pre-processors.
It getsinserted to all processors queues which requested interest in this particular XML element. Each
processor works in a separate thread and has own internal fixed size processing queue.

3. If there is no processor for the stanza then the packet goes through all post-processors. The last post-
processor in built into session manager post-processor which tries to apply adefault action to a packet
which hasn't been processed in step 2. Normally the default action is just forwarding the packet to a
destination. Most commonly it is applied to <message/> packets.

4. Finadly, if any of above 3 steps produced output/result packets all of them go through all filters which
may or may not block them.

Important thing to note is that we have two kinds or two places where packets may be blocked or filtered
out. One place is before packet is processed by the plugin and another place is after processing where
filtering is applied to all results generated by the processor plugins.

It isalso important to note that session manager and processor plugins act as packet consumers. The packet
is taken for processing and once processing is finished the packet is destroyed. Therefore to forward a
packet to adestination one of the processor must create acopy of the packet, set al propertiesand attributes
and return it as a processing result. Of course processor can generate any number of packets as a resullt.
Result packets can be generated in any of above 4 steps of the processing. Have alook at the picture below:

P1

USerA]| Process

i

Postprocess

Filter

Some other place:

MUC, PubSub,
user on another server...

If the packet P1 is send outside of the server, for exampleto auser on another server or to some component
(MUC, PubSub, transport) then one of the processor must create a copy P2 of the packet and set al at-
tributes and destination addresses correctly. Packet P1 has been consumed by the session manager during
processing and a new packet has been generated by one of the plugins.

36

How Packets are Processed
by the SM and Plugins

The same of course happens on the way back from the component to the user:

USerA

Some other place:

MUC, PubSub,
user on another server...

P2

The packet from the component is processed and one of the plugins must generate a copy of the packet
to deliver it to the user. Of course packet forwarding is a default action which is applied when thereisno
plugin for the particular packet.

It isimplemented thisway because theinput packet P1 can be processed by many plugins at the sametime
therefore the packet should be in fact immutable and must not change once it got to the session manager
for processing.

The most obvious processing workflow is when a user sends request to the server and expects a response
from the server:

How Packets are Processed
by the SM and Plugins

P1 [get|sef]

USerA]| Process

—_—

i

SM

(=]

1

Filter

P2 [result]

This design has one surprising consequence though. If you look at the picture below showing communica
tion between 2 users you can see that the packet is copied twice beforeit isdelivered to afinal destination:

i

1l Process userB

v
o
=

il

Filter

P3

The packet has to be processed twice by the session manager. The first time it is processed on behalf
of the User A as an outgoing packet and the second time it is processed on behalf of the User B as an
incoming packet.

This is to make sure the User A has permission to send a packet out and all processing is applied to the
packet and al so to make sure that User B has permission to receive the packet and al processing is applied.
If, for example, the User B is offline there is offline message processor which should put the packet to
a database.

38

Chapter 17. Writing Plugin Code

Artur Hefczyc <artur.hefczyc@tigase.net [mailto:artur.hefczyc@tigase.net]> v2.0, June 2014: Reformat-
ted for AsciiDoc. :toc: :numbered: :website: http://tigase.net/ :Date: 2010-04-06 21:22

Previous guide describes a basic idea behind the XM PP stanza processing in the session manager. As it
was aready point out the processing takes place in 4 steps. A different kind of plugin is responsible for
each step of processing:

1. XMPPPreprocessorlfc [https://projects.tigase.org/projects/tigase-server/repository/revisions/mas-
ter/entry/src/main/javaltigase/xmpp/X M PPPreprocessorifc.java) - is the interface for packets pre-pro-
cessing plugins.

2. XMPPProcessorlfc [https://projects.tigase.org/projects/tigase-server/repository/revisiongmaster/en-
try/src/main/javaltigase/xmpp/X M PPProcessor.java - isthe interface for packets processing plugins.

3. XMPPPostprocessorlfc [https://projects.tigase.org/projects/tigase-server/repository/revisions/mas-
ter/entry/src/main/javaltigase/xmpp/X M PPPostprocessorifc.java) - is the interface for packets post-
processing plugins.

4. XMPPPacketFilterlfc [https://projects.tigase.org/projects/tigase-server/repository/revisions/mas-
ter/entry/src/main/javaltigase/xmpp/ X M PPPacketFilterlfc.java) - isthe interface for processing results
filtering.

If you look inside any of these interfaces you find only a single method. Thisisit. Thisis where all the
packet processing takes place. All of them take a similar set of parameters and below is a description for
all of them:

» Packet packet - packet iswhich being processed. This parameter may never be null. Even though this
is not immutable object it mustn't be altered. None of it's fields or attributes can be changed during
processing.

» XMPPResourceConnection session - user session which keeps all the user session data and also gives
an access to the user’s repository data. It allows for storing information in a permanent storage or in
memory only during the live of the online session. This parameter can be null if there is no online user
session at the time of the packet processing.

* NonAuthUser Repository repo - thisisauser datastorage which isnormally used when the user session
(parameter above) isnull. Thisisrepository allowsfor avery restricted accessonly. It allowsfor storing
some user private data (doesn’'t allow overwriting existing data) like messages for offline users and it
also allows for reading user public data like V Card.

* Queue<Packet> results - this a collection with packets which have been generated as input packet
processing results. Regardless a response to a user request is sent or the packet is forwarded to it's
destination it isalwaysrequired that acopy of theinput packet is created and stored in the r esults queue.

» Map<String, Object> settings - this map keeps plugin specific settings loaded from the Tigase server
configuration. In most casesit isunused, however if the plugin needsto access an external database that
thisisaway to pass database connection string to the plugin.

After a closer look in some of the interfaces you can see that they extend ancther interface: XMP-
Pimplifc [https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/ja
valtigase/xmpp/XMPPImplifc.java] which provides a basic metainformation about the plugin implemen-
tation. Please refer to JavaDoc documentation for all details.

39

mailto:artur.hefczyc@tigase.net
mailto:artur.hefczyc@tigase.net
http://tigase.net/
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/xmpp/XMPPPreprocessorIfc.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/xmpp/XMPPPreprocessorIfc.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/xmpp/XMPPPreprocessorIfc.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/xmpp/XMPPProcessor.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/xmpp/XMPPProcessor.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/xmpp/XMPPProcessor.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/xmpp/XMPPPostprocessorIfc.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/xmpp/XMPPPostprocessorIfc.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/xmpp/XMPPPostprocessorIfc.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/xmpp/XMPPPacketFilterIfc.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/xmpp/XMPPPacketFilterIfc.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/xmpp/XMPPPacketFilterIfc.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/xmpp/XMPPImplIfc.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/xmpp/XMPPImplIfc.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/xmpp/XMPPImplIfc.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/xmpp/XMPPImplIfc.java

Writing Plugin Code

For purpose of this guide we are implementing a simple plugin handling all <message/> packets,
that is forwarding packets to the destination address. Incoming packets are forwarded to the us-
er connection and outgoing packets are forwarded to the externa destination address. This mes-
sage plugin [https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/
javaltigase/xmpp/impl/Message.java) is actually implemented already and it isavailablein our Git repos-
itory. The code has some comments inside already but this guide goes deeper into the implementation
details.

First of al you have to chose what kind of plugin you want to implement. If thisis going to be a packet
processor you have to implement XM PPProcessor | fc interface, if thisis going to be pre-processor then
you have to implement XM PPPr epr ocessor | fc interface. Of course your implementation can implement
more than one interface, even all. It depends on your use case and needs. There are also two abstract
helper classes from which you should use one as a base for all you plugins XM PPProcessor or Annotat-
edXM PPProcessor for annotation support.

Using annotation support

The class declaration should look like this (assuming you implement just packet processor):

public class Message extends Annot at edXMPPProcessor
i mpl enent s XMPPPr ocessorlfc

Thefirst thing to createis the plugin I D. Thisis a unique string which you put in the configuration file to
tell the server to load and use the plugin. In most cases you can use XMLNS if the plugin wants packets
with elements with a very specific name space. Of course there is no guarantee there is no other packet
for this specific XML element too. As| want to process all messagesand | don’t want to spend whole day
on thinking about a cool 1D let’s say our ID is: 'message’.

A plugin informs about it's using static I D field and @I d annotation placed on class:

@d(1D)
public class Message extends Annot at edXMPPProcessor
i mpl ements XMPPProcessorlfc {
protected static final String ID = -"nmessage";

}

As | mentioned before such a plugin receives only this kind of packets for processing which it is in-
terested in. My plugin is interested only in packets with <message/> elements and only if they are in
"jabber:client" namespace. To indicate all supported elements and namespaces we have to add 2 more
annotations:

@d(1D)
@Handl es({
@Handl e(pat h={ -"nessage" -}, xm ns="j abber:client")

})

public class Message extends Annot at edXMPPProcessor
i mpl ements XMPPProcessorlfc {
private static final String ID = -"nmessage";

}
Using older non-annotation based implementa-
tion

The class declaration should look like this (assuming you implement just packet processor):

40

https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/xmpp/impl/Message.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/xmpp/impl/Message.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/xmpp/impl/Message.java
https://projects.tigase.org/projects/tigase-server/repository/revisions/master/entry/src/main/java/tigase/xmpp/impl/Message.java

Writing Plugin Code

public class Message extends XMPPProcessor
i mpl enent s XMPPProcessorlfc

Thefirst thing to create isthe plugin I D. Thisis a unique string which you put in the configuration file to
tell the server to load and use the plugin. In most cases you can use XMLNS if the plugin wants packets
with elements with a very specific name space. Of course there is no guarantee there is no other packet
for this specific XML element too. As| want to process all messagesand | don’t want to spend whole day
on thinking about acool ID let’s say our ID is: 'message’.

A plugin informs about it's ID using following code:

private static final String ID = -"nessage";
public String id() { return ID;, -}

As | mentioned before such a plugin receives only this kind of packets for processing which it is in-
terested in. My plugin is interested only in packets with <message/> elements and only if they are in
"jabber:client" namespace. To indicate all supported elements and namespaces we have to add 2 more
methods:

public String[] supEl enments() {
return new String[] {"message"};

}

public String[] supNamespaces() {
return new String[] {"jabber:client"};

}
Implementation of processing method

Now we have our plugin prepared for loading it to the Tigase server. The next step is the actual packet
processing method. For the complete code, please refer to the plugin in the Git. | will only comment here
on elementswhich might be confusing or add afew morelines of code which might be helpful inyour case.

@verride

public void process(Packet packet, XWMPPResourceConnection session,
NonAut hUser Reposi tory repo, Queue<Packet> results, Map<String, Object> settings)
t hrows XMPPException {

/1 For performance reasons it is better to do the check
/1 before calling | ogging nethod.
if (log.isLoggabl e(Level.FINEST)) {

| og. | og(Level . FI NEST, -"Processing packet: {0}", packet);

}
/1 You may want to skip processing conpletely if the user is offline.
if (session == null) {
return;
} -/l end of if (session == null)
try {

/1 Renmenber to cut the resource part off before conparing JlDs
BareJdI D id = (packet.getStanzaTo() -!= null) -? packet.get StanzaTo(). getBareJdl X

41

Writing Plugin Code

/1 Checking if this is a packet TO the owner of the session
if (session.isUserld(id)) {

/1l Yes this is message to -"this' client
Packet result = packet.copyEl emrentOnly();

/1 This is where and how we set the address of the conponent

/1 which should rceive the result packet for the final delivery
/!l to the end-user. In nost cases this is a c2s or Bosh conponent
/1 which keep the user connecti on.

resul t. set Packet To(sessi on. get Connect i onl d(packet . get St anzaTo()));

/1 In nobst cases this mght be skept, however if there is a
/1 problemduring packet delivery an error mght be sent back
resul t. set Packet From packet. get To());

/1 Don't forget to add the packet to the results queue or it
/1 will be |ost.
results.offer(result);

return;
} -/1 end of else

/1 Renmenber to cut the resource part off before conparing JlDs
id = (packet.getStanzaFrom() -!= null) -? packet.getStanzaFron().getBaredID() -:

/1 Checking if this is maybe packet FROM the client
if (session.isUserld(id)) {

/1l This is a packet FROMthis client, the sinplest action is
/1 to forward it to is't destination:

/1 Sinple clone the XML el ement and...

/1l -... putting it to results queue is enough

resul ts. of fer(packet. copyEl enentOnly());

return;

}

/1 Can we really reach this place here?

/'l Yes, some packets don't even have fromor to address.

/1 The best exanple is | Q packet which is usually a request to

/1l the server for some data. Such packets may not have any addresses
/1 And they usually require nore conpl ex processing

/1 This is how you check whether this is a packet FROM the user

/1 who is owner of the session:

JID jid = packet.getFrom);

/1 This test is in nost cases equal to checking getEl enfrom()
i f (session.getConnectionld().equals(jid)) {

/1 Do sone packet specific processing here, but we are dealing
/1 with nessages here which normally need just forwarding
El ement el _result = packet.getEl enent().clone();

42

Writing Plugin Code

/1 1f we are here it neans FROM address was m ssing fromthe
/1 packet, it is a place to set it here:
el _result.setAttribute("front', session.getJID().toString());

Packet result = Packet.packetlnstance(el _result, session.getJI),
packet . get St anzaTo());

/1l -... putting it to results queue is enough
results.offer(result);
}
} catch (Not Aut horizedException e) ({
| og. war ni ng(" Not Aut hori zedExcepti on for packet: -" + packet);
resul ts. of fer(Aut hori zati on. NOT_AUTHORI ZED. get ResponseMessage(packet ,
"You must authorize session first.", true));
} -// end of try-catch

43

Chapter 18. Plugin Configuration

Artur Hefczyc <artur.hefczyc@tigase.net [mailto:artur.hefczyc@tigase.net]> v2.0, June 2014: Reformat-
ted for AsciiDoc. :toc: :numbered: :website: http://tigase.net/ :Date: 2010-04-06 21:22

Plugin configuration is not very straightforward at the moment but we are going to change it soon.

At the moment the best and the simplest way to tell the Tigase server to load or not to load the plugin is
viai ni t. properti es file. Property - - sm pl ugi ns takes a comma separated list of plugin IDsto
active at the runtime. Please refer to the documentation for complete description.

Obviously you haveto know thelist of standard plugin IDsto add your to the set. There are 2 waysto find
out thelist. Oneisthe log file: logstigase-console.log. If you look inside you can find following outpuit:

Loadi ng pl ugi
Loadi ng pl ugi
Loadi ng pl ugi

http://jabber. org/ protocol /commands -...
j abber:iq:private -...
urn: xmpp:ping -...

Loadi ng plugin: jabber:ig:register -...
Loadi ng plugin: jabber:ig:auth -...
Loadi ng plugin: urn:ietf:params:xm:ns: xnpp-sasl -...
Loadi ng plugin: urn:ietf:params:xm:ns:xnpp-bind -...
Loadi ng plugin: urn:ietf:params:xm:ns: xnpp-session -...
Loadi ng plugin: roster-presence -...
Loadi ng plugin: jabber:iq:privacy -...
Loadi ng plugin: jabber:iqg:version -...
Loadi ng plugin: http://]jabber.org/protocol/stats -...
Loadi ng plugin: starttls -...
Loadi ng plugin: vcard-tenp -...

n:

n:

n:

and thisisalist of pluginswhich are loaded in your installation.
Another way isto look inside the session manager source code which has the default list hardcoded:

private static final String[] PLUJ NS FULL PROP VAL =

{"jabber:iqg:register”, -"jabber:iqg:auth", -"urn:ietf:paranms: xnl:ns: xnpp-sasl"”
-"urn:ietf:parans: xm :ns: xnpp-bind", -"urn:ietf:parans: xm : ns: xmpp- sessi on"
-"roster-presence", -"jabber:iq:privacy", -"jabber:iqg:version",
-"http://jabber.org/protocol/stats", -"starttls", -"nsgoffline"
-"vcard-temp", -"http://]jabber.org/protocol/conmands"”, -"jabber:iqg:private"
-"urn: xnpp: ping", -"basic-filter", -"domain-filter"};

In any way you have to put the list and your plugin IDs as a value to the plugin list property. Let’s say
our plugin ID is'message’ asin our al examples:

---smpl ugi ns=j abber:iq:regi ster,jabber:iqg:auth,...... , Message
Assuming your plugin classisin the classpath it will be loaded and used at the runtime.

There is another part of the plugin configuration though. If you looked at the Writing Plugin Code guide
you can remember Map settings processing parameter. This is a map of properties you can set in the
configuration file and these setting will be passed to the plugin at the processing time.

Again init.properties is the place to put the stuff. This kind of properties start with a string: sess-man/
plugins-conf/, then you add your plugin 1D and at the end and follow it with key and value pair for your
setting:

mailto:artur.hefczyc@tigase.net
mailto:artur.hefczyc@tigase.net
http://tigase.net/

Plugin Configuration

sess- man/ pl ugi ns-conf/ pl ugi nl D/ keyl=val 1
sess- man/ pl ugi ns- conf/ pl ugi nl D/ key2=val 2
sess- man/ pl ugi ns- conf/ pl ugi nl D/ key3=val 3

It is possible to provide settings for afew plugins withing one configuration string by specifying multiple
pluginl Ds separated with acomma, i.e.

sess- man/ pl ugi ns- conf/ pl ugi n1, pl ugi n2, pl ugi n3/ keyl=val 1

Which will make key/pair setting available only to listed plugins, in above case pluginl, plugin2 and
plugin3.

Last but not least - in case you have omitted plugin I D:
sess-man/ pl ugi ns- conf/ keyl=val 1

then the configured key-value pair will be a global/common plugin setting available to all loaded plugins.

45

Chapter 19. Component Development

Artur Hefczyc <artur.hefczyc@tigase.net [mailto:artur.hefczyc@tigase.net]> v2.0, June 2014: Reformat-
ted for AsciiDoc. :toc: :numbered: :website: http://tigase.net/ :Date: 2010-04-06 21:22

A component in the Tigase is an entity with own JID address. It can receive packets, can process them
and can also generate packets.

An example of the best known components is MUC or PubSub. In the Tigase server, however, almost
everything is actually a component: Session Manager, s2s connections manager, Message Router, etc....
Components are loaded based on the server configuration, new components can be loaded and activated
at the server run-time. Y ou can easily replace a component implementation and the only change to make
isaclass namein the configuration entry.

Creating components for the Tigase server is an essential part of the server development hence thereisa
lot of useful API and ready to use code available. This guide should help you to get familiar with the API
and how to quickly and efficiently create own component implementations.

1. Component implementation - Lesson 1 - Basics

2. Component implementation - Lesson 2 - Configuration

3. Component implementation - Lesson 3 - Multi-Threading
4. Component implementation - Lesson 4 - Service Discovery
5. Component implementation - Lesson 5 - Statistics

6. Component implementation - Lesson 6 - Scripting Support
7. Component implementation - Lesson 7 - Data Repository
8. Component implementation - Lesson 8 - Startup Time

9. Configuration API

10.Packet Filtering in Component

46

mailto:artur.hefczyc@tigase.net
mailto:artur.hefczyc@tigase.net
http://tigase.net/

Chapter 20. Component
Implementation - Lesson 1 - Basics

Artur Hefczyc <artur.hefczyc@tigase.net [mailto:artur.hefczyc@tigase.net]> v2.0, June 2014: Reformat-
ted for AsciiDoc. :toc: :numbered: :website: http://tigase.net/ :Date: 2010-01-06 20:22

Creating a Tigase component is actually very simple and with broad APl available you can create a pow-
erful component with just afew lines of code. Y ou can find detailed API description elsewhere. This series
presents hands on lessons with code exampl es, teaching how to get desired resultsin the simplest possible
code using existing Tigase API.

Even though all Tigase components are just implementations of Server Component interface | will keep
such alow level information to necessary minimum. Creating a new component based on just interfaces,
while very possible, is not very effective. This guide intends to teach you how to make use of all what is
already there, ready to use with aminimal coding effort.

Thisisjust thefirst lesson of the serieswhere | cover basics of the component implementation.

Let’s get started and create the Tigase component:

i mport java.util.logging.Logger;

i mport tigase.server. Abstract MessageRecei ver;

i mport tigase.server. Packet;

public class Test Conponent extends Abstract MessageReceiver {

private static final Logger |og = Logger. getLogger(Test Conponent. cl ass. get Nanme()

@verride

public void processPacket (Packet packet) {
log.finest("My packet: -" + packet.toString());

-}

}

The only element mandatory when you extend AbstractM essageReceiver isthe implementation of void
processPacket(Packet packet) method. Thisis actually logical as the main task for your component is
processing packets. Class name for our new component is TestComponent and we have adso initialised a
separated logger for thisclass. Thisisactually very useful asit allows usto easily find log entries created
by our class.

With these a few lines of code you have a fully functional Tigase component which can be loaded to
the Tigase server, can receive and process packets, shows as an element on service discovery list (for
administrators only), responds to administrator ad-hoc commands, supports scripting, generates statistics,
can be deployed as an external component and a few other things.

Before we go any further with the implementation let’s set the component in the Tigase server so it is
loaded next time the server starts. Assuming our init.properties file looks like this one;

config-type = ---gen-confi g-def
--debug = server
--user-db = derby

47

mailto:artur.hefczyc@tigase.net
mailto:artur.hefczyc@tigase.net
http://tigase.net/

Component Implementa-
tion - Lesson 1 - Basics

--adm ns = adm n@level .ti gase. org
--user-db-uri = jdbc:derby:/Tigasel/tigasedb
--virt-hosts = devel .tigase.org

--conp-name-1 = nuc

--conp-class-1 = tigase. muc. MJCConponent
--conp- nane-2 = pubsub

--conp-class-2 = tigase. pubsub. PubSubConmponent

We can seethat it already is configured to |oad two other components: M UC and PubSub. Let’ sadd third
- our new component to the configuration file by appending two following linesin the propertiesfile:

--conp-name-3 = test
--conp-cl ass-3 = Test Conponent

Now we have to remove the etc/tigase.xml file and restart the server.

There are afew ways to check whether our component has been loaded to the server. Probably the easiest
isto connect to the server from administrator account and ook at the service discovery list.

Semvice Discpwny

3 & LR R O adminfidevel
Address! | deyvel tigase.org v | Made: v | h Brawse
Kame i R
taf Tigasa wer. 4.4.0-b1558 dewed.tigase.org
¥ Sarver canfiguration basic=canfiidevel.tig... canfig

5
1
:.|I
:.|I

Bosh connection manager boshifidevel tigase.org

Client connection manager ©2sifdevel tigaseong

Sessian manager eg s - man@deel tiga. ..
=T TR 1

? 3 5 sats
Unidefined descriplion (L33

EHET= G o b= T N =t e] K
E Multi Usar Chag muc.dewel.tigase.arg
4] Fublish=%ubscribe pubsub.devel tigase.org

! Auto- browse into objects
+ Automatically get item infarmation

| Pa " Clase |
Tl | A

If everything goes well you should see an entry on the list similar to highlighted on the screenshot. The
component description is"Undefined description" which isadefault description and we can changeit later
on, the component default JID is: test @devel .tigase.or g, where devel .tigase.or g isthe server domain and
test is the component name.

Another way to find out if the component has been loaded isby looking at log files. Actually getting your-
self familiar with Tigase log files will be very useful thing if you plan on developing Tigase components.
So let’slook at the log file loggtigase.log.0, if the component has been loaded you should find following
linesin thelog:

MessageRout er . set Properties() FINER Loading and registering nmessage receiver: tes

MessageRout er . addRout er () | NFO Addi ng receiver: Test Conponent
MessageRout er . addConponent () | NFO Addi ng conponent: Test Conponent

MessageRout er . addConponent () FI NER Addi ng: test conponent to basic-conf

Confi gur at or. conponent Added() CONFI G conponent: test

48

registrat

Component Implementa-
tion - Lesson 1 - Basics

If your component did not load you should first check configuration files. Maybe you forgot to remove the
tigase.xml file before restarting the server or aternatively the Tigase could not find your class at startup
time. Make sureyour classisin CLASSPATH or copy aJAR filewith your classto Tigaselibs/ directory.

Assuming everything went well and your component is loaded by the Tigase sever and it shows on the
service discovery list as on the screenshot above you can double click on it to get awindow with alist of
ad-hoc commands - administrator scripts. A window on the screenshot shows only two basic commands
for adding and removing script which isagood start.

A ™M Execute Command (festBdevel tig. ..

Command:

Remove command scripd

| PSS | ‘:EamzeF: {:En:er.ut‘e_']

Moreover, you can browse the server statistics in the service discovery window to find your new test
component on the list. If you click on the component it shows you a window with component statistics,
very basic packets counters.

iThu Jun 19 14:45:56 2014mage:images/service-disco-stats-200.png[]

Aswe can see with just afew lines of code our new component is quite mighty and can do alot of things
without much effort from the devel oper side.

Now, the time has come to the most important question. Can our new component do something useful,
that is can it receive and process XM PP packets?

Let’stry it out. Using you favourite client send a message to JID: test@devel.tigase.or g (assuming your
server is configured for devel.tigase.or g domain). Y ou can either use kind of XML console in your client
or just send a plain message to the component JD. According to our code in processPacket(...) method
it should log our message. For thistest | have sent a message with subject: "test message” and body: "this
isatest". Thelog file should contain following entry:

Test Conponent . processPacket () FINEST: My packet: to=null, fronenull,
dat a=<nmessage fronm="adm n@level .tigase. org/ devel "

to="t est @evel .ti gase.org" id="abcaa" xm ns="jabber:client">

<subj ect >t est nessage</ subj ect >

<body>this is a test</body>
</ message>, XM.NS=j abber:client, priority=NORVAL

If thisis a case we can be sure that everything works as expected and all we now have to do isto fill the
processPacket(...) method with some useful code.

49

Chapter 21. Component
Implementation - Lesson 2 -
Configuration

Artur Hefczyc <artur.hefczyc@tigase.net [mailto:artur.hefczyc@tigase.net]> v2.0, June 2014: Reformat-
ted for AsciiDoc. :toc: :numbered: :website: http://tigase.net/ :Date: 2010-01-06 20:22

It might be hard to tell what is the first important thing to do with your new component implementation.
Different developers may have a different view on this. It seems to me however that it is aways a good
idea to give to your component away to configure it and provide some runtime settings.

Thisguide describeshow to add configuration handling to your component. Thereisdetailed Configuration
API description available so again | am not getting deep into all details just the necessary code.

To demonstrate how to maintain the component configuration let’ s say we want to make configurabletypes
of packets which are being logged by the component. There are three possible packet types: 'message\’,
'presence’ and 'ig' and we want to be able to configure logging of any combination of them. Furthermore
we also want to be able to configure the text which is prepended to the logged message and optionally
switch the secure logging on. (Secure logging replaces all packet CData with text: ‘CData size: NN' to
protect user privacy.)

Let’s create following private variables in our component:

private String[] packetTypes = {"nessage", -"presence", -"iqQq"},
private String prependText = -"My packet: -";
private bool ean securelLoggi ng = fal se;

As the component configuration is maintained in a form of (key, value) Map we have to invent keys for
each of our configuration entry:

private static final String PACKET TYPES KEY = -"packet-types";
private static final String PREPEND TEXT KEY = -"| og- prepend";
private static final String SECURE LOGA NG KEY = -"secure-1|oggi ng";

There are two methods used to maintain the component configuration: get Def aul t s(..) where the
component provides some configuration defaultsand set Pr oper ti es(..) which setsworking config-
uration for the component:

@verride
public Map<String, Object> getDefaults(Map<String, Cbject> paramnms) {
Map<String, Object> defs = super. getDefaul ts(parans);
def s. put (PACKET_TYPES_KEY, packet Types);
def s. put (PREPEND_TEXT_KEY, prependText);
def s. put (SECURE_LOGAE NG _KEY, secureloggi ng);
return defs;

}

@verride

public void setProperties(Map<String, Object> props) {
super . set Properti es(props);
if (props.get(PACKET_TYPES KEY -) -l= null -) {

50

mailto:artur.hefczyc@tigase.net
mailto:artur.hefczyc@tigase.net
http://tigase.net/

Component |mplementation
- Lesson 2 - Configuration

packet Types = (String[]) props.get(PACKET_TYPES KEY -);
-}
if (props.get(PREPEND TEXT_KEY -) -!= null -) {
prependText = (String) props.get(PREPEND TEXT_KEY -);
-}
if (props.get(SECURE LOGA NG KEY -) -!'= null -) {
secur eLoggi ng = (Bool ean) props. get(SECURE _LOGE NG KEY -);
-}
}

Y ou do not have to implement get Def aul t s(..) method and provide default settings for your config-
uration but doing so gives you afew benefits.

Thefirst, from the devel oper point of view, youdon't haveto checkintheset Pr operti es(..) whether
thevalueisof acorrect type or convert it from String to the correct type asit always be either the default or
user provided. It will be of acorrect type asthe configuration framework takes care of the types comparing
between the user provided settings and default values. So this just makes your set Pr operti es(..)
code much simpler and clearer.

Please note that currently Tigase allows changing properties atomically hence you should check each time
if given property was updated at the given call of set Properti es().

a8 ¢ - £ ol S| g At e, g

PAagpacbarRareful, ¥ou a8 g min Bdevel tigase.org
st/ component - id testEdevel.tigase.nng
test def-hostname: devel tigase.arg

test fimoorming - filvers tigase server, NiDers, PR ke Cou mler

test/ log- prapand My pac ket

et mlx-Guéne-iim 466

pest/oubgoing-filters: tigase.server filters. PackerCounter

test | pack et -types: Message, presence, g

PEstf SO pts-dir Soripds | ademin

test) secure=logging false

0K

Secondly this also makes the administrator live easier. As you can see on the screenshot, configuration
parameters provided with default values, can be changed via configuration ad-hoc commands. So the
administrator can maintain your component at run-time from his XM PP client.

Regardless you implemented the get Def aul t s(..) method or not you can aways manually add pa-
rameterstothei nit. properti es file.

Thesyntax ini nit. properti es fileisactualy very smple and is described in details in the Admin
Guide. Asit shows on the screenshot the configuration parameter name consists of: component name + /

51

Component |mplementation
- Lesson 2 - Configuration

+ property key. To set configuration for your componentini ni t . properti es fileyou haveto append
following lines to thefile:

test/| og- prepend="My packet: -"
t est/ packet -t ypes[s] =message, presence, i q
t est/secure-1oggi ng[B] =t rue

In square brackets you provide the property type, have alook at the Admin Guide documentation for more
details.

And thisisthe complete code of the new component with modified pr ocessPacket (..) method taking
advantage of configuration settings:

i mport java.util.Map;

i mport java.util.logging. Logger;

i mport tigase.server. Abstract MessageRecei ver;
i mport tigase.server. Packet;

public class Test Component extends Abstract MessageRecei ver {

private static final Logger log =
Logger . get Logger (Test Conponent . cl ass. get Name()) ;

private static final String PACKET_TYPES KEY = -"packet-types";
private static final String PREPEND TEXT _KEY = -"| og-prepend”;
private static final String SECURE LOGAE NG KEY = -"secure-|oggi ng";
private String[] packetTypes = {"nmessage", -"presence", -"iq"};
private String prependText = -"My packet: -";

private bool ean securelLoggi ng = fal se;

@verride
public void processPacket (Packet packet) {

for (String pType -: packet Types) {
if (pType == packet. get El enName()) {
| og. finest(prependText + packet.toString(securelLogging));

-}
-}

@verride
public Map<String, Object> getDefaults(Map<String, Cbject> paranms) {
Map<String, Object> defs = super. getDefaul ts(parans);
def s. put (PACKET_TYPES_KEY, packet Types);
def s. put (PREPEND_TEXT_KEY, prependText);
def s. put (SECURE_LOGAE NG _KEY, secureloggi ng);
return defs;

-}

@verride
public void setProperties(Map<String, Object> props) {
super . set Properti es(props);
if (props.get(PACKET_TYPES KEY -) -!= null -) {
packet Types = (String[]) props.get(PACKET_TYPES KEY -);
-}

52

Component |mplementation
- Lesson 2 - Configuration

-// Make sure we can conpare el ement names by reference
-// instead of String content

for (int i = 0; i < packetTypes.length; i++) {
packet Types[i] = packet Types[i].intern();
-}
if (props.get(PREPEND TEXT KEY -) -!= null -) {
prependText = (String) props.get(PREPEND TEXT_KEY -);
-}
if (props.get(SECURE LOGA NG KEY -) -!'= null -) {
secur eLoggi ng = (Bool ean) props. get(SECURE _LOGE NG KEY -);
-}
-}

}

Of course we can do much more useful packet processinginpr ocessPacket (..) method. Thisisjusta
code example. Please note comparing packet element name with our packet type by referenceisintentional
and alowed in this context. All Element names are processed with St ri ng. i nt ern() function to
preserve memory and improve performance of string comparison.

53

Chapter 22. Component
Implementation - Lesson 3 - Multi-
Threading

Artur Hefczyc <artur.hefczyc@tigase.net [mailto:artur.hefczyc@tigase.net]> v2.0, June 2014: Reformat-
ted for AsciiDoc. :toc: :numbered: :website: http://tigase.net/ :Date: 2010-01-06 20:22

Multi core and multi CPU machines are nowadays very common. Especially for the application like the
XMPP server you most likely deploy your service on a server with afew cores or even afew CPUs. Y our
new component however processes al packetsin asingle thread.

Thisisespecially important if the packet processing is CPU expensive like, for example, SPAM checking.
In such a case you could experience single Core/CPU usage at 100% while other Cores/CPUs are idling.
Ideally, you want your component to use all available CPUs.

The Tigase API offers avery simple way to execute component’s pr ocessPacket (Packet pack-
et) method in multiple threads. Methods i nt processi ngQut Threads() and int pro-
cessi ngl nThr eads() returnsnumber of threads assigned to the component. By default it returnsjust
1 as not all component implementations are prepared to process packets concurrently. By overwriting the
method you can return any value you think is appropriate for theimplementation. Please note, there aretwo
methods, one isfor a number of threads for incoming packets to the component and another for outgoing
packets from the component. It used to be a single method but different components have different needs
and the best performance can be achieved when the outgoing queues have a separate threads pool from
incoming queues. Also some components only receive packets while other only send, therefore assigning
an equal number of threads for both could be a waste of resources.

If the packet processing is CPU bound only, you normally want to have as many threads as there are CPUs
available:

@verride
public int processinglnThreads() ({
return Runtime. getRuntine().avail abl eProcessors();
}
@verride
public int processingQut Threads() ({
return Runtime. getRuntine().avail abl eProcessors();

}

If the processing is 1/0 bound (network or database) you probably want to have much more threads to
process requests. It is hard to guessideal number of threads, instead you should run afew teststo see what
exact number is best for the component implementation.

Now you have many threads for processing your packets. Thereis one slight problem with this, however.
In many cases packets order is essential. If our pr ocessPacket (..) method is executed concurrently
by a few threads it is quite possible that a message sent to user can takeover the message sent earlier.
Especialy if the first message was large and the second was small. We can prevent this by adjusting
method responsible for packets distribution among threads.

The algorithm for packets distribution among threadsis very simple:

int thread_i dx = hashCodeFor Packet (packet) % threads_total;

54

mailto:artur.hefczyc@tigase.net
mailto:artur.hefczyc@tigase.net
http://tigase.net/

Component |mplementation
- Lesson 3 - Multi-Threading

So the key here is hashCodeFor Packet (..) method. By overwriting it we can make sure that all
packets addressed to the same user will aways be processed by the same thread:

@verride
public int hashCodeFor Packet (Packet packet) {
if (packet.getElemlo() -!'= null) {
return packet. get El emTo(). hashCode();
-}
-/l This should not happen, every packet nust have a destination
-/ 1 address, but nmaybe our SPAM checker is used for checking
-/l strange kind of packets too...
if (packet.getElenfFron() -!= null) {
return packet. get El enfFronm(). hashCode();
-}
-/l If this really happens on your systemyou should | ook
-/l carefully at packets arriving to your conponent and
-// find a better way to cal cul ate hashCode
return 1,

}

Above two methods give a control over the number of threads assigned to the packets processing in your
component and to the packets distribution among threads. This is not all the Tigase API has to offer in
terms of multi-threading.

Sometimes you want to perform some periodic actions. Y ou can of course create Timer instance and load
it with TimerTasks but as there might be a need for this on every level of the Class hierarchy you could
end-up with multiple Timer (threadsin fact) objects doing similar job and using resources. There are afew
methods which allow you to reuse common Timer object to perform all sorts of actions.

First, you have three methods allowing your to perform some periodic actions:

public synchronized void everySecond();
public synchronized void everyM nute();
public synchroni zed void everyHour();

An example implementation for periodic notifications sent to some address could ook like this one:

@verride
public synchronized void everyM nute() {
super. everyM nute();
if ((++del ayCounter) >= notificati onFrequency) {
addQut Packet (Packet . get Message(abuseAddr ess, get Conmponent | d(),
St anzaType. chat, -"Detected spam nessages: -" + spanCounter,
-"Spam counter”, null, newPacketld("spam")));
del ayCounter = O;
spamCounter = O;
-}
}

This method sends every 'notificationFrequency’ minutes a message to 'abuseAddress reporting
how many spam messages have been detected during last period. Please note, you have to call
super. ever yM nut e() to make sure other actions are executed as well and you have to also remem-
ber to keep processing in thismethod to minimum, especially if you overwriteever ySecond() method.

There are aso two methods which allow you to schedule tasks executed at certain time, they are very
similartothej ava. uti | . Ti mer APl withtheonly differenceisthat Timer isreused among all levelsof

55

Component |mplementation
- Lesson 3 - Multi-Threading

Classhierarchy. Thereisaseparate Ti mer for each Classinstance though, to avoid interferences between
separate components:

addTi mer Task(Ti mer Task task, long delay, TineUnit unit);
addTi mer Task(Ti mer Task task, |ong del ay);

There is one more method which can be overwritten which is not directly related to multi-threading but
might be very helpful for executing some actions at a very specific point of time. Thisisthe point of time
when the server has just been initialised, that is al components have been created and received their con-
figuration for the first time. When this happens the Tigase callsvoi d i nitiali zati onConpl et -
ed() method for each server component. Y ou can overwrite this method to execute some actions at the
time when you are sure the the Tigase server has started and is fully functional.

And hereis acode of an example component which uses all the API discussed in this article:

i mport java.util.Arrays;

i mport java.util.Map;

i mport java.util.logging. Logger;

i mport tigase.server. Abstract MessageRecei ver;
i mport tigase.server. Packet;

i mport tigase.util.JIDUtils;

i mport tigase.xnpp. StanzaType;

public class Test Component extends Abstract MessageRecei ver {

private static final Logger log =
Logger . get Logger (Test Conponent . cl ass. get Name()) ;

private static final String BAD WORDS KEY = -"bad-words";

private static final String WH TELI ST_KEY = -"white-list";

private static final String PREPEND TEXT _KEY = -"| og-prepend”;

private static final String SECURE LOGAE NG KEY = -"secure-|oggi ng";
private static final String ABUSE ADDRESS KEY = -"abuse-address";

private static final String NOTIFI CATI ON_ FREQ KEY = -"notification-freq";
private String[] badWwrds = {"wordl", -"word2", -"word3"};

private String[] whitelList {"adm n@ ocal host"};
private String prependText -"Spam detected: -";
private String abuseAddress = -"abuse@ ocahost";
private int notificationFrequency = 10;

private int delayCounter = O;

private bool ean securelLoggi ng = fal se;

private | ong spanCounter = O;

@verride
public void processPacket (Packet packet) {
-// Is this packet a nessage?
if ("nmessage” == packet.get El emNane()) ({
String from= JIDUtIils.get Nodel D(packet . get El enFrom()) ;
-// 1s sender on the whitelist?
if (Arrays. binarySearch(whitelList, from < 0) {
-// The sender is not on whitelist so let's check the content
String body = packet. get El enCDat a("/ nessage/ body") ;
if (body -!= null && -!body.isEnpty()) {
body = body. t oLower Case();

56

Component |mplementation
- Lesson 3 - Multi-Threading

for (String word -: badWrds) ({
i f (body.contains(word)) {
| og. finest(prependText + packet.toString(securelLogging));
++spanCount er ;
return;

-// Not a SPAM return it for further processing
Packet result = packet.swapFromnflo();
addCut Packet (resul t);

-}

@verride
public int processinglnThreads() {
return Runtime. getRuntine().avail abl eProcessors();

-}

@verride
public int processingQut Threads() ({
return Runtime. getRuntine().avail abl eProcessors();

-}

@verride
public int hashCodeFor Packet (Packet packet) {
i f (packet.getElemlo() -!'= null) {
return packet. get El emTo(). hashCode();
-}
-/1 This should not happen, every packet nust have a destination
-// address, but naybe our SPAM checker is used for checking
-/1 strange kind of packets too...
if (packet.getEl enFrom() -!'= null) {
return packet. get El enfrom(). hashCode();
-}
-// If this really happens on your systemyou should | ook carefully
-// at packets arriving to your component and decide a better way
-// to cal cul ate hashCode
return 1;

-}

@verride
public Map<String, Object> getDefaults(Map<String, Cbject> parans) {
Map<String, Object> defs = super. getDefaul ts(parans);
def s. put (BAD_WORDS_KEY, badWords);
def s. put (WHI TELI ST_KEY, whitelList);
def s. put (PREPEND_TEXT_KEY, prependText);
def s. put (SECURE_LOGAE NG _KEY, secureloggi ng);
def s. put (ABUSE_ADDRESS KEY, abuseAddress);
def s. put (NOTI FI CATI ON_FREQ KEY, noti ficati onFrequency);
return defs;

57

Component |mplementation
- Lesson 3 - Multi-Threading

@verride

public void setProperties(Map<String, Object> props) {
super. set Properti es(props);
badWwrds = (String[])props. get (BAD WORDS KEY) ;
whiteList = (String[])props. get(WH TELI ST_KEY) ;
Arrays. sort(whiteList);
prependText = (String)props. get (PREPEND TEXT_KEY) ;
secur eLoggi ng = (Bool ean) props. get (SECURE_LOGGE NG _KEY) ;
abuseAddress = (String)props. get (ABUSE_ADDRESS KEY) ;
notificationFrequency = (Integer)props.get(NOTI FI CATI ON_FREQ KEY);

-}

@verride
public synchronized void everyMnute() {
super. everyM nute();
if ((++delayCounter) >= notificationFrequency) ({
addCut Packet (Packet . get Message(abuseAddr ess, get Conponent|1d(),
St anzaType. chat, -"Detected spam nessages: -" + spanCounter,
-"Spam counter”, null, newPacketld("spam")));
del ayCounter = O0;
spamCounter = O;
-}
-}

58

Chapter 23. Component
Implementation - Lesson 4 - Service
Discovery

Artur Hefczyc <artur.hefczyc@tigase.net [mailto:artur.hefczyc@tigase.net]> v2.0, June 2014: Reformat-
ted for AsciiDoc. :toc: :numbered: :website: http://tigase.net/ :Date: 2010-01-06 20:22

Y ou component still shows in the service discovery list as an element with "Undefined description”. It
doesn’t also provide any interesting features or sub-nodes.

Inthisarticle | will show how, in asimple way, change the basic component information presented on the
service discovery list, how to add some service disco features. As a bit more advanced feature the guide
will teach you about adding/removing service discovery nodes at run-time and about updating existing
elements.

Component description and category type can be changed by overwriting two following methods:

@verride
public String getDi scoDescription() {
return -"Spamfiltering";

}

@verride
public String getDi scoCat egoryType() {
return -"spant;

}

Please note, there is no such category type like 'spam’ defined in the Service Discovery Identities registry
[http://xmpp.org/registrar/disco-categories.html]. It has been used here as a demonstration only. Please
refer to the document mentioned above for a list of categories and types and pick the one most suitable
to you.

After you added two above methods and restarted the server with updated code have alook at the service
discovery window. Y ou should see something like on the screenshot.

59

mailto:artur.hefczyc@tigase.net
mailto:artur.hefczyc@tigase.net
http://tigase.net/
http://xmpp.org/registrar/disco-categories.html
http://xmpp.org/registrar/disco-categories.html

Component Implementation -
Lesson 4 - Service Discovery

L) 11 Service Discovery =
. &) £ o o - admin@devel
Address: devel.tigase.org | Node: =l | Browse |
H.!l.l_'nt- o Mode
bl Tigase ver. 4.4.0-b1958 devel.tigase.org
1 Configuration commands basic-conf@devel.tigase.org config

'.

¢ 0F Bosh connection manager bosh@devel tigase.ong
1 Client connection manager c¢2sgdevel.tigase.org
[
s
3
E

S5 Multi User Chat muc.devel tigase.org
ti1 Publish-Subscribe pubsub.devel.tigase.org
I Session manager sess-man@devel.tigase.org
¥ Server statistics stats@devel.tigase.ong stats
¢ L VHost Manager ! vhost-man@devel.tigase.org

| Auto-browse into objects
IE Automatically get item information

i k'
(_Close)

This was easy but just this particular change doesn’t affect anything apart from just a visual appearance.
Let’s get then to more advanced and more useful changes.

One of the limitations of methods above is that you can not update or change component information at
run-time with these methods. They are called only once during set Properti es(..) method call and
the component service discovery information is created and prepared for later use. Sometimes, however
it isvery useful to be able to change the service discovery at run-time.

In our simple spam filtering component let’s show how many messages have been checked out as part of
the service discovery description string. Every time we receive a message we can to call:

updat eServi ceDi scoveryl tem(get Nanme(), null,
get Di scoDescription() + -": [" +
(++messagesCounter) + -"]", true);

A small performance note, in some casescalling'updat eSer vi ceDi scoveryltent..)' mightbean
expensive operation so probably a better idea would be to call the method not every time we receive a
message but maybe every 100 times or so.

The first parameter is the component JID presented on the service discovery list. However, the Tigase
server may work for many virtual hosts so the hostname part is added by the lower level functions and
we only provide the component name here. The second parameter is the service discovery node which is
usualy null for top level disco elements. Third is the item description (which is actualy called name in
the disco specification). The last parameter specifiesif the element is visible to administrators only.

60

Component Implementation -
Lesson 4 - Service Discovery

[B 11 Service Discovery —}
v G R o A - admin@devel
Address: devel.tigase.ong =] Node: | (Browse)
—_— —_— e —————
Pizma [14] Hode
t4] Tigase ver, 4.4.0-b1958 devel.tigase.org
P Server conflguration basic-confi@devel tigase.org config
= F Bosh connection manager boshi@Edevel tigase.org
 LF Client connection manager c2s@devel tigase.org
» ER Multi User Chat mug.devel tigase.org
F a1 Publish-Subscribe pubsub.devel tigase.org
B ¥ Session manager sess-mani@devel.tigase.org
B LT Server statistics statsdevel tigase.org srats
w : testiidevel tig g
B UF VHosts Manager vhost-maniidevel tigase.org

_ Auta-browse into objects
Autematically get itern information

I M | | Close |

The complete method code is presented bel ow and screenshot above shows how the el ement of the service
discovery for our component can changeif we apply our code and send afew messages to the component.

Using the method we can also add submodes to our component element. The XM PP service discovery
really is not for showing application counters, but this use case is good enough to demonstrate the AP
availablein the Tigase server so we continue with presenting our countersviaservicediscovery. Thistime,
instead of using null as a node we put some meaningful texts as in example below:

/1 This is called whenever a nessage arrives

/1 to the component

updat eServi ceDi scoveryl ten(get Name(), -"messages”,
-"Messages processed: [" + (++nessagesCounter) + -"]1", true);

/1 This is called every tine the conmponent detects

/'l spam nessage

updat eServi ceDi scoveryl tenm(get Name(), -"spani, -"Spam caught: [" +
(++t ot al SpamCounter) + -"]", true);

Again, have alook at the full method body below for a complete code example. Now if we send a few
messages to the component and some of them are spam (contain words recogni sed as spam) we can browse
the service discovery of the server. Y our service discovery should show alist similar to the one presented
on the screenshot on the left.

Of course, depending on the implementation, initially there might be no sub-nodes under our component
element if we call the 'updat eSer vi ceDi scoverylten ..) ' method only when a message is pro-
cessed. To make sure that sub-nodes of our component show from the very beginning you can call them
in'set Properties(..) ' forthefirst timeto populate the service discovery with initial sub-nodes.

Please note, the 'updat eSer vi ceDi scoveryl t en{..)' method is used for adding a new item and
updating existing one. There is a separate method though to remove the item:

voi d renoveServi ceDi scoveryltem(String jid,

61

Component Implementation -
Lesson 4 - Service Discovery

String node, String description)

Actualy only two first parameters are important: the 'jid' and the 'node’ which must correspond to the
existing, previously created service discovery item.

There are two additional variants of the 'update’ method which give you more control over the service
discovery item created. Items can be of different categories and types and can al so present aset of features.

The simpler is avariant which sets set of features for the updated service discovery item. Thereis adoc-
ument [http://xmpp.org/registrar/disco-features.html] describing existing, registered features. We are cre-
ating an example which is going to be spam filter and there is no predefined feature for spam filtering
but for purpose of this guide we can invent two feature identification strings and set it for our component.
Let'scall 'updat e' method with following parameters:

updat eServi ceDi scoveryl tenm(get Name(), null, getD scoDescription(),
true, -"tigase:x:spamfilter”, -"tigase:x:spamreporting");

The best place to call this method is the 'set Properti es(..)' method so our component gets a
proper service discovery settings at startup time. We have set two features for the component disco:
'tigase:x:spam-filter' and 'tigase:x:spam-reporting’. The method accepts variable set of arguments so we
can pass to it as many features as we need or following Java spec we can just pass an array of Strings.

Update your code with call presented above, and restart the server. Have alook at the service discovery
for the component now.

The last functionality might be not very useful for our case of the spam filtering component but it is for
many other cases like MUC, PubSub which is setting proper category and type for the service discovery
item. Thereisadocument listing all currently registered service discovery identities (categories and types).
Again there is entry for spam filtering. Let's use the automation category and spam-filter type and set it
for our component:

updat eServi ceDi scoveryl tenm(get Name(), null, getD scoDescription(),
-"automation", -"spamfiltering", true,
-"tigase: x:spamfilter”, -"tigase:x:spamreporting”);

Of course all these setting can be applied to any service discovery create or update, including sub-nodes.
And hereis acomplete code of the component:;

i mport java.util.Arrays;

i mport java.util.Map;

i mport java.util.l ogging. Logger;

i mport tigase.server. Abstract MessageRecei ver;
i mport tigase.server. Packet;

i mport tigase.util.JIDUtils;

i mport tigase.xnpp. StanzaType;

public class Test Component extends Abstract MessageRecei ver {

private static final Logger log =
Logger . get Logger (Test Conponent . cl ass. get Name()) ;

private static final String BAD WORDS KEY = -"bad-words";

private static final String WH TELI ST_KEY = -"white-list";

private static final String PREPEND TEXT _KEY = -"| og-prepend”;
private static final String SECURE LOGAE NG KEY = -"secure-|oggi ng";
private static final String ABUSE ADDRESS KEY = -"abuse-address";

62

http://xmpp.org/registrar/disco-features.html
http://xmpp.org/registrar/disco-features.html
http://xmpp.org/registrar/disco-features.html

Component Implementation -
Lesson 4 - Service Discovery

private static final String NOTIFI CATI ON_FREQ KEY = -"notification-freq"

private String[] badWwrds = {"wordl", -"word2", -"word3"};
private String[] whitelList {"adm n@ ocal host"};

private String prependText -"Spam detected: -";

private String abuseAddress = -"abuse@ ocahost";

private int notificationFrequency = 10;

private int delayCounter = 0O;

private bool ean securelLoggi ng = fal se;

private | ong spanCounter = O;

private | ong total SpanCounter = O;

private | ong nessagesCounter = O;

@verride
public void processPacket (Packet packet) {
-// Is this packet a nessage?
if ("nmessage” == packet.get El emNane()) ({
updat eSer vi ceDi scoveryl ten(get Name(), -"messages”,
-"Messages processed: [" + (++nessagesCounter) + -"]1", true);
String from= JIDUtIils.get Nodel D(packet . get El enFrom());
-// 1s sender on the whitelist?
if (Arrays. binarySearch(whitelList, from < 0) {
-// The sender is not on whitelist so let's check the content
String body = packet. get El enCDat a("/ nessage/ body") ;
if (body -!'= null && -!body.isEnpty()) {
body = body. t oLower Case();
for (String word -: badWrds) ({
i f (body.contains(word)) {
| og. finest(prependText + packet.toString(securelLogging));
++spanCount er ;

updat eServi ceDi scoveryl ten(get Name(), -"spam', -"Spam caught:
(++t ot al SpamCounter) + -"]", true);
return;

-// Not a SPAM return it for further processing
Packet result = packet.swapEl enfronilo();
addCut Packet (resul t);

-}

@verride
public int processingThreads() {
return Runtime. getRuntine().avail abl eProcessors();

-}

@verride
public int hashCodeFor Packet (Packet packet) {
i f (packet.getElemlo() -!'= null) {
return packet. get El emTo(). hashCode();
-}

-/1 This should not happen, every packet nust have a destination

63

Component Implementation -
Lesson 4 - Service Discovery

-// address, but naybe our SPAM checker is used for checking
-/1 strange kind of packets too...
if (packet.getEl enFrom() -!'= null) {
return packet. get El enfrom(). hashCode();
-}
-// If this really happens on your systemyou should | ook carefully
-// at packets arriving to your component and decide a better way
-// to cal cul ate hashCode
return 1;

-}

@verride
public Map<String, Object> getDefaults(Mp<String, Cbject> parans) {
Map<String, Object> defs = super. getDefaults(parans);
def s. put (BAD_WORDS_KEY, badWords);
def s. put (WHI TELI ST_KEY, whitelList);
def s. put (PREPEND_TEXT_KEY, prependText);
def s. put (SECURE_LOGA NG _KEY, secureloggi ng);
def s. put (ABUSE_ADDRESS KEY, abuseAddress);
def s. put (NOTI FI CATI ON_FREQ KEY, noti ficati onFrequency);
return defs;

-}

@verride

public void setProperties(Map<String, Object> props) {
super. set Properti es(props);
badWwrds = (String[])props. get (BAD WORDS KEY) ;
whiteList = (String[])props. get(WH TELI ST_KEY) ;
Arrays. sort(whiteList);
prependText = (String)props. get (PREPEND TEXT_KEY) ;
secur eLoggi ng = (Bool ean) props. get (SECURE_LOGGE NG _KEY) ;
abuseAddress = (String)props. get (ABUSE_ADDRESS KEY) ;
notificationFrequency = (Integer)props.get(NOTI Fl CATI ON_FREQ KEY);
updat eServi ceDi scoveryl tenm(get Name(), null, getD scoDescription(),

-"automation", -"spamfiltering", true,

-"tigase: x:spamfilter”, -"tigase:x:spamreporting”);
-}
@verride

public synchronized void everyMnute() {
super. everyM nute();
if ((++delayCounter) >= notificationFrequency) ({
addCut Packet (Packet . get Message(abuseAddr ess, get Conponent 1 d(),
St anzaType. chat, -"Detected spam nessages: -" + spanCounter,
-"Spam counter”, null, newPacketld("spam")));
del ayCounter = O;
spanCounter = O,
-}
-}

@verride
public String getDi scoDescription() {

return -"Spamfiltering";

-}

Component Implementation -
Lesson 4 - Service Discovery

@verride
public String getDi scoCat egoryType() {
return -"spant;

-}

65

Chapter 24. Component
Implementation - Lesson 5 - Statistics

Artur Hefczyc <artur.hefczyc@tigase.net [mailto:artur.hefczyc@tigase.net]> v2.0, June 2014: Reformat-
ted for AsciiDoc. :toc: :numbered: :website: http://tigase.net/ :Date: 2010-01-06 20:22

In most cases you want to gather some run-time statistics from your component to see how it works,
detect possible performance issues or congestion problems. All the server statistics are exposed and are
accessible via XM PP with ad-hoc commands, HTTP, IMX and some selected statistics are also available
via SNMP. As a component developer you don’'t have to do anything to expose your statistic via any of
above protocols, you just have to provide your statistics and the admin will be able to access them any
way he wants.

Thislesson will teach you how to add your own statistics and how to make surethat the statistics generation
doesn’t affect application performance.

= statsi@devel.tigase,org
test/Last minute packers: F
test/Packets recelved: 3
test/Fackets senk: F
test/Spam messages found: 1

test/All messages processed: 3

Stats leval: FINE =]

Mmsi | revious Hext . Cancel ’r Finish :"

Y our component from the very beginning generates some statistics by classesit inherits. Let’s add afew
statistics to our spam filtering component:

@verride
public void getStatistics(StatisticsList list) {
super.getStatistics(list);
list.add(getNane(), -"Spam nessages found", total SpanCounter, Level.|lNFO;
list.add(getNane(), -"All nessages processed", nessagesCounter, Level.FINER);
if (list.checkLevel (Level.FINEST)) {
-/l Some very expensive statistics generation code...
-}
}

| think the code should be pretty much self-explanatory.

You haveto cal 'super. get Stati sti cs(..)'to update stats of the parent class. StatisticsList isa
collection which keeps all the statistics in a way which is easy to update them and search and retrieve.

66

mailto:artur.hefczyc@tigase.net
mailto:artur.hefczyc@tigase.net
http://tigase.net/

Component Implementa-
tion - Lesson 5 - Statistics

Y ou actually don’'t need to know all the implementation details but if you are interested please refer to the
source code and JavaDoc documentation.

The first parameter of the 'add(..) ' method is the component name. All the statistics are grouped by
the component names to make it easier to look at particular component data. Next is a description of the
element. The third parameter is the element value which can be any number or string.

The last parameter is probably the most interesting. The idea has been borrowed from the logging frame-
work. Each statistic item has importance level. Levels are exactly the same as for logging methods with
'SEVERE' the most critical and 'FINEST ' the least important. This parameter has been added to improve
performance and statistics retrieval. When the 'StatisticsList' object is created it get’s assigned a level
requested by the user. If ‘add(..) ' method is called with lower priority level then the element is not even
added to thelist. This saves network bandwidth, improves statistics retrieving speed and is also more clear
to present to the end-user.

One thing which may be a bit confusing at first isthat, if there is a numerical element added to statistics
with '0' value then the Level is always forced to 'FINEST'. The assumption is that the administrator is
normally not interested zero-value statistics, therefore unless he intentionally request the lowest level
statistics he won't see elements with zer os.

The'if' statement requires some explanation too. Normally adding anew statistics element isnot avery ex-
pensive operation so passing it with 'add(..) ' method and appropriate level is enough. Sometimes, how-
ever preparing statistics data may be quite expensive, like reading/counting some records from database.
Statistics can be collected quite frequently therefore it doesn’t make sense to collect the statistics at all if
there not going to be used as the current level is higher then the item we pass anyway. In such a case it
is recommended to test whether the element level will be accepted by the collection and if not skip the
whole processing altogether.

Asyou can see, the API for generating and presenting component statisticsis very simple and straightfor-
ward. Just one method to overwrite and a simple way to pass your own counters. Below isthe whole code
of the example component:

i mport java.util.Arrays;

i mport java.util.Map;

i mport java.util.logging.Level;

i mport java.util.logging. Logger;

i mport tigase.server. Abstract MessageRecei ver;
i mport tigase.server. Packet;

i mport tigase.stats. StatisticsList;

i mport tigase.util.JIDUtils;

i mport tigase.xnpp. StanzaType;

public class Test Component extends Abstract MessageRecei ver {

private static final Logger log =
Logger . get Logger (Test Conponent . cl ass. get Name()) ;

private static final String BAD WORDS KEY = -"bad-words";

private static final String WH TELI ST_KEY = -"white-list";

private static final String PREPEND TEXT _KEY = -"| og-prepend";

private static final String SECURE LOGAE NG KEY = -"secure-|oggi ng";
private static final String ABUSE ADDRESS KEY = -"abuse-address";

private static final String NOTIFI CATI ON_ FREQ KEY = -"notification-freq";
private String[] badWrds = {"wordl", -"word2", -"word3"};

67

Component Implementa-
tion - Lesson 5 - Statistics

private String[] whitelList {"adm n@ ocal host"};
private String prependText -"Spam detected: -";
private String abuseAddress = -"abuse@ ocahost";
private int notificationFrequency = 10;

private int delayCounter = 0O;

private bool ean securelLoggi ng = fal se;

private | ong spanCounter = O;

private | ong total SpanCounter = O;

private | ong nessagesCounter = O;

@verride
public void processPacket (Packet packet) {
-// Is this packet a nessage?
if ("nmessage” == packet.get El emNane()) ({
updat eSer vi ceDi scoveryl ten(get Name(), -"messages”,
-"Messages processed: [" + (++nessagesCounter) + -"]1", true);
String from= JIDUtIils.get Nodel D(packet . get El enFrom());
-// 1s sender on the whitelist?
if (Arrays.binarySearch(whitelList, from < 0) {
-// The sender is not on whitelist so let's check the content
Stringbody = packet. get El enCDat a("/ nmessage/ body") ;
if (body -!'= null && -!body.isEnpty()) {
body = body. t oLower Case();
for (String word -: badWrds) ({
i f (body.contains(word)) {
| og. finest(prependText + packet.toString(securelLogging));
++spanCount er ;

updat eServi ceDi scoveryl ten(get Name(), -"spam', -"Spam caught:

(++t ot al SpamCounter) + -"]", true);
return;

-// Not a SPAM return it for further processing
Packet result = packet.swapEl enfronilo();
addCut Packet (resul t);

-}

@verride
public int processingThreads() {
return Runtime. getRuntine().avail abl eProcessors();

-}

@verride
public int hashCodeFor Packet (Packet packet) {
i f (packet.getElemlo() -!'= null) {
return packet. get El emTo(). hashCode();
-}
-// This should not happen, every packet nust have a destination
-// address, but naybe our SPAM checker is used for checking
-/1 strange kind of packets too...
if (packet.getEl enFrom() -!'= null) {

68

Component Implementa-
tion - Lesson 5 - Statistics

return packet. get El enfron{). hashCode();
-}
-// If this really happens on your systemyou should | ook carefully
-// at packets arriving to your component and decide a better way
-// to cal cul ate hashCode
return 1,

-}

@verride
public Map<String, Object> getDefaults(Map<String, Cbject> parans) {
Map<String, Object> defs = super. getDefaults(parans);
def s. put (BAD_WORDS_KEY, badWords);
def s. put (WHI TELI ST_KEY, whitelList);
def s. put (PREPEND_TEXT_KEY, prependText);
def s. put (SECURE_LOGA NG _KEY, secureloggi ng);
def s. put (ABUSE_ADDRESS KEY, abuseAddress);
def s. put (NOTI FI CATI ON_FREQ KEY, noti ficati onFrequency);
return defs;

-}

@verride

public void setProperties(Map<String, Cbject> props) {
super. set Properti es(props);
badWwrds = (String[])props. get (BAD WORDS KEY);
whiteList = (String[])props. get(WH TELI ST_KEY) ;
Arrays. sort(whiteList);
prependText = (String)props. get(PREPEND TEXT_KEY) ;
secur eLoggi ng = (Bool ean) props. get (SECURE_LOGGE NG _KEY) ;
abuseAddress = (String)props. get (ABUSE_ADDRESS KEY) ;
notificationFrequency = (Integer)props.get(NOTI FI CATI ON_FREQ KEY);
updat eServi ceDi scoveryl tenm(get Name(), null, getD scoDescription(),

-"automation", -"spamfiltering", true,

-"tigase: x:spamfilter”, -"tigase:x:spamreporting”);
-}
@verride

public synchronized void everyMnute() {
super. everyM nute();
if ((++delayCounter) >= notificationFrequency) ({
addCut Packet (Packet . get Message(abuseAddr ess, get Conponent 1 d(),
St anzaType. chat, -"Detected spam nessages: -" + spanCounter,
-"Spam counter”, null, newPacketld("spam")));
del ayCounter = O;
spanmCounter = O;
-}
-}

@verride
public String getDi scoDescription() {
return -"Spamfiltering";

-}

@verride
public String getDi scoCat egoryType() {

69

Component Implementa-
tion - Lesson 5 - Statistics

return -"spant;

-}

@verride
public void getStatistics(StatisticsList list) {
super.getStatistics(list);
list.add(getNane(), -"Spam nessages found", total SpanCounter, Level.|lNFO;

list.add(getNanme(), -"All nessages processed”, nessagesCounter, Level.FINE);
if (list.checkLevel (Level.FINEST)) {

-// Some very expensive statistics generation code...
-}

-}

70

Chapter 25. Component
Implementation - Lesson 6 - Scripting
Support

Artur Hefczyc <artur.hefczyc@tigase.net [mailto:artur.hefczyc@tigase.net]> v2.0, June 2014: Reformat-
ted for AsciiDoc. :toc: :numbered: :website: http://tigase.net/ :Date: 2010-01-06 20:22

Scripting support is abasic API built-in to the Tigase server and automatically available to any compo-
nent at no extra cost. This framework, however, can only access existing component variables which are
inherited by your code from parent classes. It can not access any data or any structures you added in your
component. A little effort is needed to expose some of your data to the scripting API.

This guide shows how to extend existing scripting APl with your component specific data structures.

Integrating your component implementation with the scripting APl is as simple as the code below:

private static final String BAD WORDS VAR = -"badWrds";
private static final String WH TE LI ST _ VAR = -"whiteList";
@verride

public void initBindi ngs(Bi ndi ngs binds) {
super . i ni t Bi ndi ngs(bi nds);
bi nds. put (BAD WORDS VAR, badWrds);
bi nds. put (WHI TE_LI ST_VAR, whiteList);

}

Thisway you expose two the component variables: '‘badWor ds' and ‘'whi t eLi st 'to scriptsunder names
the same names - two defined constants. Y ou could use different names of course but it is always a good
idea to keep things simple, hence we use the same variable names in the component and in the script.

Thisisit, actually, al done. AlImost... In our old implementation these two variables are Java arrays of
'String\'s. Therefore we can only change their elements but we can not add or remove elements from these
structures inside the script. Thisis not very practical and it puts some serious limits on the script’s code.
To overcome this problem | have changed the test component code to keep bad words and whitelist in
\'Java.util.Set' collection. This gives us enough flexibility to manipulate data.

As our component is now ready to cooperate with the scripting API, | will demonstrate now how to add
remove or change elements of these collections using a script and ad-hoc commands.

¥.Tals) EmJ:IEnr}(mm'"'"Et};t@ue";;ﬁig...]

Tyl U S Mew command Seriph .
Remove command script

[TST | 1 Cancel) PoEsweute™)
A

First, browse the server service discovery and double click on the test component. If you use Psi [http:/
psi-im.org/] client this should bring to you a new window with ad-hoc commands list. Other clients may
present available ad-hoc commands differently.

71

mailto:artur.hefczyc@tigase.net
mailto:artur.hefczyc@tigase.net
http://tigase.net/
http://psi-im.org/
http://psi-im.org/
http://psi-im.org/

Component Implementation -
Lesson 6 - Scripting Support

The screenshot below show how this may ook like. Y ou have to provide some description for the script
and an ID string. We use Groovy in this guide but you can as well use any different scripting language.

test@dewel.tigase.org

Description; List bad words

Command Id: badwords-list

Language Qro0sy

badw = (java.util SetibadWaords

def regult = =

for (L in badw) | resullt += % 4 “\n" }
return resule

Script text:

Save to disk:

MNai | revious Mk _ Cancel | [Finish

Pleaserefer to the Tigase scripting documentation for all the detailshow to add support for more languages.
From the Tigase API point of view it al looks the same. Y ou have to select a proper language from the
pull-down list on windows shown on the right. If your preferred language is not on thelist, it meansit is
not installed properly and Tigase couldn’t detect it.

The script to pull alist of current bad words can be as simple as the following Groovy code:

def badw = (java.util. Set)badWrds

def result = -""

for (s in badw) { result +=s + -"\n" -}
return result

Asyou see from the code, you have to reference your component variablesto avariablesin your script to
make sure a correct typeis used. The rest is very simple and is a pure scripting language stuff.

L oad the script on to the server and execute it. You should receive a new window with alist of al bad
words currently used by the spam filter.

Below is another simple script which allows updating (adding/removing) bad words from the list.

i mport tigase.server. Conmand
i mport tigase.server. Packet

def WORDS LI ST_KEY = -"words-list"
def OPERATI ON_KEY = -"operation"

72

Component Implementation -
Lesson 6 - Scripting Support

def REMOVE = - "Renove"
def ADD = -"Add"
def OPERATIONS = [ADD, REMOVE]

def badw = (java.util. Set)badWrds

def Packet p = (Packet)packet

def words = Command. get Fi el dVal ue(p, WORDS LI ST_KEY)
def operation = Comrand. get Fi el dVal ue(p, OPERATI ON_KEY)

if (words == null) {
-// No data to process, let's ask user to provide
-// a list of words
def res = (Packet)p.commandResul t (Conmand. Dat aType. f or nm)
Conmand. addFi el dVal ue(res, WORDS LI ST _KEY, -"", -"Bad words list")
Conmand. addFi el dVal ue(res, OPERATI ON_KEY, ADD, -"Qperation",
(String[])OPERATI ONS, (String[]) OPERATI ONS)
return res

}

def words_list = words.tokenize(",")

if (operation == ADD) {
words_list.each { badw add(it.trinm()) -}
return -"Words have been added.”

}

if (operation == REMOVE) {
words_list.each { badw. remove(it.trinm()) -}
return -"Wrds have been renoved."”

}

return -"Unknown operation: -" + operation

These two scripts are just the beginning. The possihilities are endless and with the simple a few lines of
code in your test component you can then extend your application at runtime with scripts doing various
things, you can reload scripts, add and remove them extending and modifying functionality as you need.
No need to restart the server, no need to recompile the code and you can use whatever scripting language
you like.

Of course, scripts for whitelist modifications would look exactly the same and it doesn’t make sense to
attach them here.

Here is a complete code of the test component with the new method described at the beginning and data
structures changed from array of 'String\'sto Java\'Set":

i mport java.util.Arrays;

i mport java.util.Collections;

i mport java.util.Map;

i mport java.util. Set;

i mport java.util.concurrent.CopyOnWiteArraySet;
i mport java.util.logging.Level;

i mport java.util.l ogging. Logger;

i mport javax.script. Bindi ngs;

i mport tigase.server. Abstract MessageRecei ver;

i mport tigase.server. Packet;

73

Component Implementation -
Lesson 6 - Scripting Support

i mport tigase.stats. StatisticsList;
i mport tigase.util.JIDUtils;
i mport tigase.xnpp. StanzaType;

public class Test Component extends Abstract MessageRecei ver {

private static final Logger log =
Logger . get Logger (Test Conponent . cl ass. get Name()) ;

private static final String BAD WORDS KEY = -"bad-words";

private static final String WH TELI ST_KEY = -"white-list";

private static final String PREPEND TEXT _KEY = -"| og-prepend";

private static final String SECURE LOGAE NG KEY = -"secure-|oggi ng";

private static final String ABUSE ADDRESS KEY = -"abuse-address";

private static final String NOTIFI CATI ON_ FREQ KEY = -"notification-freq";
private static final String BAD WORDS VAR = -"badWrds";

private static final String WH TE LI ST _ VAR = -"whiteList";

private static final String[] INITIAL_BAD WORDS = {"wordl1", -"word2", -"word3"};
private static final String[] INNTIAL_ WH TE LI ST = {"adnm n@ ocal host"};

_/**
* This m ght be changed in one threads while it is iterated in
* processPacket(...) in another thread. W expect that changes are very rare

* and small, nost of operations are just iterations.

*/

private Set<String> badWwrds = new CopyOnWiteArraySet<String>();
_/**

* This m ght be changed in one threads while it is iterated in
* processPacket(...) in another thread. W expect that changes are very rare

* and small, nost of operations are just contains(...).

*/

private Set<String> whiteList = new Concurrent Ski pLi st Set<String>();
private String prependText = -"Spam detected: -";

private String abuseAddress = -"abuse@ ocahost";

private int notificationFrequency = 10;
private int delayCounter = O;

private bool ean securelLoggi ng = fal se;
private | ong spanCounter = O;

private | ong total SpanCounter = 0;
private | ong nessagesCounter = O;

@verride
public void processPacket (Packet packet) {
-// Is this packet a nessage?
if ("nmessage” == packet.get El emNane()) ({
updat eSer vi ceDi scoveryl ten(get Name(), -"messages”,
-"Messages processed: [" + (++nessagesCounter) + -"]1", true);
String from= JIDUtIls.get Nodel D(packet . get El enFrom()) ;
-// 1s sender on the whitelist?
if (!'whiteList.contains(from) {
-// The sender is not on whitelist so let's check the content
String body = packet. get El enCDat a("/ nessage/ body") ;
if (body -!= null && -!body.isEnpty()) {

74

Component Implementation -
Lesson 6 - Scripting Support

-}

body = body. t oLower Case();
for (String word -: badWrds) ({
i f (body.contains(word)) {
| og. finest(prependText + packet.toString(securelLogging));
++spanCount er ;

updat eServi ceDi scoveryl ten(get Name(), -"spam', -"Spam caught:

(++t ot al SpamCounter) + -"]", true);
return;
-}
-}

-}
-}
-// Not a SPAM return it for further processing
Packet result = packet.swapEl enfronilo();
addCut Packet (resul t);

@verride
public int processingThreads() {

-}

return Runtime. getRuntine().avail abl eProcessors();

@verride
public int hashCodeFor Packet (Packet packet) ({

-}

i f (packet.getElemlo() -!'= null) {
return packet. get El emTo(). hashCode();
-}
-// This should not happen, every packet nust have a destination
-// address, but nmaybe our SPAM checker is used for checking
-/1 strange kind of packets too...
if (packet.getEl enFrom() -!'= null) {
return packet. get El enfrom(). hashCode();
-}
-// If this really happens on your systemyou should | ook carefully
-// at packets arriving to your component and decide a better way
-// to cal cul ate hashCode
return 1;

@verride
public Map<String, Object> getDefaults(Map<String, Cbject> parans) {

Map<String, Object> defs = super. getDefaul ts(parans);
Col | ecti ons. addAl | (badWords, | N Tl AL_BAD WORDS) ;

Col I ections. addAl | (whiteList, INITIAL_WH TE_LI ST);

def s. put (BAD_WORDS_KEY, | N TI AL_BAD WORDS) ;

def s. put (WHI TELI ST_KEY, | N TIAL_WH TE_LI ST);

def s. put (PREPEND_TEXT_KEY, prependText);

def s. put (SECURE_LOGAE NG _KEY, secureloggi ng);

def s. put (ABUSE_ADDRESS KEY, abuseAddress);

def s. put (NOTI FI CATI ON_FREQ KEY, noti ficati onFrequency);
return defs;

75

Component Implementation -
Lesson 6 - Scripting Support

@verride

public void setProperties(Map<String, Object> props) {
super. set Properti es(props);
Col | ecti ons. addAl | (badWords, (String[])props. get(BAD WORDS KEY));
Col I ections. addAl | (whiteList, (String[])props.get(WH TELI ST_KEY));
prependText = (String)props. get (PREPEND TEXT_KEY) ;
secur eLoggi ng = (Bool ean) props. get (SECURE_LOGGE NG _KEY) ;
abuseAddress = (String)props. get (ABUSE_ADDRESS KEY) ;
notificationFrequency = (Integer)props.get (NOTI FI CATI ON_FREQ KEY);
updat eServi ceDi scoveryl tenm(get Name(), null, getD scoDescription(),

-"automation", -"spamfiltering", true,

-"tigase: x:spamfilter”, -"tigase:x:spamreporting”);
-}
@verride

public synchronized void everyM nute() {
super. everyM nute();
if ((++delayCounter) >= notificationFrequency) ({
addCut Packet (Packet . get Message(abuseAddr ess, get Conponent|1d(),
St anzaType. chat, -"Detected spam nessages: -" + spanCounter,
-"Spam counter”, null, newPacketld("spam")));
del ayCounter = O0;
spamCounter = O;
-}
-}

@verride
public String getDi scoDescription() {
return -"Spamfiltering";

-}

@verride
public String getDi scoCat egoryType() {
return -"spant;

-}

@verride
public void getStatistics(StatisticsList list) {
super.getStatistics(list);

ist.add(getNanme(), -"Spam nessages found", total SpanCounter,
Level . I NFO);
list.add(getNanme(), -"All nessages processed”, nessagesCounter,
Level . FI NE);

if (list.checkLevel (Level.FINEST)) {
-// Some very expensive statistics generation code...
-}
-}

@verride

public void initBindi ngs(Bi ndi ngs binds) {
super . i ni t Bi ndi ngs(bi nds);
bi nds. put (BAD_ WORDS VAR, badWbrds);
bi nds. put (WHI TE_LI ST_VAR, whiteList);

-}

76

Component Implementation -
Lesson 6 - Scripting Support

}

Configuration API

Introduction

The component configuration API is actualy very ssimple, it consists of two methods:

Va

p<String, Object> getDefaults(Mp<String, Object> parans);

voi d setProperties(Map<String, Object> properties);

The first method retrieves configuration defaults from the component while the second sets the new con-
figuration for the component. It does look very simple and it is very simple, however there is something
more to know about that to use it effectively.

Component Startup Sequence

Beforewegointo all thedetailsit might be very helpful to know the full component initialisation sequence,
how the component is brought to life and when the configuration is set. Component loading and starting
seguence looks like this:

1

Component classis loaded and anew classinstance is created using public constructor with no param-
eters.

. Component setName(conpNane); method is called to set a name for the component. This method is

(should) be called only once in the component live time.

. Component st art () ; methodiscalled which startsall the component internal threads. This method,

together with st op() ; can be called many times to put the component processing on hold or restart
processing. The devel oper should normally not be concerned about these, unlesshe decided to overwrite
these methods.

. Component get Def aul t s(); method is called to retrieve initial settings for the component. This

method is normally called only once in the component life time.

. User provided configuration is mixed with the component defaults. Settingswhich the user has provided

overwrite existing defaults, leaving the rest unchanged.

. Component set Properti es(); iscaledto set new configuration for the component. This method

can be called many times at any point during the component life time.

. Component i ni tializationConpl eted(); method is called to notify the component that the

global server initialisation has been finished. This method is called only once during the server startup
time, after all components have been initialised and configured. This method is mainly used by network
connection managers which wait with activating socket listeners until the server is fully functional.

The important thing about all the configuration stuff is that the component does not read/ask/request con-
figuration. The configuration is pushed to the component by the configuration manager. The set -
Properti es() method can becalled at any time and any number of times while the server is running.
This design allows for the server reconfiguration at run-time and devel opers should be aware of thisand
properly code the method to allow for the component reconfiguration at run-time.

77

Component Implementation -
Lesson 6 - Scripting Support

Configuration API

Both APl methods operate on Map<String, Object>, hence, essentially the component configurationisjust
alistof (key, val ue) pairs. The Object can any of following:

» String

* Integer

* Long

» Double

* Boolean

» Array of any of above

It is guaranteed that if the component returns a default configuration entry in any of above types, the
set Properti es() method setsthe configuration entry in the same exact type. Thisis quite convenient
asyou can limit type conversions (numbers parsing for example) in your code.

getDefaults()

Map<String, Object> getDefaults(Map<String, Object> parans);

This method is normally called only once, just after the component instance has been created. It is used to
get someinitial settings from the component and create a default/initial configuration which can be mod-
ified by the user. It isrecommended that the component returnsall possible settingswith it’ s default values
so they can be presented to the end-user for configuration or diagnostic purposes. No component initial-
isation can take place here and the developer can not assume that this method is called only once. Every
time this method is called it should return only defaults not the settings set with set Properti es().
The Map<String, Obj ect > paramsprovided asa parameter to this method can contain some hints
or pre-initial parameterswhich can affect generating default configuration. Thisis because configuration
for some components may be complex and can have many different presets or optimisations depending
on the use case. These presets can be used to generate proper default configuration. If the component
implementation extends AbstractMessageReceiver then the implementation of the method should always
look like this:

@verride

public Map<String, bject> getDefaults(Map<String, Object> parans) {
Map defs = super. get Def aul t s(paramns);
def s. put (CONF_ENTRY_KEY, conf_entry_val);
return defs;

}
setProperties()

voi d setProperties(Map<String, Object> properties);

This method is called to set configuration for the component. It can be called at any time and many times
during the server run-time. The configuration will always contain all entriesreturned by get Def aul t s
method but some of them might be overwritten by user provided settings. If the component implementation
extends Abst r act MessageRecei ver thentheimplementation of the method should always look like
this:

78

Component Implementation -
Lesson 6 - Scripting Support

@verride
public void setProperties(Map properties) {

super. set Properti es(properties);

int conf_entry val = (Integer) properties.get(CONF_ENTRY_KEY);
}

Useful Presets

Normally configuration presets depend on the component implementation and are different for each com-
ponent. There are a few presets however which are often used commonly by different components:

» test if setit meansthat the server runsin atest mode, which may mean different things for different
components. The component may use this parameter to turn testing mode on.

« adm ns if set it provides alist of administrator IDs. These user may have specia access permissions
for the component. They usually can execute administrator ad-hoc commands.

e user-db-uri if setit contains the main database connection string. The component may keep there
own data.

Global Configuration Settings

There are some global settings which are provided to all components and can be used by all of them.
Usually they point so some shared resources which can be used by all components.

» SHARED USER REPO PROP_KEY is a configuration key for the user repository instance. This in-
stance can be shared among components and used to store component data in database aswell as access
to user data.

To access the use repository instance you can use the following code:

User Repository user_repo;
user_repo = (UserRepository) properties. get(RepositoryFactory. SHARED USER REPO PI

 SHARED USER REPO POOL_PROP _KEY is a configuration key for the user repository pool. In
most cases the user repository is just an SQL database. To improve the access to the database a con-
nection pool is created which is realised by creating many UserRepository instances connecting to the
same database.

To access the use repository instance you can use the following code:

User Repository user_repo;
user_repo = (UserRepository) properties. get(RepositoryFactory. SHARED USER REPO P(

» SHARED AUTH_REPO_PROP_KEY isa configuration key for the authentication repository. Com-
ponents normally do not need access to this repository unless they deal with user authentication and
authentication datais kept separately from the rest of the user data.

To access the use repository instance you can use the following code:

Aut hReposi tory auth_repo;
auth_repo = (Aut hRepository) properties. get(RepositoryFactory. SHARED AUTH REPO PI

79

Chapter 26. Packet Filtering iIn
Component

Artur Hefczyc <artur.hefczyc@tigase.net [mailto:artur.hefczyc@tigase.net]> v2.0, June 2014: Reformat-
ted for AsciiDoc. :toc: :numbered: :website: http://tigase.net/ :Date: 2010-04-06 21:22

The Packet Filter API

The Tigase server offersan API to filter packets traffic inside every component. Y ou can separately filter
incoming and outgoing packets.

By filtering we understand intercepting a packet and possibly making some changes to the packet or just
blocking the packet completely. By blocking we understand stopping from any further processing and just
dropping the packet.

The packet filtering is based on the PacketFilterlfc [https://svn.tigase.org/reps/tigase-server/trunk/src/
main/javaltigase/server/] interface. Please have alook in the JavaDoc documentation to this interface for
all the details. The main filtering method isPacket filter (Packet packet); whichtakespack-
ets as an input, processes it, possibly aerting the packet content (may add or remove some payloads) and
returns a Packet for further processing. If it returns null it means the packet is blocked and no further
processing is permitted otherwise it returns a Packet object which is either the same object it received as
aparameter or amodified copy of the original object.

Please note, although Packet object is not unmodifiable instance it is recommended to not make any
changes on the existing object. The same Packet might be processed at the sametime by other components
or threads, therefore modification of the Packet may lead to unpredictable results.

Pleaserefer to an example codein PacketCounter [https://svn.tigase.org/reps/tigase-server/trunk/src/main/
javaltigase/server/filters/] which is a very simple filter counting different types of packets. This filter is
by default loaded to all components which might be very helpful for assessing traffic shapes on newly
deployed installation. Y ou can get counters for all types of packets, where they are generated, where they
flow, what component they put the most load on.

This is because packet filter can also generate and present own statistics which are accessible via normal
statistics monitoring mechanisms. To take advantage of the statistics functionality the packet filter has
toimplement voi d get Statistics(StatisticsList |ist); method. Normaly the method
can be empty but you can generate and add to the list own statistics from the filter. Please refer to Pack-
etCounter [https://svn.tigase.org/reps/tigase-server/trunk/src/main/javaltigase/server/filters/] for an exam-
ple implementation code.

Configuration

Packet filters are configurable, that isalist of packet filters can be provided in the Tigase server configu-
ration for each component separately and for each traffic direction. This gives you a great flexibility and
control over the data flow inside the Tigase server.

You can, for example load specific packet filters to all connections managers to block specific traffic or
specific packet source from sending messages to users on your server. You could also reduce the server
overall load by removing certain payload from all packets. Possibilities are endless.

The default configuration is generated in such a way that each components loads a single packet filter -
PacketCounter for each traffic direction:

80

mailto:artur.hefczyc@tigase.net
mailto:artur.hefczyc@tigase.net
http://tigase.net/
https://svn.tigase.org/reps/tigase-server/trunk/src/main/java/tigase/server/
https://svn.tigase.org/reps/tigase-server/trunk/src/main/java/tigase/server/
https://svn.tigase.org/reps/tigase-server/trunk/src/main/java/tigase/server/
https://svn.tigase.org/reps/tigase-server/trunk/src/main/java/tigase/server/filters/
https://svn.tigase.org/reps/tigase-server/trunk/src/main/java/tigase/server/filters/
https://svn.tigase.org/reps/tigase-server/trunk/src/main/java/tigase/server/filters/
https://svn.tigase.org/reps/tigase-server/trunk/src/main/java/tigase/server/filters/
https://svn.tigase.org/reps/tigase-server/trunk/src/main/java/tigase/server/filters/
https://svn.tigase.org/reps/tigase-server/trunk/src/main/java/tigase/server/filters/

Packet Filtering in Component

message-router/incomng-filters=tigase.server.filters. Packet Counter
message-rout er/outgoing-filters=tigase.server.filters. Packet Counter
sess-man/incom ng-filters=tigase.server.filters. Packet Counter
sess-man/ out goi ng-filters=ti gase.server.filters. Packet Counter
c2s/incom ng-filters=tigase.server.filters. Packet Counter
c2s/outgoing-filters=tigase.server.filters. Packet Counter

s2s/incom ng-filters=tigase.server.filters.Packet Counter
s2s/outgoing-filters=tigase.server.filters.Packet Counter
bosh/incom ng-filters=tigase.server.filters. Packet Counter

bosh/ out goi ng-filters=ti gase.server.filters. Packet Counter
muc/incom ng-filters=tigase.server.filters. Packet Counter

muc/ out goi ng-filters=tigase.server.filters. Packet Counter

Now, let’s say you have a packet filter implemented in class: com.company.SpamBlocker. Y ou want to
disable PacketCounter on most of the components leaving it only in the message router component and
you want to install SpamBlocker in al connection managers.

Please note, in case of the connection managers incoming and outgoing traffic is probably somehow op-
posite from what you would normally expect.

* ‘'incoming' is atraffic which is submitted to a component by message router and has to be further pro-
cessed. For connection managers this further processing means sending it out to the network.

 ‘'outgoing' is a traffic which is generated by the component and goes out of the component. Such a
packet is submitted to message router which then decides where to send it for further processing. For
connection managers 'outgoing' traffic is all the packets just received from the network.

According to above explanation we have to apply the SpamBlocker filter to al outgoing trafficin all con-
nection managers. At the second thought you may also decide that it might be actually useful to compare
traffic shape between Bosh connections and standard XM PP ¢2s connections. So let’s |eave packet coun-
tersfor this components too.

Hereisour new configuration applying SpamBlocker to connection managers and PacketCounter to afew
other components:

nessage-router/incomng-filters=tigase.server.filters.Packet Counter
nessage-router/outgoing-filters=tigase.server.filters.Packet Counter
sess-man/incom ng-filters=

sess-man/ out goi ng-filters=
c2s/incomng-filters=tigase.server.filters. Packet Counter
c2s/outgoing-filters=tigase.server.filters. Packet Counter,com conpany. SpanBl ocker
s2s/incom ng-filters=

s2s/ out goi ng-filters=com conpany. SpanBl ocker

bosh/incom ng-filters=tigase.server.filters.Packet Counter

bosh/ out goi ng-filters=tigase.server.filters.Packet Counter, com conpany. SpanBl ocker
nmuc/incomng-filters=

nmuc/ out goi ng-filters=

The simplest way, right now to apply the new configuration is viainit.properties file which isin details
described in the Admin Guide.

81

Chapter 27. Component
Implementation - Lesson 8 - Startup

Time

Artur Hefczyc <artur.hefczyc@tigase.net [mailto:artur.hefczyc@tigase.net]> v2.0, June 2014: Reformat-
ted for AsciiDoc. :toc: :numbered: :website: http://tigase.net/ :Date: 2011-05-27 22:52

A startup hook in the Tigase is different from the shutdown hook.

This is because you cannot really tell when exactly is the startup time. Is it when the application started,
isit when configuration is loaded, is it when all objects are initialized. And this might be even different
for each component. Therefore, in fact, there is no startup hook in the Tigase in the same sense as the
shutdown hook.

There are afew methods which are called at startup time in the following order:

1

Constructor - thereis of course constructor which has no parameters. However it does not guarantee
that thisinstance of the component will be used at all. The object could be created just to call get De-
faul t s(..) and may be destroyed afterwards.

. void setName(String name) - the second call for the component is to set it’s unique name within the

Tigase instance. It still does not mean too much from the component run-time point of view but some
components initialise service discovery data at this point.

. void start() - thisis a second which means the component can start it’sinternal jobs or worker threads

or whatever it needs for future activity. Component’ s queues and threads are initialised at this point.

. Map<String, Object> getDefaults(M ap par ams) - thisisthe next call made by configuration manager

to collect al the default settings for the component. To help generate default settings, configuration
manager passes general properties (starting with --) in the Map as parameter to the component. As a
result it expects specific settings applicable to the component only (not starting with --).

. setProperties(M ap<String, Object> props) - after collecting component’s defaults, the connection

manager combinesthem with configuration options (not starting with --, but starting with the component
name) loaded from configuration repository (init.properties file, database, possibly other files). Then
the final configuration is passed to the component with set Pr operti es(..) method call. Database
connections are usually initialised at this point.

. void initializationCompleted() - this method is called for all components after all components are

loaded and configuration was set (viaset Properti es(..) method cal) for all components.

Therefore, i nitializati onConpl et ed() hook is the best point if you want to be sure that the
Tigase server isfully loaded, initialised and functional

82

mailto:artur.hefczyc@tigase.net
mailto:artur.hefczyc@tigase.net
http://tigase.net/

Chapter 28. Component
Implementation - Lesson 7 - Data
Repository

Artur Hefczyc <artur.hefczyc@tigase.net [mailto:artur.hefczyc@tigase.net]> v2.0, June 2014: Reformat-
ted for AsciiDoc. :toc: :numbered: :website: http://tigase.net/ :Date: 2010-04-06 21:22

There are cases when you want to store some data permanently by your component. Y ou can of course use
the component configuration to provide some database connection settings, implement your own database
connector and store records you need. There is, however, a very simple and useful framework which
allows you to read and store some data transparently in either database or disk file. The framework also
supports ad-hoc commands interface straight away so you can manipulate your component data using a
good XMPP client.

This guide will teach you how to create asimple datarepository and use it in your component. The repos-

itory can be automatically exposed via ad-hoc commands and you can change your data from any XMPP
client.

83

mailto:artur.hefczyc@tigase.net
mailto:artur.hefczyc@tigase.net
http://tigase.net/

Chapter 29. API Description for Virtual
Domains Management in the Tigase
Server

Artur Hefczyc <artur.hefczyc@tigase.net [mailto:artur.hefczyc@tigase.net]> v2.0, June 2014: Reformat-
ted for AsciiDoc. :toc: :numbered: :website: http://tigase.net/ :Date: 2010-04-06 21:22

The purpose of this guide is to introduce to the vhost management in the Tigase server. Please refer to
the JavaDoc documentation for all details. All interfaces are well documented and you can use existing
implementation as an example code base and reference point. The VHost management files are located
in the SVN repository and you can browse them using the project tracker [http://projects.tigase.org/serv-
er/trac/browser/trunk/src/main/javaltigase/vhosts].

Virtual hosts management in the Tigase server can be adjusted in many ways through the flexible
APIl. The core elements of the virtual domains management is interface VHostManagerlfc [http:/
projects.tigase.org/server/trac/browser/trunk/src/main/javaltigase/vhosts/'V HostManagerlfc.java] and its
implementation VHostManager [http://projects.tigase.org/server/trac/browser/trunk/src/main/javaltigase/
vhosts'VHostManager.javal class. They are responsible for providing the virtual hosts information to the
rest of the Tigase server components. In particular to the MessageRouter [http://projects.tigase.org/serv-
er/trac/browser/trunk/src/main/javaltigase/server/MessageRouter.java] class which controls XM PP pack-
etsflow inside the server.

The classyou most likely want to re-implement is VHostJDBCRepository [http://projects.tigase.org/serv-
er/trac/browser/trunk/src/main/javaltigase/vhosts/'V HostJDBCRepository java) used as a default virtua
hosts storage and implementing interface VHostRepository [http://projects.tigase.org/server/trac/brows-
er/trunk/src/main/javaltigase/vhosts'V HostRepository.javal. Y ou might need to have your ownimplemen-
tation in order to store and access virtual hosts in other than Tigase own data storage. This is especially
important if you are going to modify the virtual domains list through other than Tigase server system.

The very basic virtua hosts storage is provided by VhostConfigRepository [http://projects.tigase.org/
server/trac/browser/trunk/src/main/javaltigase/vhosts/V hostConfigRepository.java] class. This is read
only storage and provides the server a bootstrap vhosts data at the first startup time
when the database with virtual hosts is empty or is not accessible. Therefore it is advised
that all VHostRepository [http://projects.tigase.org/server/trac/browser/trunk/src/main/javaltigase/vhosts/
VhostConfigRepository.java] implementation extend this class. The example code is provided in the
VHostJDBCRepository [http://projects.tigase.org/server/trac/browser/trunk/src/main/javaltigase/vhosts/
VHostJDBCRepository.jave file.

All components which may need virtual hosts information or want to interact with virtual hosts manage-
ment subsystem should implement VVHostL istener [http://projects.tigase.org/server/trac/browser/trunk/src/
main/javaltigase/vhosts/VHostListener java) interface. In some cases implementing this interface is also
necessary to receive packets for processing.

Virtual host information is carried out in 2 forms inside the Tigase server:
1. AsaSt ri ng vaue with the domain name

2. As a VHostltem [http:/projects.tigase.org/server/trac/browser/trunk/src/main/javaltigase/vhostsy
VHostltem.java] which contains all the domain information, including the domain name, maximum
number of users for this domain, whether the domain is enabled or disabled and so on. The JavaDoc
documentation contains all the details about all available fields and usage.

84

mailto:artur.hefczyc@tigase.net
mailto:artur.hefczyc@tigase.net
http://tigase.net/
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostManagerIfc.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostManagerIfc.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostManagerIfc.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostManager.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostManager.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostManager.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/server/MessageRouter.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/server/MessageRouter.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/server/MessageRouter.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostJDBCRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostJDBCRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostJDBCRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VhostConfigRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VhostConfigRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VhostConfigRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VhostConfigRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VhostConfigRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VhostConfigRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostJDBCRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostJDBCRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostJDBCRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostListener.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostListener.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostListener.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostItem.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostItem.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostItem.java

API Description for Virtual Domains
Management in the Tigase Server

Hereisacompletelist of all interfaces and classes with a brief description for each of them:

1

VHostManagerlfc [http://projects.tigase.org/server/trac/browser/trunk/src/main/javaltigase/vhosts/
VHostManagerifc.java] - is an interface used to access virtual hosts information in al other
server components. There is one, default implementation of the interface: VHostManager [http://
projects.tigase.org/server/trac/browser/trunk/src/main/javaltigase/vhosts/\V HostM anager .java] .

. VHostListener [http://projects.tigase.org/server/trac/browser/trunk/src/main/javaltigase/vhosts/

VHostListenerjaval] - is an interface which alows components to interact with
the VHostManager [http://projects.tigase.org/server/trac/browser/trunk/src/main/javaltigase/vhosts/
VHostManager.java]. The interaction isin both ways. The VHostManager provides virtual hostsinfor-
mation to components and components provide some control data required to correctly route packets
to components.

. VHostRepository [http://projects.tigase.org/server/trac/browser/trunk/src/main/javaltigase/vhosts/

VHostRepository.java] - is an interfface used to store and load virtual domains list
from the database or any other storage media. There are 2 implementations for this
interface: VHostConfigRepository [http://projects.tigase.org/server/trac/browser/trunk/src/main/ja
valtigase/vhosts/V hostConfigRepository.java] which loads vhosts information for the configura
tion file and provides read-only storage and - VHostIDBCRepository [http://projects.tigase.org/
server/trac/browser/trunk/src/main/javaltigase/vhosts’VHost IDBCRepository.java] class which
extends VHostConfigRepository [http://projects.tigase.org/server/trac/browser/trunk/src/main/ja
valtigase/vhosts/V hostConfigRepository.java] and allowsfor both - reading and saving virtual domains
list. VHostIDBCRepository [http://projects.tigase.org/server/trac/browser/trunk/src/main/javaltigase/
vhosts'VHostJDBCRepository.java) isloaded as a default repository by the Tigase server.

. VHostltem [http://projects.tigase.org/server/trac/browser/trunk/src/main/javaltigase/vhosts/

VHostltem.java] - isaclasswhich allows for keeping al the virtual domain properties. Sometimes the
domain nameis not sufficient for data processing. The domain may be temporarily disabled, may have
alimited number of users and so on. Instances of this class keep al the information about the domain
which might be needed by the server components.

. VHostManager [http://projects.tigase.org/server/trac/browser/trunk/src/main/javaltigase/vhosts/

VHostManager.java] - the default implementation of the VHostM anagerlfc interface. It provides com-
ponents with the virtual hosts information and manages the virtual hosts list. Processes ad-hoc com-
mands for rel oading, updating and removing domains.

. VHostConfirRepository [http://projects.tigase.org/server/trac/browser/trunk/src/main/javaltigase/

vhosts/VhostConfigRepository.javal - a very basic implementation of the VHostRepository [http://
projects.tigase.org/server/trac/browser/trunk/src/main/javaltigase/vhosts/V HostRepository .java] for
loading domains list from the configuration file.

. VHostJDBCRepository [http://projects.tigase.org/server/trac/browser/trunk/src/main/javaltigase/

vhostsVHostJDBCRepository.javal - the default implementation of the VHostRepository [http:/
projects.tigase.org/server/trac/browser/trunk/src/main/javaltigase/vhosts/\V HostRepository .java] 1oad-
ed by the Tigase server. It allowsto read and store virtual domainslist in the database accessible through
UserRepository.

85

http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostManagerIfc.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostManagerIfc.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostManagerIfc.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostManager.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostManager.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostManager.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostListener.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostListener.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostListener.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostManager.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostManager.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostManager.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VhostConfigRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VhostConfigRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VhostConfigRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostJDBCRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostJDBCRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostJDBCRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VhostConfigRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VhostConfigRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VhostConfigRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostJDBCRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostJDBCRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostJDBCRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostItem.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostItem.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostItem.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostManager.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostManager.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostManager.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VhostConfigRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VhostConfigRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VhostConfigRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostJDBCRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostJDBCRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostJDBCRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostRepository.java
http://projects.tigase.org/server/trac/browser/trunk/src/main/java/tigase/vhosts/VHostRepository.java

Chapter 30. Experimental

Artur Hefczyc <artur.hefczyc@tigase.net [mailto:artur.hefczyc@tigase.net]> v2.0, June 2014: Reformat-
ted for AsciiDoc. :toc: :numbered: :website: http://tigase.net/ :Date: 2010-04-06 21:22

The guide contains description of non-standard or experimental functionality of the server. Some of them
are based on never published extensions, some of them are just test implementation for new ideas or
performance improvements.

» Dynamic Rosters
» Mobile Optimizations

» Bosh Session Cache

Dynamic Rosters

Problem Description

Normal roster contacts stored created as so called dynamic roster part are delivered to the end user trans-
parently. The XMPP client doesn't really know what contacts come from his own static roster created
manually by the user and what contacts come from dynamic roster part that is contacts and groups gen-
erated dynamically by the server logic.

Some specialized clients need to store extra bits of information about roster contacts. For the normal user
static roster this extrainformation can be stored as private data and is available only to the this single user.
In some cases however clients need to store information about contacts from the dynamic roster part and
thisinformation must be available to all users accessing dynamic roster part.

The protocol defined here alows exchanging information, saving and retrieving extra data about the con-
tacts.

Syntax and Semantics

Extra contact data is accessed using 1Q stanzas, specifically by means of a child element qualified by
the jabber:iq:roster -dynamic' namespace. The child element MAY contain one or more children, each
describing a unique contact item. Content of the element is not specified and isimplementation dependent.
From the Tigase server point of view it can contain any valid XML data. Whole element is passed to
the DynamicRoster? implementation class as is and without any verification. Upon retrieving the contact
extra data the DynamicRoster? implementation is supposed to provide avalid XML element with all the
required data for requested 'jid'".

The'jid" attribute specifies the Jabber Identifier (JID) that uniquely identifies the roster item. Inclusion of
the'jid' attribute is REQUIRED.

Following actions on the extra contact data are allowed:
 'set' - stores extrainformation about the contact

 'get’ - retrieves extrainformation about the contact

86

mailto:artur.hefczyc@tigase.net
mailto:artur.hefczyc@tigase.net
http://tigase.net/

Experimental

Retrieving Contact Data

Upon connecting to the server and becoming an active resource, aclient can request the contact extra data.
Thisrequest can be made either after or before requesting the user roster. The client’ srequest for the extra
contact datais OPTIONAL.

Example: Client requests contact extra data from the server using 'get’ request:

<iq type='get' id="'rce 1'>

<query xm ns='jabber:iq:roster-dynamc' >
<itemjid="archi mredes@ureka. com />

</ query>

</ig>

Example: Client receives contact extra data from the server, but there were either no extrainformation for
the user or the user was not found in the dynamic roster:

<ig type='result' id="rce_1'>

<query xm ns='jabber:iq:roster-dynamc' >
<itemjid="archi mredes@ureka.com />

</ query>

</ig>

Example: Client receives contact extra data from the server, and there was some extra information found
about the contact:

<ig type='result' id="rce_1'>

<query xm ns='jabber:iq:roster-dynamc' >
<itemjid="archi mredes@ureka. con >

<phone>+12 3234 322342</ phone>

<note>This is short note about the contact</note>
<f ax>+98 2343 3453453</fax>

<litenp

</ query>

</ig>

Updating/Saving Extra Information About the Contact

At any time, aclient MAY update contact extrainformation on the server.
Example: Client sends contact extrainformation using 'set' request.

<iqg type='set' id='a78b4g6ha463' >

<query xm ns='jabber:iq:roster-dynamc' >
<itemjid="archi medes@ureka. con >
<phone>+22 3344 556677</ phone>

<note>he is a smart guy, he knows whether the crown is nmade from pure gold or not.
<litenp
</ query>
</ig>

Client responds to the server:

<iqg type='result' id="a78b4q6ha463' />

87

Experimental

A client MAY update contact extrainformation for more than a single item in one request:
Example: Client sends contact extrainformation using 'set' request with many <i t eni > elements.

<iq type='set' id='a78b4g6ha464' >

<query xm ns='jabber:iq:roster-dynamc' >
<itemjid="archi mredes@ureka. coni >

<phone>+22 3344 556677</ phone>

<note>he is a smart guy, he knows whether the crown is nade from pure gold or not.
</itenp

<itemjid='newt on@ureka.com >

<phone>+22 3344 556688</ phone>

<not e>He knows how heavy | am </ note>

</itenp

<itemjid='pascal @ureka.com >

<phone>+22 3344 556699</ phone>

<not e>Thi s guy hel ped ne cure ny sickness!</note>
</itenp

</ query>

</ig>

Client responds to the server:

<iq type='result' id="a78b4q6ha464' />

Configuration

DynamicRoster implementation class should be configured in theinit.propertiesfile. Asit’ san extension
to the Presence and Roster plugins class should be configured either for both plugins:

sess-man/ pl ugi ns-conf/jabber\:ig\:roster/dynam c-roster-classes=<class |ist>
sess- man/ pl ugi ns- conf/ presence/ dynani c-roster-cl asses=<cl asses |ist>

or globally:
sess- man/ pl ugi ns- conf/ dynam c-roster-cl asses=<cl asses |ist>

<classeslist> is acomma separated list of classes.

88

Chapter 31. Mobile Optimizations

Andrze) Wojcik <andrzejw@tigase.org [mailto:andrzejw@tigase.org]> v2.1, January 2015: Added info
about MobileV3 v2.0, June 2014: Reformatted for AsciiDoc. :toc: :numbered: :website: http://tigase.net/
:Date: 2012-05-22 17:57

Problem Description

In default configuration stanzas are sent to client when processing is finished, but in mobile environment
sending or receiving data drains battery due to use of radio.

To save energy data should be sent to client only if it isimportant or client iswaiting for it.

Solution

When mobile client is entering inactive state it notifies server about it by sending following stanza:

<iq type="set" id="xx">

<nobi | e
xm ns="http://tigase. org/protocol /nobil e#v3"
enabl e="true"/>

</ig>

After receiving stanza server starts queueing stanzawhich should be send to mobile client. Kind of queued
stanzas depends on used plugin and in case of M obile v3 presence stanzas are queued as well as message
stanzas which are Message Carbons. Any other stanza (such asiq or plain messenge) is sent immediately
to the client and every stanza from queue is also sent at thistime.

When moabile client is entering active state it notifies server by sending following stanza:
<ig type="set" id="xx">
<nobi | e

xm ns="http://tigase. org/ protocol /nobil e#v3"

enabl e="f al se"/ >
</ig>

After receiving stanza server sends all queued stanzas to the client.

Also all stanzas from queue will be sent if number of stanzas in queue will reach queue size limit. By
default thislimit is set to 50.

Queueing Algorithms

There are three mobile optimization plugins for Tigase:

* Mobilevl - al presence stanzas are kept in queue

* Mobilev2 - only last presence from each source is kept in queue

» Mobilev3 - only last presence from each source is kept in queue, also Message Carbons are queued

If you wish to activate you Mobile v1 plugin you need to send presented above with xmins attribute value
replaced with http://tigase.org/protocol/mobileftvl

89

mailto:andrzejw@tigase.org
mailto:andrzejw@tigase.org
http://tigase.net/
http://tigase.org/protocol/mobile#v1

Mobile Optimizations

If you wish to activate you Mobile v2 plugin you need to send presented above with xmins attribute value
replaced with http://tigase.org/protocol/mobiletv2

Configuration

Mentioned plugins are not activated by default thus additional entriesin the init.properties are required:
+--sm-plugins=+mobile_v1,+mobile v2,+mobile v3

Only one of this plugins should be enabled

90

http://tigase.org/protocol/mobile#v2

Chapter 32. Bosh Session Cache

Artur Hefczyc <artur.hefczyc@tigase.net [mailto:artur.hefczyc@tigase.net]> v2.0, June 2014: Reformat-
ted for AsciiDoc. :toc: :numbered: :website: http://tigase.net/ :Date: 2010-04-06 21:22

Problem Description

Web clients have no way to store any data locally, on the client side. Therefore after a web page reload
the web clients loses all the context it was running in before the page reload.

Some elements of the context can be retrieved from the server like the roster and all contacts presence
information. Some other data however can not be restored easily like opened chat windows and the chat
windows contents. Even if the roster restoring is possible, this operation isvery expensivein terms of time
and resources on the server side.

On of possible solutions is to alow web client to store some data in the Bosh component cache on the
server side for the time while the Bosh session is active. After the page reload, if the client can somehow
retrieve SID (stored in cookie or provided by the web application running the web client) it is possible to
reload all the data stored in the Bosh cache to the client.

Bosh session context data are: roster, contacts presence information, opened chat windows, chat windows
content and some other data not known at the moment. Ideally the web client should be able to store any
datain the Bosh component cache it wants.

Bosh Session Cache Description

The Bosh Session Cacheis divided into 2 parts - automatic cache and dynamic cache.

Thereason for splitting the cacheinto 2 partsisthat some data can be collected automatically by the Bosh
component and it would be very inefficient to require the client to store the data in the Bosh cache. The
best example for such datais the Roster and contacts presence information.

» automatic cache - isthe cache part which is created automatically by the Bosh component without any
interaction with the client. The client, however, can access the cache at any time. | would say thisis
a read-only cache but | don’t want to stop client from manipulating the cache if it needs. The client
usually, only retrieves datafrom this part of the cache asall changes should be automatically updated by
the Bosh component. The general ideafor the automatic cacheisthat the data stored there are accessible
in the standard XM PP form. So no extra code is heeded for processing them.

» dynamic cache - isthe cache part which is or can be modified at any time by the client. Client can store,
retrieve, delete and modify datain this part of the cache.

Cache Protocol

All the Bosh Session Cache actions are executed using additional <body/ > element attributes: cache
and cache-i d. Attribute cache stores the action performed on the Bosh cache and the cache-i d
attribute refers to the cache element if the action attribute needs it. cache- i d isoptional. Thereisa
default cache ID (empty one) associated with the elements for which thecache- i d isnot provided.

If the<body/ > element contains the cache attribute it meansthat all dataincluded inthe <body/ > refer
to the cache action. It isnot allowed, for example to send amessage in the body and have the cache action

91

mailto:artur.hefczyc@tigase.net
mailto:artur.hefczyc@tigase.net
http://tigase.net/

Bosh Session Cache

set to get. The <body/ > element with cache action get, get_al*l, *on, off, remove must be empty. The
<body/ > element with actions set or add must contain data to store in the cache.

Cache Actions

Cache

on or off - the client can switch the cache on or off at any time during the session. It is recommended,
however that the client switches the cache on in thefirst body packet, otherwise some information from
the automatic cache may be missing. The automatic cache is created from the stream of data passing
the Bosh component. Therefore if the cache is switched on after the roster retrieval is completed then
the roster information will be missing in the cache.

If the cache is set to off (the default value) all regquests to the cache are ignored. This is to ensure
backward compatibility with the original Bosh specification and to make surethat in default environment
the Bosh component doesn’t consume any extraresources for cache processing and storing as the cache
wouldn’t be used by the client anyway.

get - retrieves the cache element pointing by the cache-id from the Bosh cache. Note there is no result
cache action. The <body/ > sent as a response from the server to the client may contain cache results
for agiven cache-id and it may also contain other datareceived by the Bosh component for the client. It
may also happen that large cached data are split into afew parts and each part can be sent in a separate
<body/ > element. It may usually happen for the Roster data.

get_all - retrieves all the elements kept in the Bosh cache. That action can can be performed after the
page reload. The client doesn’t have to request every single cached item one by one. It can retrieve all
cacheitemsin onego. It doesn’t mean however the whole cacheis sent to theclient in asingle<body/

> element. The cache content will be divided into a smaller parts of areasonable size and will be sent to
the client in a separate <body/ > elements. It may also happen that the <body/ > element contain the
cache elements as well as the new requests sent to the user like new messages or presence information.

set - sends data to the Bosh Session cachefor later retrieval. The client can store any datait wantsin the
cache. The Bosh components stores in the cache under the selected ID all the datainside the <body/ >
element. The only restriction isthat the cached datamust beavalid XML content. The dataare returned
to theclient in exactly the same form as they were received from the server. The set action replaces any
previously stored data under thisID.

add - adds new element to the cache under the given ID. This action might be useful for storing data
for the opened chat window. The client can add new elements for the chat window, like new messages,
iconsand so on...

remove - removes the cached element for the given cache ID.

ID

Cache ID can be any characters string. There might be some | Ds reserved for a specia cases, like for the
Roster content. To avoid any future ID conflicts reserved ID values starts with: bosh - string.

Thereisadefault cache ID - en empty string. Thus cache-id attribute can be omitted and then the requests
refers to data stored under the default (empty) ID.

Reserver Cache ID Names

Hereisalist of reserved Cache IDs:

bosh-roster - The user roster is cached in the Bosh component in exactly the same form as it was
received from the core server.

92

Bosh Session Cache

The Bosh Cache might do or might not do optimizations on the roster like removing elements from the
cached roster if the roster remove has been received or may just store all the roster requests and then
send them all to the client.

There is a one mandatory optimization the Bosh Cache must perform. It must remember the last (and
only the last) presence status for each roster item. Upon roster retrieving from the cache the Bosh com-
ponent must send the roster item first and then the presence for the item. If the presence is missing it
means off-line presence.

If theroster issmall it can be sent to the client in asingle packet but for alargeroster it is recommended
to split contact lists to batches of max 100 elements. The Bosh component may send all roster contacts
first and then all presences or it can send a part of the roster, presences for sent items, next part of the
roster, presences for next items and so on....

bosh-resour ce-bind - The user resource bind is also cached to allow the client quickly retrieve infor-
mation about the full JID for the established Bosh session.

93

Chapter 33. Tigase Test Suite

Artur Hefczyc <artur.hefczyc@tigase.net [mailto:artur.hefczyc@tigase.net]> v2.0, June 2014: Reformat-
ted for AsciiDoc. :toc: :numbered: :website: http://tigase.net/ :Date: 2010-04-06 21:22

Tigase Test Suite is an engine which allows you to run tests. Essentialy it just executes TestCase imple-
mentations. The tests may depend on other tests which means they are executed in specific order. For
exampl e authentication test is executed after the stream open test which in turn is executed after network
socket connection test.

The tests may have parameters. Each TestCase implementation may have it’s own set of specific param-
eters. Thereis a set of common parameters which may be applied to any TestCase. As an example of the
common parameter you can take -loop = 10 which specified that the TestCase must be execited 10 times.
The test specific parameter might be -user-name = tester which may set the user name for authentication
test.

The engineisvery generic and alows you to write any kind of tests but for the Tigase projects the current
TestCase implementations mimic an XMPP client and are designed to test XM PP servers.

The suite contains also kind of scripting language which allows you to combine test cases into a test
scenarios. The test scenario may contain full set of functional testsfor example, another test scenario may
contain performance tests and so on.

94

mailto:artur.hefczyc@tigase.net
mailto:artur.hefczyc@tigase.net
http://tigase.net/

Chapter 34. Test Suite Scripting
Language

Artur Hefczyc <artur.hefczyc@tigase.net [mailto:artur.hefczyc@tigase.net]> v2.0, June 2014: Reformat-
ted for AsciiDoc. :toc: :numbered: :website: http://tigase.net/ :Date: 2010-04-06 21:22

Thetest suite contains al so scripting language which allows you to combine test casesinto atest scenarios.
On the lowest level, however the language is designed to alow you to describe the test by setting test
parameters, test comments, identification and so on.

Let’slook at the example test description.

Short name@est-id-1;test-id-2: Short description for the test case

{

}

--loop = 10
--user-nane = Frank
This is a comrent which is ignored

>> Long, detailed description of the test case <<

Meaning of al elements:

1.

Short nameis any descriptive name you want. It doesn’t need to be unique, just something which tells
you what thistest is about.@ is a separator between the short name and the test ids.

. test-id-1;test-id-2isasemicolon separated of thetest cases|Ds. Thetestscasesare executed inthelisted

order. And listing them there means that the test-id-2 depends on test-id-1. Normally you don’t have to
list all the dependencies because all mandatory dependencies are included automatically. Which means
if you have an authentication test case the suite adds automatically network socket connection and
stream opening. Sometimes however there are dependencies which are optional or multiple mandatory
dependencies and you can select which one has to be executed. As a good example is authentications
test case. There are many authentication tests: PLAIN-AUTH, SASL-DIGESTMD5, SASL-PLAIN,
DIGEST-AUTH and they are all mandatory for most of other tests like roster, presence and so on. One
of the authentication tests is a default dependency but if you put on the list different authentication it
will be used instead of default one.

. . isaseparator between test casesids list and the short test description.

. Short test description is placed between : - colon and opening { - curly bracket. Thisis usualy quite

brief, single line test description.

. { } curly brackets contain all the test parameters, like how many times the test has to be executed or run

the test in a separate thread, user name, host | P address for the network connection and many others.

. >> << inside the double greater than and double less than you put a very long, multiple line test de-

scription.

Between an open curly bracket { and close one } you can put all the test case parameters you wish. The
format for itis:

-parameter -name = value

Parameter names always start with '-'. Note, some parameters don’'t need any value. They can exist on
their own without any value assigned:

95

mailto:artur.hefczyc@tigase.net
mailto:artur.hefczyc@tigase.net
http://tigase.net/

Test Suite Scripting Language

-debug-on-error
It works like you set "yes" or "true” for this parameter but you don’t set anything.

The scripting language includes also support for variables which can be assigned any value and used
multiple times later on. Y ou assign a value to the variable the same way as you assign it to the parameter:

$(variable-name) = value

The variable name must be always enclosed with brackets () and start with '$'.

The value may be enclosed within double quotes" " or double quotes may be omitted. If thisisasimple
string like anumber or character string consisting only of digits, letters, underscore' ' and hyphen '-' then
you can omit double quotes otherwise you must enclose the value.

The test case descriptions can be nested inside other test case descriptions. Nested test case descriptions
inherit parameters and variables from outer test case description.

96

Chapter 35. Writing Tests for Plugins

Artur Hefczyc <artur.hefczyc@tigase.net [mailto:artur.hefczyc@tigase.net]> v2.0, June 2014: Reformat-
ted for AsciiDoc. :toc: :numbered: :website: http://tigase.net/ :Date: 2010-04-06 21:22

Y ou can write tests in form of simple text file which isloaded during test suite runtime.

You simply specify what should be send to the server and what response should be expected from the
server. No need to write Java code and recompile whole test suite for new tests. It means new test cases
can be now written easily and quickly which hopefully means more detailed tests for the server.

How it works:

Let’'s take XEP-0049 [http://www.xmpp.org/extensions/xep-0049.html] Private XML Storage. Looking
into the spec we can see the first example:

Example 1. Client Stores Private Data
CLIENT:

<iqg type="set" id="1001">
<query xm ns="j abber:iq: private">
<exodus xm ns="exodus: prefs">
<def aul t ni ck>Ham et </ def aul t ni ck>
</ exodus>
</ query>
</ig>

SERVER:
<iq type="result" id="1001"/>

This is enough for the first simple test. | have to create text file Jabber | gPri vat e. t est looking
likethis:

send: {

<iqg type="set" id="1001">
<query xm ns="j abber:iq:private">
<exodus xm ns="exodus: prefs">
<def aul t ni ck>Ham et </ def aul t ni ck>
</ exodus>
</ query>
</ig>
}

expect: {
<iqg type="result" id="1001"/>

And now | can execute the test:

testsuite $ -./scripts/all-tests-runner.sh ---single JabberlqgPrivate.test

Ti gase server hone directory: -../server

97

mailto:artur.hefczyc@tigase.net
mailto:artur.hefczyc@tigase.net
http://tigase.net/
http://www.xmpp.org/extensions/xep-0049.html
http://www.xmpp.org/extensions/xep-0049.html

Writing Tests for Plugins

Version: 2.8.5-b422

Dat abase: xm db

Server |P: 127.0.0.1

Extra paraneters: JabberlgPrivate.test
Starting Tigase:

Ti gase runni ng pi d=6751

Runni ng: 2.8.5-b422-xm db test, IP 127.0.0.1..
Script nane: scripts/single-xnmpp-test.xnmpt
Common test: Common test -... failure!
FAI LURE, (Received result doesnt match expected result.,
Expected one of: [<iq id="1001" type="result"/>],
received:
[<ig id="1001" type="error">
<query xm ns="j abber:iq:private">
<exodus xm ns="exodus: prefs">
<def aul t ni ck>Hanl et </ def aul t ni ck>
</ exodus>
</ query>
<error type="cancel ">
<feature-not-inplemented xm ns="urn:ietf:paranms: xm : ns: xnpp-stanzas"/>
<text xm:lang="en" xm ns="urn:ietf:paranms: xm : ns: xnpp- st anzas" >
Feat ure not supported yet.</text>
</error>

</ig>]),

Total : 100ms

Test time: 00:00:02

Shutting down Tigase: 6751

If | just started working on this XEP and there is no code on the server side theresult is perfectly expected
although maybe thisis not what we want. After awhile of working on the server code | can execute the
test once again:

testsuite $ -./scripts/all-tests-runner.sh ---single JabberlqgPrivate.test
Ti gase server hone directory: -../server

Version: 2.8.5-b422

Dat abase: xm db

Server |P: 127.0.0.1

Extra paraneters: JabberlqgPrivate.test

Starting Tigase:

Ti gase runni ng pi d=6984

Runni ng: 2.8.5-b422-xm db test, IP 127.0.0.1..

Script nane: scripts/single-xnmpp-test.xnmpt

98

Writing Tests for Plugins

Common test: Commpn test -... success, Total: 40ns
Test time: 00:00:01

Shutting down Tigase: 6984

Thisisit. The result we want. In simple and efficient way. We can repest it as many times we want which
is especialy important in longer term. Every time we change the server code we can re-run tests to make
sure we get correct responses from the server.

You can have a look in current, with more complete test cases, file for JabberlgPrivate [http://
testsuite.tigase.org/trac/browser/trunk/tests/data/Jabber| gPrivate.cot].

Now my server tests are no longer outdated. Of course not all cases are so simple. Some XEPs require
calculationsto be done before stanzais sent or to compare received results. A good examplefor thiscaseis
user authentication like SASL and even NON-SASL. But till, there are many cases which can be covered
by simple tests: roster management, privacy lists management, vCard, private data storage and so on....

99

http://testsuite.tigase.org/trac/browser/trunk/tests/data/JabberIqPrivate.cot
http://testsuite.tigase.org/trac/browser/trunk/tests/data/JabberIqPrivate.cot
http://testsuite.tigase.org/trac/browser/trunk/tests/data/JabberIqPrivate.cot

Chapter 36. Test Case Parameters
Description

Artur Hefczyc <artur.hefczyc@tigase.net [mailto:artur.hefczyc@tigase.net]> v2.0, June 2014: Reformat-
ted for AsciiDoc. :toc: :numbered: :website: http://tigase.net/ :Date: 2010-04-06 21:22

Thereislong list of parameters which can be applied to any test case. Hereisthe description of all possible
parameters which can be used to build test scenarios.

Test Report Configuration

There are test report parameters which must be set in the main script filein order to generate HTML report
from the test. These parameters have no effect isthey are set inside the test case description.

1. -version = 2.0.0 sets the test script version. Thisis used to easily detect incompatibility issues when
the test suite loads a script created for more recent version of the suite and may not work properly for
thisversion.

2. -output-format = (html | html-content) sets the output format for the test report. There is actually
only one format possible right now - HTML. The only difference between these 2 options is that the
html format creates full HTML page with HTML header and body. The html-content format on the
other hand creates only what isinside <body/ > element. And is used to embed test result inside other
HTML content.

3. -output-file="report-filehtml" setsthe file name for the test report.

4. -output-history = (yes| no) setslogging of the all protocol data sent between test suite and the XM PP
server. Normally for functional testsit is recommended to set it to yes but for al other tests like per-
formance or load tests it should be set to no.

5. -history-format = separ ate-file sets protocol datalogging to a separate file. Currently thisisthe only
possible option.

6. -output-cols= (5] 7) Only valid values are;

5: -"Test name", -"Result", -"Test time", -"Description" [, -"History" -]
7: -"Test name", -"Result", -"Total tine", -"CK', -"Average", -"Description" [,

7. -title="Thetitle of the report page" This parameter sets the test report title which is placed in the
HTML pageinthe<ti t| e/ > element aswell asin the first page header.

Basic Test Parameters

These parameters can be set on per-test case basis but usually they are set in the main script file to apply
them to all test cases.

1. -base-ns="jabber:client" setsthe XML name space used for the XML stream in the XM PP connec-
tion. Some test cases can be used to test client to server protocol as well as server to server protocol
and possibly different protocols added in the future.

2. -debug switches debugging mode on. All the communication between the test suite and the server is
printed out to the text console and all other debugging information including java exceptions is dis-
played aswell. It is especially useful when some test fails and you want to find out why exactly.

100

mailto:artur.hefczyc@tigase.net
mailto:artur.hefczyc@tigase.net
http://tigase.net/

Test Case Parameters Description

Test

3. -debug-on-error switches on debugging mode on error detection. Normally debug output generates
lots of message which makes the output very hard to read. Especially in the performance tests not only
you can read fast scrolling lines of the protocol databut also it Slowsthetest down. This option however
turns debugging off if everything is working well and then generates debug output if any test error us
detected.

4. -def-auth = (auth-plain | auth-digest | auth-sadl) sets the default authentication method for the user
connection.

5. -def-stream = (stream-client | stream-server | stream-component | str eam-bosh) setsthe connection
stream to be tested and the name space for the connection.

6. -host = "host.name" the vhost name the tested server runs for. It may be the real DNS name or just
configured for testing purposes hostname. It must match however the server configuration.

7. -keysfile=" certgkeystore" setsthelocation of the keys store file. No need to touch it.

8. -keys-file-password = keystor e sets the password for the keystore file. Normally you don’t have to
touchiit.

9. -serverip =" 127.0.0.1" definesthe XMPP server |P address. Y ou may omit this parameter and then
the IP address will be determined automatically based on the server DNS address. However if the DNS
address can not be correctly resolved or if you run tests on the localhost you can use this parameter
to enforce the | P address.

10.-socket-wait = 10000 sets the network socket timeout in milliseconds that is maximum time the test
suite will wait for the response from the server. Y ou may want to increase the timeout for some specific
tests which reqguire lots of computation or database activity on the server. Normally 10 seconds is
enough for most cases.

11.-stop-on-fail = true causes the script to terminate al actions on the first failed test case. It helps diag-
nosing the server state at the failure point.

12-trust-file=" certs/client_truststore" setsthefilenamefor theclient trust storefile. No need to change
it.

13.-trust-file-password = truststor e sets the password for the trust store file. Normally you don’'t have
to touch it.

14.-user-name = tester setsthe user name used for the XM PP connections between the test suite and the
XMPP server. Itisusually set globally the sasmefor all tests and for sometestslike receiving the server
configuration you may want to use a different account (with admin permissions). Then you can set a
different user for this specific test case.

15.-user -pass = tester-passwor d sets the password for the user used for the XM PP connection between
the test suite and the XM PP server.

16.-user-resr = resour ce sets the user JID resource part for the XMPP connection between the test suite
and the XM PP server.

Case Parameters

Test parameters which are normally set on per-test case basis and apply only to the test they are set for
and all inherited tests. Some of the parameters though are applied only to inherited test cases. Please |ook
in the description below to find more details.

101

Test Case Parameters Description

. -active-connection is a similar parameter to -on-one-socket option. If set the suite doesn’'t close the
network socket and if the test is run in loop each loop run re-uses the network connection. Unlike in
the -on-one-socket mode the whole test is executed on each run including XM PP stream initialization
and user authentication. This option is currently not recommended in anormal use. It is useful only to
debug the server behavior in very specia use cases.

. -background executes the test in a separate thread in background and immediately returns control to
the test suite program without waiting for the test to complete. Default behavior is to execute all tests
sequentially and run next test when previous one has been completed. This parameter however alows
to run tests concurrently. This a bit similar option to the -daemon parameter. The daemon test/task
however is ignored completely and results from the daemon are not collected where the background
test isanormal test which isrun concurrently with another one or possibly many other tests.

. -daemon creates a task running in background in a separate thread. Such a test runs infinitely as a
daemon, itisnot recorded inthetest report and it’ sresult is not calculated. The purpose of such test/task
isto work as a helper for other test cases. A good example of such daemon test is message responder -
the test which runs under a different user name and waits for messages and responding to the sender.

. -delay = 1000 set the waiting time in milliseconds after the test case is completed. You may use it
if you want to introduce short delay between each test cases run in the loop or if you start the helper
daemon thread and you have to add the delay to make sureit isready to work before next real test starts
sending requests to the daemon.

. -expect-type = error sets the type for a packet expected as a response. Some test cases like message
sender expects sometimes response with the same type it has sent the packet (‘chat") but in some other
cases when it sends a message to a user who has privacy lists set to block messages the response should
be with an error. Thisway we can use the same test cases for testing different responses scenarios.

. -loop = 10 setsthe number of timesthe test (and all inherited tests) are repeated. Y ou can use a$(loop)
pseudo-variable to obtain and use the current loop run number. Thisis useful if you want to run every
loop run for a different user name like registering 10 different user accounts. To do this you stick the
$(loop) variable to the user name string: -user-name = " nick_name_$(loop)" .

. -loop-delay = 10 sets a delay in milliseconds between each individual 1oop run for the tests which is
run multiple times. Thisissimilar parameter to the -delay one but the -delay option introduces a delay
after the whole test (or all loop runs) has been completed. The loop delay options adds waiting time
between each run of the looped test.

. -loop-start = 5 sets the loop starting value. It doesn’t affect number of loop runsin aany way. It only
affects the value of the $(loop) variable. Let’s say you want to run aload test for the server with 100k
concurrent users and you want to run the test from 3 different machines. To make sure each machine
uses distinct user accounts you have to set a different -loop-start parameter on each to prevent from

overlapping.

. -messages = 10 sets the number of messages to send to the server. Thisis another way of looping the
test. Instead of repeating the whol e test with opening network connection, XM PP stream, authentication
and so on it causes only to send the message this many times. This parametersis accepted by some test
cases only which send messages. For the messages listeners - test cases which is supposed to respond
to the messages the number set here specifies how many times the the response must be sent before
the test successfully terminatesit’s work.

10.-multi-thread option causes to run the test case and al inherited in all levels test cases in separate

threads. Normally the test case where you put the parameter doesn’t have a test ID (what you put
between @ and : characters so it doesn’t run a test on it's own. Instead it contains a series of test
cases inside which are then run in a separate thread each. This is a key parameter to run tests for

102

Test Case Parameters Description

many concurrent users. (Not aload tests though.) For example you can see whether the server behaves
correctly when 5 simultaneous modifies their roster. The execution time all inherited tests run in a
separate threads is added together and also results from each individual test is calculated and added to
the total main test resullts.

11.-no-record isused for kind of configuration tests (tasks) which are used to prepare the XM PP server or
database for later tests. Asan example can be creation of the test user account which islater on used for
the roster tests. Usually you don’'t want to include such tests in the test report and using this parameter
you essentially exclude the test from the report. The test and the result however showsin the command
line output so you can still track what is really going on.

12.-on-one-socket isamodifier for alooped test case. Normally when we switch looping on using '-loop'
parameter the suite resets the state, closes the network socket and runs the test from the very beginning
including opening network socket, XMPP stream, authentication and so on. This parameter however
changes this behavior. The network socket is not closed when the test run is completed (successfully)
and next run executes only the last part of the test omitting the XM PP stream initialization, authentica-
tion and all othersbut last. Thisis useful when you want to send many messages to the server (although
this effect may be accomplished using -messages parameter aswell) or registering many user accounts
on the server, unregistering user accounts and any other which might make sense repeating many times.

13.-port = 5223 this parameter is similar to the | P address setting and can be also set globally for all tests.
Normally however you set it for asel ected testsonly to check SSL connection. For all other tests default
port number is used. Therefore this parameters has been included in this section instead of "Basic test
parameters’.

14.-repeat-script = 100 and -repeat-wait = 10 are 2 parameters are specific to the common test cases.
(Thetest cases which reads the test input/output data from the pseudo-xml text file. The first parameter
is another variation of test looping. It sets how many times the test has to be repeated. It works very
much like the -on-one-socket parameter. The only difference is that the common test can preserve
someinternal states between runsand therefore it has more control over the data. The second parameter
sers the timeout in milliseconds to wait/delay between each individual test run and it isavery similar
parameter to the -delay one but it sets atimeout inside the common test instead.

15.-sour ce-file = " dir/path/toffile.cot” is a parameter to set the "common test" script file. The common
test isatest cases which depends on the authentication test case and can read data to send and responses
to expect fromthetext file. The"cot" fileisapseudo-xml file with stanzasto send and stanzasto expect.
The the test cases compares the received packets with those in the text file and reports the test result.
Thisis usually amore convenient way to write a new test cases than coding them in Java.

16.-time-out-ok is set for atest case when we expect socket timeout as a correct result from the test case.
Normally the timeout means that the test failed and there was no response from the server at al or the
response was incorrect. For some tests however (like sending a message to the user who is blocking
messages through privacy lists) the timeout is the desired correct test result.

17.-to-jid =" user_name@host.name [mailto:user _name@host.name]" setsthe destination addressfor
packets sending packets somewhere. As an example is the test case sending <message /> packet. You
can set the destination address for the packet. Mind, normally every test expects some response for the
data sent so make sure the destination end-point will send back the data expected by the test case.

103

mailto:user_name@host.name
mailto:user_name@host.name

